Dick den Hertog is professor of Operations Research at University of Amsterdam. His research interests cover various fields in prescriptive analytics, in particular linear and nonlinear optimization. In recent years his main focus has been on robust optimization, and recently he started research on Optimization with Machine Learning. He is also active in applying the theory in real-life applications. In particular, he is interested in applications that contribute to a better society.
He received the INFORMS Franz Edelman Award twice: in 2013 for his research on optimal flood protection, and in 2021 for his research on optimizing the food supply chain for the UN World Food Programme. Currently, he is doing research to develop better optimization models and techniques for cancer treatment together with researchers from Harvard Medical School and Massachusetts General Hospital (Boston, USA), and he is involved in research to optimize the locations of health facilities in Timor-Leste and Vietnam together with the World Bank. He is associate editor of Operations Research, and INFORMS Journal on Optimization. Since 2019, he is Visiting Professor at MIT (Cambridge, USA).
Our society is facing many challenges. We believe that Analytics can be of much value to improve our world. It is encouraging to see that more and more (especially young) Analytics researchers are enthusiastic to use Analytics to make this world a better place. Analytics has already contributed significantly to, e.g., the Sustainable Development Goals of the United Nations.
To make these societal contributions of Analytics more visible, and to stimulate research in this area, Dimitris Bertsimas (MIT, Cambridge, USA) and Dick den Hertog have started a new initiative: “Analytics for a Better World (ABW)”.
Read more about Analytics for a Better World.
I consider supervising PhD candidates as the most important part of my scientific life. A significant part of my inspiration I receive from the PhD candidates who I (co-)supervise. Here is the list of these PhD candidates:
After I obtained my Master’s degree in Business Analytics and Operations Research at Tilburg University, it was a logical step for me to continue my academic career as a PhD candidate within the OR department. Together with Johan van Leeuwaarden and Dick den Hertog, I am working on the application of recently developed techniques within Robust Optimization that can deal with convex constraints on classical problems. I also focus on the field of Distributionally Robust Optimization, studying the application on random graphs and in particular its extension to the multivariate case.
After obtaining my master degree in Mathematics at Leiden University, I decided to continue my academic career at the Quantitative Economics section at the University of Amsterdam. My PhD research lies in the interface between decision theory under risk and ambiguity and robust optimization. Many optimization problems in economics, finance and operations research are subject to probabilistic uncertainty. In the past few years, sophisticated decision theory models have been developed to account for this uncertainty. However, the resulting optimization problems from these models are often complicated and not clearly tractable. My task is to show that many of these problems which are thought to be intractable, can actually be solved efficiently using cutting-edge robust optimization techniques as well as recent developments in the decision theory. As a result, practitioners can utilize these models to make better and robust decision.
My name is Britt van Veggel and I am a PhD candidate within the Analytics for a Better World institute. I obtained a bachelors degree in Mathematics at the Radboud University in Nijmegen and a masters degree in Applied Mathematics at the TU Delft. My master thesis was my first project for the Analytics for a Better World institute, where I created an optimization model for flood resilient infrastructure in developing countries. For my PhD research, I will continue contributing to a better world by applying optimization techniques to projects within the context of climate resiliency and development aid.
I am a PhD candidate at the University of Amsterdam. My research focuses on the optimization of investment decisions regarding the production and deployment of hydrogen, which is predicted to play an important role in the transition to a sustainable energy system. For such large and complex problems, there is much uncertainty regarding future developments in technology, economics, policymaking, etc. The main goal of this PhD project is to develop a robust optimization methodology for dealing with such uncertainties while optimizing long-term, large-scale energy system models.
I am Zihang Qiu, a PhD candidate at the University of Amsterdam. After obtaining my Master's degree in Physics at ETH Zürich, I am working on the EU-funded RAPTOR project to realize online treatment adaption for proton radiotherapy. My research focuses on the daily adaption of proton treatment plan to the patient's latest anatomy to minimize the uncertainty caused by the disagreement between the patient's treatment plan and their anatomy, using mathematical optimization and machine learning. I am carrying out my research project under the supervision of Professor Dick den Hertog (the University of Amsterdam) and Professor Thomas Bortfeld (Massachusetts General Hospital).
I am Parvathy Krishnan, a Data Science Consultant in the public sector working for organisations such as World Bank and UNDP to employ data science tools and techniques to accelerate the achievement of Sustainable Development Goals. I have a Bachelor of Technology in Electrical and Electronics Engineering, Master of Technology in Energy Management & Climate Change Technology and a Professional Doctorate in Engineering (PDEng.) in Data Science. Under the guidance of Prof Dick den Hertog and Prof. Joaquim Gromicho, I am pursuing a part-time PhD on Analytics for a Better World.
I am a PhD candidate at the University of Amsterdam, and I work on the ENW-Groot project OPTIMAL (Optimisation for and with Machine Learning). My research focuses on the investigation of different techniques to embed Deep Learning into optimisation models. The goal is to start from data and use predictive models to build part of the optimisation model, making it data-centric and easier to develop. The two main applications of this project are related to the World Food Programme and the Radiotherapy Optimization.
During my bachelor in AI and a master in Data Science, I developed a particular interest in the application of Machine Learning to approach optimal solutions to optimization problems. As I am now a PhD student at the University of Amsterdam and Sanquin Blood Supply, I am using both mathematical optimization and Machine Learning in order to improve Sanquin's blood supply chain and the issuing of blood products to patients.
My name is Meike Reusken and I am a PhD candidate at the Zero Hunger Lab at Tilburg University. Here we use data science for food security. Before joining the Zero Hunger Lab, I obtained a Master’s degree in Economics at Erasmus University and a Master’s degree in Econometrics at Tilburg University. For my research, I am collaborating with the World Food Programme and the Dutch Food Bank. I aspire to improve their processes using (robust) optimisation techniques, with combating hunger as the main focus.
I am a Phd candidate at the University of Amsterdam funded by the NWO. Previously, I obtained a Master’s degree in Mathematics at the Radboud University and a Master’s degree in Business at Tilburg University. My research focuses on finding new methods to approximately solve hard minimisation problems with concave parts in the objective and/or constraint functions. Such problems arise often in, e.g., logistics, where costs are concave functions due to economies of scale. An important test case is the optimal food supply-chain problem for the World Food Programme.
After obtaining a Master's degree in both Mathematics and Operations Management at Eindhoven University of Technology, I started as a PhD candidate in the OR department of Tilburg University. I am currently working on various topics that explore the merits of applying distributionally robust optimisation as a tool to analyze stochastic systems. My research mainly focuses on the distribution-free analysis of stochastic systems that are driven by some underlying stochastic process. Please take a look at my university profile page.
I lead the model integration and real-time optimisation group at KISTERS, a global provider of software solutions for the water and energy business. Some of the water flow optimisation problems that arise in my work at KISTERS have strongly non-linear equality constraints and as such are not convex. Next to my primary function, I am refining the mathematics I have developed to tackle these problems as a PhD candidate at the University of Amsterdam.
I am a PhD candidate at the Zero Hunger Lab at Tilburg University. My research focuses on applying and developing operations research techniques that help humanitarian organizations to optimise their operations. Examples of my work are finding optimal depot locations for humanitarian logistics service providers using robust optimisation, and optimising route decisions in (partly) unknown road networks that may be heavily affected by weather conditions.
Koen Peters is a project manager in the Supply Chain Planning & Optimization unit of the World Food Programme. After finishing a Master’s degree in Operations Research at Tilburg University, he decided to apply his optimisation knowledge to support humanitarian operations. For the last few years, he has been leading optimisation initiatives at the World Food Programme, developing user-friendly tools to ensure that WFP can reach as many beneficiaries as possible. Under the guidance of professors Hein Fleuren and Dick den Hertog he is pursuing a PhD at Tilburg University’s Zero Hunger Lab.