Könye, V., Mertens, L., Morice, C., Chernyavsky, D., Moghaddam, A. G., Van Wezel, J., & Van Den Brink, J. (2023). Anisotropic optics and gravitational lensing of tilted Weyl fermions. Physical Review B, 107(20), Article L201406. https://doi.org/10.1103/PhysRevB.107.L201406[details]
Kłosiński, A., Brzezicki, W., Lau, A., Agrapidis, C. E., Oleś, A. M., Van Wezel, J., & Wohlfeld, K. (2023). Topology of chalcogen chains. Physical Review B, 107(12), Article 125123. https://doi.org/10.1103/PhysRevB.107.125123[details]
Mertens, L., & van Wezel, J. (2023). Environment-Assisted Invariance Does Not Necessitate Born’s Rule for Quantum Measurement. Entropy, 25(3), Article 435. https://doi.org/10.3390/e25030435[details]
Mertens, L., van den Brink, J., & van Wezel, J. (2023). Two-Dimensional Discommensurations: An Extension to McMillan’s Ginzburg–Landau Theory. Condensed Matter, 8(4), Article 100. https://doi.org/10.3390/condmat8040100[details]
Chua, R., Henke, J., Saha, S., Huang, Y., Gou, J., He, X., Das, T., Van Wezel, J., Soumyanarayanan, A., & Wee, A. T. S. (2022). Coexisting Charge-Ordered States with Distinct Driving Mechanisms in Monolayer VSe2. ACS Nano, 16(1), 783-791. https://doi.org/10.1021/acsnano.1c08304[details]
Kattemölle, J., & Van Wezel, J. (2022). Variational quantum eigensolver for the Heisenberg antiferromagnet on the kagome lattice. Physical Review B, 106(21), Article 214429. https://doi.org/10.1103/PhysRevB.106.214429[details]
Könye, V., Morice, C., Chernyavsky, D., Moghaddam, A. G., Van Den Brink, J., & Van Wezel, J. (2022). Horizon physics of quasi-one-dimensional tilted Weyl cones on a lattice. Physical Review Research, 4(3), Article 033237. https://doi.org/10.1103/PhysRevResearch.4.033237[details]
Mertens, L., Moghaddam, A. G., Chernyavsky, D., Morice, C., Van Den Brink, J., & Van Wezel, J. (2022). Thermalization by a synthetic horizon. Physical Review Research, 4(4), Article 043084. https://doi.org/10.1103/PhysRevResearch.4.043084[details]
Morice, C., Chernyavsky, D., van Wezel, J., van den Brink, J., & Moghaddam, A. G. (2022). Quantum dynamics in 1D lattice models with synthetic horizons. SciPost Physics Core, 5(3), Article 042. https://doi.org/10.21468/SciPostPhysCore.5.3.042[details]
Peng, Y., Guo, X., Xiao, Q., Li, Q., Strempfer, J., Choi, Y., Yan, D., Luo, H., Huang, Y., Jia, S., Janson, O., Abbamonte, P., Van Den Brink, J., & Van Wezel, J. (2022). Observation of orbital order in the van der Waals material 1T-TiSe2. Physical Review Research, 4(3), Article 033053. https://doi.org/10.1103/PhysRevResearch.4.033053[details]
Singh, M., Yu, B., Huber, J., Sharma, B., Ainouche, G., Fu, L., Van Wezel, J., & Boyer, M. C. (2022). Lattice-driven chiral charge density wave state in 1T-TaS2. Physical Review B, 106(8), Article L081407. https://doi.org/10.1103/PhysRevB.106.L081407[details]
van Wezel, J. (2022). Phase transitions as a manifestation of spontaneous unitarity violation. Journal of Physics A: Mathematical and Theoretical, 55(40), Article 401001. https://doi.org/10.1088/1751-8121/ac9163[details]
Feng, X., Henke, J., Morice, C., Sayers, C. J., Da Como, E., van Wezel, J., & van Heumen, E. (2021). Signatures of the charge density wave collective mode in the infrared optical response of VSe2. Physical Review B, 104(16), Article 165134. https://doi.org/10.1103/PhysRevB.104.165134[details]
Kłosiński, A., Oleś, A. M., Efthimia Agrapidis, C., Van Wezel, J., & Wohlfeld, K. (2021). Chalcogenic orbital density waves in the weak- And strong-coupling limit. Physical Review B, 103(23), Article 235123. https://doi.org/10.1103/PhysRevB.103.235123[details]
Lizunova, M., Kager, J., De Lange, S., & Van Wezel, J. (2021). Emergence of oscillons in kink-impurity interactions. Journal of Physics A: Mathematical and Theoretical, 54(31), Article 315701. https://doi.org/10.1088/1751-8121/ac0d36[details]
Mertens, L., Wesseling, M., Vercauteren, N., Corrales-Salazar, A., & van Wezel, J. (2021). Inconsistency of linear dynamics and Born's rule. Physical Review A, 104(5), Article 052224. https://doi.org/10.1103/PhysRevA.104.052224[details]
Moghaddam, A. G., Chernyavsky, D., Morice, C., van Wezel, J., & van den Brink, J. (2021). Engineering spectral properties of non-interacting lattice Hamiltonians. SciPost Physics, 11(6), Article 109. https://doi.org/10.21468/SciPostPhys.11.6.109[details]
Morice, C., Moghaddam, A. G., Chernyavsky, D., Van Wezel, J., & van den Brink, J. (2021). Synthetic gravitational horizons in low-dimensional quantum matter. Physical Review Research, 3(2), Article L022022. https://doi.org/10.1103/PhysRevResearch.3.L022022[details]
Pásztor, Á., Scarfato, A., Spera, M., Flicker, F., Barreteau, C., Giannini, E., van Wezel, J., & Renner, C. (2021). Multiband charge density wave exposed in a transition metal dichalcogenide. Nature Communications, 12, Article 6037. https://doi.org/10.1038/s41467-021-25780-4[details]
Ghatak, A., Brandenbourger, M., van Wezel, J., & Coulais, C. (2020). Observation of non-Hermitian topology and its bulk-edge correspondence in an active mechanical metamaterial. Proceedings of the National Academy of Sciences of the United States of America, 117(47), 29561-29568. https://doi.org/10.1073/pnas.2010580117[details]
Hedayat, H., Ceraso, A., Sayers, C., Dal Conte, S., van Wezel, J., Clark, S. R., Da Como, E., Cerullo, G., Dallera, C., & Carpene, E. (2020). Combined ultrafast spectroscopy techniques discloses the microscopic electron lattice interplay behind charge density waves. In S. Haacke, S. Sharma, & V. Yakovlev (Eds.), Advances in Ultrafast Condensed Phase Physics II: 6-10 April 2020, Online Only, France Article 113460D (Proceedings of SPIE, the International Society for Optical Engineering; Vol. 11346). SPIE. https://doi.org/10.1117/12.2556677[details]
Lizunova, M. A., Kuypers, S., Meijer, B., Silva, A., & van Wezel, J. (2020). Visualizing topological transport. American Journal of Physics, 88(10), 876-882. https://doi.org/10.1119/10.0001656[details]
Lizunova, M. A., Schreck, F., Morais Smith, C., & Van Wezel, J. (2019). Visualizing the connection between edge states and the mobility edge in adiabatic and nonadiabatic topological charge transport. Physical Review B, 99(11), Article 115114. https://doi.org/10.1103/PhysRevB.99.115114[details]
Gao, S., Flicker, F., Sankar, R., Zhao, H., Ren, Z., Rachmilowitz, B., Balachandar, S., Chou, F., Burch, K. S., Wang, Z., van Wezel, J., & Zeljkovic, I. (2018). Atomic-scale strain manipulation of a charge density wave. Proceedings of the National Academy of Sciences of the United States of America, 115(27), 6986-6990. https://doi.org/10.1073/pnas.1718931115[details]
Ramankutty, S. V., Henke, J., Schiphorst, A., Nutakki, R., Bron, S., Araizi-Kanoutas, G., Mishra, S. K., Li, L., Huang, Y., Kim, T. K., Hoesch, M., Schlueter, C., Lee, T-L., Visser, A. D., Zhong, Z., van Wezel, J., Heumen, E. V., & Golden, M. S. (2018). Electronic structure of the candidate 2D Dirac semimetal SrMnSb22: a combined experimental and theoretical study. SciPost Physics, 4(2), Article 010. https://doi.org/10.21468/SciPostPhys.4.2.010[details]
Silva, A., & van Wezel, J. (2018). The simple-cubic structure of elemental Polonium and its relation to combined charge and orbital order in other elemental chalcogens. SciPost Physics, 4(6), Article 028. https://doi.org/10.21468/SciPostPhys.4.6.028[details]
Silva, A., Henke, J., & van Wezel, J. (2018). Elemental chalcogens as a minimal model for charge and orbital order. Physical Review B, 97(4), Article 045151. https://doi.org/10.1103/PhysRevB.97.045151[details]
Kogar, A., Rak, M. S., Vig, S., Husain, A. A., Flicker, F., Joe, Y. I., Venema, L., MacDougall, G. J., Chiang, T. C., Fradkin, E., van Wezel, J., & Abbamonte, P. (2017). Signatures of exciton condensation in a transition metal dichalcogenide. Science, 358(6368), 1314-1317. https://doi.org/10.1126/science.aam6432[details]
Kruthoff, J., de Boer, J., van Wezel, J., Kane, C. L., & Slager, R. J. (2017). Topological classification of crystalline insulators through band structure combinatorics. Physical Review X, 7(4), Article 041069. https://doi.org/10.1103/PhysRevX.7.041069[details]
Zhao, J., Wijayaratne, K., Butler, A., Yang, J., Malliakas, C. D., Chung, D. Y., Louca, D., Kanatzidis, M. G., van Wezel, J., & Chatterjee, U. (2017). Orbital selectivity causing anisotropy and particle-hole asymmetry in the charge density wave gap of 2H−TaS2. Physical Review B, 96(12), Article 125103. https://doi.org/10.1103/PhysRevB.96.125103[details]
Maschek, M., Rosenkranz, S., Hott, R., Heid, R., Merz, M., Zocco, D. A., Said, A. H., Alatas, A., Karapetrov, G., Zhu, S., van Wezel, J., & Weber, F. (2016). Superconductivity and hybrid soft modes in TiSe2. Physical Review B, 94(21), Article 214507. https://doi.org/10.1103/PhysRevB.94.214507[details]
Chatterjee, U., Zhao, J., Iavarone, M., Di Capua, R., Castellan, J. P., Karapetrov, G., Malliakas, C. D., Kanatzidis, M. G., Claus, H., Ruff, J. P. C., Weber, F., van Wezel, J., Campuzano, J. C., Osborn, R., Randeria, M., Trivedi, N., Norman, M. R., & Rosenkranz, S. (2015). Emergence of coherence in the charge-density wave state of 2H-NbSe2. Nature Communications, 6, Article 6313. https://doi.org/10.1038/ncomms7313[details]
Feng, Y., van Wezel, J., Wang, J., Flicker, F., Silevitch, D. M., Littlewood, P. B., & Rosenbaum, T. F. (2015). Itinerant density wave instabilities at classical and quantum critical points. Nature Physics, 11(10), 865-871. https://doi.org/10.1038/NPHYS3416[details]
Flicker, F., & van Wezel, J. (2015). Charge Order from Orbital-dependent Coupling Evidenced by NbSe2. Nature Communications, 6, Article 7034. https://doi.org/10.1038/ncomms8034[details]
Gradhand, M., & van Wezel, J. (2015). Optical Gyrotropy and the Nonlocal Hall Effect in Chiral Charge Ordered TiSe2. Physical Review B, 92(4), Article 041111(R). https://doi.org/10.1103/PhysRevB.92.041111[details]
Haravifard, S., Banerjee, A., van Wezel, J., Silevitch, D. M., dos Santos, A. M., Lang, J. C., Kermarrec, E., Srajer, G., Gaulin, B. D., Molaison, J. J., Dabkowska, H. A., & Rosenbaum, T. F. (2015). Reply to Zayed: Interplay of magnetism and structure in the Shastry-Sutherland model. Proceedings of the National Academy of Sciences of the United States of America, 112(5), E383-E384. https://doi.org/10.1073/pnas.1423100112[details]
van Wezel, J. (speaker) (2023). Spiral charge order in 1T-TaS2, Microstructure, Magnetic and Electronic Ordering: Interplay and Interactions, Bad-Honnef.
van Wezel, J. (speaker) (3-9-2018). Collective modes of the excitonic condensate in 1T-TiSe2, Excitonic Insulators Workshop, Lausanne.
van Wezel, J. (speaker) (3-9-2018). Topology in crystalline lattices, Special DITP Triangle Meeting, Utrecht.
van Wezel, J. (speaker) (5-2018). Topology in crystalline lattices, University of Utrecht, Utrecht.
van Wezel, J. (speaker) (3-2018). Topology in time-reversal symmetric crystals, Oxford University.
van Wezel, J. (speaker) (3-2018). Topology in crystalline lattices, Perimeter Institute for Theoretical Physics.
van Wezel, J. (speaker) (20-10-2016). Charge Order from Orbital-dependent Coupling Evidenced by NbSe2, European Conference on NanoFilms 2016, Bilbao.
van Wezel, J. (speaker) (28-6-2016). Chiral charge and orbital order -- from elemental chalcogens to TiSe2, gordon research conference 'correlated electron systems'.
Andere
van Wezel, J. (organiser) (22-8-2018 - 24-8-2018). The 2018 UK-NL Condensed Matter Meeting, Oxford (organising a conference, workshop, ...).
2024
Xiao, , Janson, O., van Wezel, J. & Peng, Y. (2024). Experimental and Numerical data for the manuscript “Observation of giant circular dichroism induced by electronic chirality in TiSe2” by Q. Xiao, O. Janson, S. Francoual, Q. Qiu, Q. Li, S. Zhang, W. Xie, P. Bereciartua, J. van den Brink, J. van Wezel, and Y. Peng. Figshare. https://doi.org/10.6084/m9.figshare.23723658.v2
2023
Xiao, Q., Janson, O., van Wezel, J. & Peng, Y. (2023). Experimental and Numerical data for the manuscript “Observation of giant circular dichroism induced by electronic chirality in TiSe2” by Q. Xiao, O. Janson, S. Francoual, Q. Qiu, Q. Li, S. Zhang, W. Xie, P. Bereciartua, J. van den Brink, J. van Wezel, and Y. Peng. Figshare. https://doi.org/10.6084/m9.figshare.23723658.v1
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.