Coogan, A., Anau Montel, N., Karchev, K., Grootes, M. W., Nattino, F., & Weniger, C. (2024). The effect of the perturber population on subhalo measurements in strong gravitational lenses. Monthly Notices of the Royal Astronomical Society, 527(1), 66-78. https://doi.org/10.1093/MNRAS/STAD2925[details]
Alvey, J., Gerdes, M., & Weniger, C. (2023). Albatross: a scalable simulation-based inference pipeline for analysing stellar streams in the Milky Way. Monthly Notices of the Royal Astronomical Society, 525(3), 3662-3681. https://doi.org/10.1093/mnras/stad2458[details]
Forré, P., Miller, B. K., & Weniger, C. (2023). Contrastive Neural Ratio Estimation. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), 36th Conference on Neural Information Processing Systems (NeurIPS 2022): New Orleans, Louisiana, USA, 28 November-9 December 2022 (Vol. 5, pp. 3262-3278). (Advances in Neural Information Processing Systems; Vol. 35). Neural Information Processing Systems Foundation. https://doi.org/10.48550/arXiv.2210.06170[details]
Karchev, K., Trotta, R., & Weniger, C. (2023). SICRET: Supernova Ia Cosmology with truncated marginal neural Ratio EsTimation. Monthly Notices of the Royal Astronomical Society, 520(1), 1056-1072. https://doi.org/10.1093/mnras/stac3785[details]
Montel, N. A., Coogan, A., Correa, C., Karchev, K., & Weniger, C. (2023). Estimating the warm dark matter mass from strong lensing images with truncated marginal neural ratio estimation. Monthly Notices of the Royal Astronomical Society, 518(2), 2746-2760. https://doi.org/10.1093/mnras/stac3215[details]
Noordhuis, D., Prabhu, A., Witte, S. J., Chen, A. Y., Cruz, F., & Weniger, C. (2023). Novel Constraints on Axions Produced in Pulsar Polar-Cap Cascades. Physical Review Letters, 131(11), Article 111004. https://doi.org/10.1103/PhysRevLett.131.111004[details]
Saxena, A., Cole, A., Gazagnes, S., Meerburg, P. D., Weniger, C., & Witte, S. J. (2023). Constraining the X-ray heating and reionization using 21-cm power spectra with Marginal Neural Ratio Estimation. Monthly Notices of the Royal Astronomical Society, 525(4), 6097-6111. https://doi.org/10.1093/mnras/stad2659[details]
Armstrong, T. P., Costantini, H., Glicenstein, J.-F., Lenain, J.-P., Schwanke, U., & CTA Collaboration (2022). Monte Carlo Simulations and Validation of NectarCAM, a Medium Sized Telescope Camera for CTA. Proceedings of Science, 395, Article 747. https://doi.org/10.22323/1.395.0747[details]
Aschersleben, J., Peletier, R. F., Vecchi, M., Wilkinson, M. H. F., & CTA Consortium (2022). Application of pattern spectra and convolutional neural networks to the analysis of simulated Cherenkov Telescope Array data. Proceedings of Science, 395, Article 697. https://doi.org/10.22323/1.395.0697[details]
Boddy, K. K., Lisanti, M., McDermott, S. D., Rodd, N. L., Weniger, C., Ali-Haïmoud, Y., Buschmann, M., Cholis, I., Croon, D., Erickcek, A. L., Gluscevic, V., Leane, R. K., Mishra-Sharma, S., Muñoz, J. B., Nadler, E. O., Natarajan, P., Price-Whelan, A., Vegetti, S., & Witte, S. J. (2022). Snowmass2021 theory frontier white paper: Astrophysical and cosmological probes of dark matter. Journal of High Energy Astrophysics, 35, 112-138. https://doi.org/10.1016/j.jheap.2022.06.005[details]
Brown, A. M., Acharyya, A., Dominguez, A., Hassan, T., Lenain, J.-P., Pita, S., & CTA Consortium (2022). Active Galactic Nuclei population studies with the Cherenkov Telescope Array. Proceedings of Science, 395, Article 887. https://doi.org/10.22323/1.395.0887[details]
Carosi, A., López-Oramas, A., Longo, F., & CTA Collaboration (2022). The Cherenkov Telescope Array transient and multi-messenger program. Proceedings of Science, 395, Article 736. https://doi.org/10.22323/1.395.0736[details]
Cole, A., Forre, P., Louppe, G., Miller, B. K., & Weniger, C. (2022). Truncated Marginal Neural Ratio Estimation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), 35th Conference on Neural Information Processing Systems (NeurIPS 2021) : online, 6-14 December 2021 (Vol. 1, pp. 129-143). (Advances in Neural Information Processing Systems; Vol. 34). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2021/hash/01632f7b7a127233fa1188bd6c2e42e1-Abstract.html[details]
Coogan, A., Edwards, T. D. P., Chia, H. S., George, R. N., Freese, K., Messick, C., Setzer, C. N., Weniger, C., & Zimmerman, A. (2022). Efficient gravitational wave template bank generation with differentiable waveforms. Physical Review D, 106(12), Article 122001. https://doi.org/10.1103/PhysRevD.106.122001[details]
Correa, C. A., Schaller, M., Ploeckinger, S., Montel, N. A., Weniger, C., & Ando, S. (2022). TangoSIDM: tantalizing models of self-interacting dark matter. Monthly Notices of the Royal Astronomical Society, 517(2), 3045-3063. https://doi.org/10.1093/mnras/stac2830[details]
Di Piano, A., Bulgarelli, A., Fioretti, V., Baroncelli, L., Parmiggiani, N., Longo, F., Stamerra, A., López-Oramas, A., Stratta, G., De Cesare, G., & CTA Consortium (2022). Detection methods for the Cherenkov Telescope Array at very-short exposure times. Proceedings of Science, 395, Article 694. https://doi.org/10.22323/1.395.0694[details]
Foster, J. W., Witte, S. J., Lawson, M., Linden, T., Gajjar, V., Weniger, C., & Safdi, B. R. (2022). Extraterrestrial Axion Search with the Breakthrough Listen Galactic Center Survey. Physical Review Letters, 129(25), Article 251102. https://doi.org/10.1103/PhysRevLett.129.251102[details]
Hassan, T., Gueta, O., Maier, G., Nöthe, M., Peresano, M., Vovk, I., & CTA Consortium (2022). Performance of a proposed event-type based analysis for the Cherenkov Telescope Array. Proceedings of Science, 395, Article 752. https://doi.org/10.22323/1.395.0752[details]
Karchev, K., Coogan, A., & Weniger, C. (2022). Strong-lensing source reconstruction with variationally optimized Gaussian processes. Monthly Notices of the Royal Astronomical Society, 512(1), 661-685. https://doi.org/10.1093/mnras/stac311[details]
Miener, T., Nieto, D., Brill, A., Spencer, S., Contreras, J. L., & CTA Consortium (2022). Reconstruction of stereoscopic CTA events using deep learning with CTLearn. Proceedings of Science, 395, Article 730. https://doi.org/10.22323/1.395.0730[details]
Nöthe, M., Kosack, K., Nickel, L., Peresano, M., & CTA Consortium (2022). Prototype Open Event Reconstruction Pipeline for the Cherenkov Telescope Array. Proceedings of Science, 395, Article 744. https://doi.org/10.22323/1.395.0744[details]
Pecimotika, M., Adamczyk, K., Dominis Prester, D., Gueta, O., Hrupec, D., Maier, G., Mićanović, S., Pavletić, L., Sitarek, J., Sobczyńska, D., Szanecki, M., & Cherenkov Telescope Array Consortium (2022). Performance of the Cherenkov Telescope Array in the presence of clouds. Proceedings of Science, 395, Article 773. https://doi.org/10.22323/1.395.0773[details]
Sergijenko, O., Brown, A. M., Fiorillo, D., Rosales de León, A., Satalecka, K., Tung, C. F., Reimann, R., Glauch, T., Taboada, I., CTA Consortium, & FIRESONG Team Collaboration (2022). Sensitivity of the Cherenkov Telescope Array to emission from the gamma-ray counterparts of neutrino events. Proceedings of Science, 395, Article 975. https://doi.org/10.22323/1.395.0975[details]
Steppa, C., Egberts, K., & CTA Consortium (2022). Exploring the population of Galactic very-high-energy γ-ray sources. Proceedings of Science, 395, Article 798. https://doi.org/10.22323/1.395.0798[details]
Verna, G., Cassol, F., Costatini, H., & CTA Consortium (2022). HAWC J2227+610: a potential PeVatron candidate for the CTA in the northern hemisphere. Proceedings of Science, 395, Article 904. https://doi.org/10.22323/1.395.0904[details]
Edwards, T. D. P., Kavanagh, B. J., Visinelli, L., & Weniger, C. (2021). Transient Radio Signatures from Neutron Star Encounters with QCD Axion Miniclusters. Physical Review Letters, 127(13), Article 131103. https://doi.org/10.1103/PhysRevLett.127.131103[details]
Hermans, J., Banik, N., Weniger, C., Bertone, G., & Louppe, G. (2021). Towards constraining warm dark matter with stellar streams through neural simulation-based inference. Monthly Notices of the Royal Astronomical Society, 507(2), 1999-2011. https://doi.org/10.1093/mnras/stab2181[details]
Kavanagh, B. J., Edwards, T. D. P., Visinelli, L., & Weniger, C. (2021). Stellar disruption of axion miniclusters in the Milky Way. Physical Review D, 104(6), Article 063038. https://doi.org/10.1103/PhysRevD.104.063038[details]
The CTA consortium (2021). Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre. Journal of Cosmology and Astroparticle Physics, 2021(1), Article 057. https://doi.org/10.1088/1475-7516/2021/01/057[details]
Witte, S. J., Noordhuis, D., Edwards, T. D. P., & Weniger, C. (2021). Axion-photon conversion in neutron star magnetospheres: The role of the plasma in the Goldreich-Julian model. Physical Review D, 104(10), Article 103030. https://doi.org/10.1103/PhysRevD.104.103030[details]
Baum, S., Edwards, T. D. P., Kavanagh, B. J., Stengel, P., Drukier, A. K., Freese, K., Górski, M., & Weniger, C. (2020). Paleodetectors for Galactic supernova neutrinos. Physical Review D, 101(10), Article 103017. https://doi.org/10.1103/PhysRevD.101.103017[details]
Bertone, G., Croon, D., Amin, M. A., Boddy, K. K., Kavanagh, B. J., Mack, K. J., Natarajan, P., Opferkuch, T., Schutz, K., Takhistov, V., Weniger, C., & Yu, T.-T. (2020). Gravitational wave probes of dark matter: challenges and opportunities. SciPost Physics Core, 3(2), Article 007. https://doi.org/10.21468/SciPostPhysCore.3.2.007[details]
Chianese, M., Coogan, A., Hofma, P., Otten, S., & Weniger, C. (2020). Differentiable strong lensing: Uniting gravity and neural nets through differentiable probabilistic programming. Monthly Notices of the Royal Astronomical Society, 496(1), 381-393. https://doi.org/10.1093/mnras/staa1477[details]
Chrzaszcz, M., Drewes, M., Gonzalo, T. E., Harz, J., Krishnamurthy, S., & Weniger, C. (2020). A Frequentist analysis of three right-handed neutrinos with GAMBIT. European Physical Journal C, 80(6), Article 569. https://doi.org/10.1140/epjc/s10052-020-8073-9[details]
Chrzaszcz, M., Drewes, M., Gonzalo, T. E., Harz, J., Krishnamurthy, S. & Weniger, C. (2020). Supplementary Data: A Frequentist Analysis of Three Right-Handed Neutrinos with GAMBIT. Zenodo. https://doi.org/10.5281/zenodo.3842838
Edwards, T. D. P., Chianese, M., Kavanagh, B. J., Nissanke, S. M., & Weniger, C. (2020). Unique Multimessenger Signal of QCD Axion Dark Matter. Physical Review Letters, 124(16), Article 161101. https://doi.org/10.1103/PhysRevLett.124.161101[details]
Foster, J. W., Kahn, Y., MacIas, O., Sun, Z., Eatough, R. P., Kondratiev, V. I., Peters, W. M., Weniger, C., & Safdi, B. R. (2020). Green Bank and Effelsberg Radio Telescope Searches for Axion Dark Matter Conversion in Neutron Star Magnetospheres. Physical Review Letters, 125(17), Article 171301. https://doi.org/10.1103/PhysRevLett.125.171301[details]
Leroy, M., Chianese, M., Edwards, T. D. P., & Weniger, C. (2020). Radio signal of axion-photon conversion in neutron stars: A ray tracing analysis. Physical Review D, 101(12), Article 123003. https://doi.org/10.1103/PhysRevD.101.123003[details]
Weltman, A., Bull, P., Camera, S., Kelley, K., Padmanabhan, H., Pritchard, J., Raccanelli, A., Riemer-Sørensen, S., Shao, L., Andrianomena, S., Athanassoula, E., Bacon, D., Barkana, R., Bertone, G., Bœhm, C., Bonvin, C., Bosma, A., Brüggen, M., Burigana, C., ... Gaensler, B. M. (2020). Fundamental physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia, Article e002. https://doi.org/10.1017/pasa.2019.42[details]
2019
Bertone, G., Coogan, A. M., Gaggero, D., Kavanagh, B. J., & Weniger, C. (2019). Primordial black holes as silver bullets for new physics at the weak scale. Physical Review D, 100(12), Article 123013. https://doi.org/10.1103/PhysRevD.100.123013[details]
Edwards, T. D. P., Kavanagh, B. J., Weniger, C., Baum, S., Drukier, A. K., Freese, K., Górski, M., & Stengel, P. (2019). Digging for dark matter: Spectral analysis and discovery potential of paleo-detectors. Physical Review D, 99(4), Article 043541. https://doi.org/10.1103/PhysRevD.99.043541[details]
Garzilli, A., Magalich, A., Theuns, T., Frenk, C. S., Weniger, C., Ruchayskiy, O., & Boyarsky, A. (2019). The Lyman-α forest as a diagnostic of the nature of the dark matter. Monthly Notices of the Royal Astronomical Society, 489(3), 3456-3471. https://doi.org/10.1093/mnras/stz2188[details]
Hoof, S., Kahlhoefer, F., Scott, P., Weniger, C., & White, M. (2019). Axion global fits with Peccei-Quinn symmetry breaking before inflation using GAMBIT. Journal of High Energy Physics, 2019(3), Article 191. https://doi.org/10.1007/JHEP03(2019)191[details]
Hoof, S., Kahlhoefer, F., Scott, P., Weniger, C. & White, M. (18-10-2018). Supplementary Data: Axion global fits with Peccei-Quinn symmetry breaking before inflation using GAMBIT. Zenodo. https://doi.org/10.5281/zenodo.3478259
Hoof, S., Kahlhoefer, F., Scott, P., Weniger, C., & White, M. (2019). Erratum to: Axion global fits with Peccei-Quinn symmetry breaking before inflation using GAMBIT. Journal of High Energy Physics, 2019(11), Article 99. https://doi.org/10.1007/JHEP11(2019)099
Bartels, R. T., Edwards, T. D. P., & Weniger, C. (2018). Bayesian model comparison and analysis of the Galactic disc population of gamma-ray millisecond pulsars. Monthly Notices of the Royal Astronomical Society, 481(3), 3966-3987. https://doi.org/10.1093/mnras/sty2529[details]
Bartels, R., Calore, F., Storm, E., & Weniger, C. (2018). Galactic binaries can explain the Fermi Galactic centre excess and 511 keV emission. Monthly Notices of the Royal Astronomical Society, 480(3), 3826-3841. https://doi.org/10.1093/MNRAS/STY2135[details]
Bartels, R., Storm, E., Weniger, C., & Calore, F. (2018). The Fermi-LAT GeV excess as a tracer of stellar mass in the Galactic bulge. Nature Astronomy, 2(10), 819-828. https://doi.org/10.1038/s41550-018-0531-z[details]
De Angelis, A., Bartels, R., Domínguez, A., Gaggero, D., Spinelli, P., Weniger, C., & e-ASTROGAM Collaboration (2018). Science with e-ASTROGAM: A space mission for MeV–GeV gamma-ray astrophysics. Journal of High Energy Astrophysics, 19, 1-106. Advance online publication. https://doi.org/10.1016/j.jheap.2018.07.001[details]
Edwards, T. D. P., & Weniger, C. (2018). A fresh approach to forecasting in astroparticle physics and dark matter searches. Journal of Cosmology and Astroparticle Physics, 2018(2), Article 021. https://doi.org/10.1088/1475-7516/2018/02/021[details]
Edwards, T. D. P., Kavanagh, B. J., & Weniger, C. (2018). Assessing Near-Future Direct Dark Matter Searches with Benchmark-Free Forecasting. Physical Review Letters, 121(18), Article 181101. https://doi.org/10.1103/PhysRevLett.121.181101[details]
Pothast, M., Gaggero, D., Storm, E., & Weniger, C. (2018). On the progressive hardening of the cosmic-ray proton spectrum in the inner Galaxy. Journal of Cosmology and Astroparticle Physics, 2018(10), Article 045. https://doi.org/10.1088/1475-7516/2018/10/045[details]
The GAMBIT Models Workgroup, Athron, P., Balázs, C., Dal, L. A., Edsjö, J., Farmer, B., Gonzalo, T. E., Kvellestad, A., McKay, J., Putze, A., Rogan, C., Scott, P., Weniger, C., & White, M. (2018). SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables. European Physical Journal C, 78(1), Article 22. https://doi.org/10.1140/epjc/s10052-017-5390-8[details]
Bartels, R., Gaggero, D., & Weniger, C. (2017). Prospects for indirect dark matter searches with MeV photons. Journal of Cosmology and Astroparticle Physics, 2017(5), Article 001. https://doi.org/10.1088/1475-7516/2017/05/001[details]
Bringmann, T., Galea, A., Hryczuk, A., & Weniger, C. (2017). Novel spectral features in MeV gamma rays from dark matter. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 95(4), Article 043002. https://doi.org/10.1103/PhysRevD.95.043002[details]
Campos, M. D., Queiroz, F. S., Yaguna, C. E., & Weniger, C. (2017). Search for right-handed neutrinos from dark matter annihilation with gamma-rays. Journal of Cosmology and Astroparticle Physics, 2017(7), Article 016. https://doi.org/10.1088/1475-7516/2017/07/016[details]
Diamanti, R., Ando, S., Gariazzo, S., Mena, O., & Weniger, C. (2017). Cold dark matter plus not-so-clumpy dark relics. Journal of Cosmology and Astroparticle Physics, 2017(6), Article 008. https://doi.org/10.1088/1475-7516/2017/06/008[details]
Storm, E., Calore, F., & Weniger, C. (2017). Understanding uncertainties in modeling the galactic diffuse gamma-ray emission. In F. A. Aharonian, W. Hofmann, & F. M. Rieger (Eds.), High Energy Gamma-Ray Astronomy: 6th international meeting on high energy gamma-ray astronomy : Heidelberg, Germany, 11-15 July 2016 Article 070021 (AIP Conference Proceedings; Vol. 1792). AIP Publishing. https://doi.org/10.1063/1.4969018[details]
Storm, E., Weniger, C., & Calore, F. (2017). SkyFACT: High-dimensional modeling of gamma-ray emission with adaptive templates and penalized likelihoods. Journal of Cosmology and Astroparticle Physics, 2017(8), Article 022. https://doi.org/10.1088/1475-7516/2017/08/022[details]
The GAMBIT Collaboration, Athron, P., Balazs, C., Bringmann, T., Buckley, A., Chrząszcz, M., Conrad, J., Cornell, J. M., Dal, L. A., Dickinson, H., Edsjö, J., Farmer, B., Gonzalo, T. E., Jackson, P., Krislock, A., Kvellestad, A., Lundberg, J., McKay, J., Mahmoudi, F., ... Wild, S. (2017). GAMBIT: the global and modular beyond-the-standard-model inference tool. European Physical Journal C, 77(11), Article 784. https://doi.org/10.1140/epjc/s10052-017-5321-8[details]
The GAMBIT Collaboration, Athron, P., Balázs, C., Bringmann, T., Buckley, A., Chrząszcz, M., Conrad, J., Cornell, J. M., Dal, L. A., Edsjö, J., Farmer, B., Jackson, P., Krislock, A., Kvellestad, A., Mahmoudi, F., Martinez, G. D., Putze, A., Raklev, A., Rogan, C., ... White, M. (2017). Global fits of GUT-scale SUSY models with GAMBIT. European Physical Journal C, 77(12), Article 824. https://doi.org/10.1140/epjc/s10052-017-5167-0[details]
The GAMBIT Dark Matter Workgroup, Bringmann, T., Conrad, J., Cornell, J. M., Dal, L. A., Edsjö, J., Farmer, B., Kahlhoefer, F., Kvellestad, A., Putze, A., Savage, C., Scott, P., Weniger, C., White, M., & Wild, S. (2017). DarkBit: a GAMBIT module for computing dark matter observables and likelihoods. European Physical Journal C, 77(12), Article 831. https://doi.org/10.1140/epjc/s10052-017-5155-4[details]
The GAMBIT Flavour Workgroup, Bernlochner, F. U., Chrząszcz, M., Dal, L. A., Farmer, B., Jackson, P., Kvellestad, A., Mahmoudi, F., Putze, A., Rogan, C., Scott, P., Serra, N., Weniger, C., & White, M. (2017). FlavBit: a GAMBIT module for computing flavour observables and likelihoods. European Physical Journal C, 77(11), Article 786. https://doi.org/10.1140/epjc/s10052-017-5157-2[details]
The GAMBIT Scanner Workgroup, Balázs, C., Buckley, A., Dal, L. A., Farmer, B., Jackson, P., Krislock, A., Kvellestad, A., Murnane, D., Putze, A., Raklev, A., Rogan, C., Saavedra, A., Scott, P., Weniger, C., & White, M. (2017). ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods. European Physical Journal C, 77(11), Article 795. https://doi.org/10.1140/epjc/s10052-017-5285-8[details]
Bartels, R., & Weniger, C. (2016). Millisecond pulsars in the galactic bulge? An extended discussion on the wavelet analysis of the fermi-LAT data. Proceedings of the International Astronomical Union, 11(S322), 193-196. https://doi.org/10.1017/S174392131601200X[details]
Bartels, R., Krishnamurthy, S., & Weniger, C. (2016). Strong Support for the Millisecond Pulsar Origin of the Galactic Center GeV Excess. Physical Review Letters, 116(5), Article 051102. https://doi.org/10.1103/PhysRevLett.116.051102[details]
Beniwal, A., Rajec, F., Savage, C., Scott, P., Weniger, C., White, M., & Williams, A. G. (2016). Combined analysis of effective Higgs portal dark matter models. Physical Review D. Particles and Fields, 93(11), Article 115016. https://doi.org/10.1103/PhysRevD.93.115016[details]
Bertone, G., Calore, F., Caron, S., Ruiz, R., Kim, J. S., Trotta, R., & Weniger, C. (2016). Global analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC Run-II and astroparticle experiments. Journal of Cosmology and Astroparticle Physics, 2016(4), Article 037. https://doi.org/10.1088/1475-7516/2016/04/037[details]
Calore, F., Di Mauro, M., Donato, F., Hessels, J. W. T., & Weniger, C. (2016). Radio detection prospects for a bulge population of millisecond pulsars as suggested by fermi-lat observations of the inner galaxy. Astrophysical Journal, 827(2), Article 143. https://doi.org/10.3847/0004-637X/827/2/143[details]
Liem, S., Bertone, G., Calore, F., Ruiz de Austri, R., Tait, T. M. P., Trotta, R., & Weniger, C. (2016). Effective field theory of dark matter: a global analysis. The Journal of High Energy Physics, 2016(9), Article 77. https://doi.org/10.1007/JHEP09(2016)077[details]
Weniger, C., Bartels, R., & Krishnamurthy, S. (2016). Testing the interpretation of the Fermi Galactic center excess in terms of unresolved point sources. Proceedings of Science, 236, Article 920. https://doi.org/10.22323/1.236.0920[details]
Zandanel, F., Weniger, C., & Ando, S. (2016). Angular power spectrum of sterile neutrino decay lines: The role of eROSITA. Journal of Physics: Conference Series, 718(4), Article 042067. https://doi.org/10.1088/1742-6596/718/4/042067[details]
Achterberg, A., Amoroso, S., Caron, S., Hendriks, L., Ruiz de Austri, R., & Weniger, C. (2015). A description of the Galactic Center excess in the Minimal Supersymmetric Standard Model. Journal of Cosmology and Astroparticle Physics, 2015(8), Article 006. https://doi.org/10.1088/1475-7516/2015/08/006[details]
Cabrera-Catalan, M. E., Ando, S., Weniger, C., & Zandanel, F. (2015). Indirect and direct detection prospects for TeV dark matter in the nine parameter MSMM. Physical Review D. Particles and Fields, 92(3), Article 035018. https://doi.org/10.1103/PhysRevD.92.035018[details]
Calore, F., Cholis, I., & Weniger, C. (2015). Background model systematics for the Fermi GeV excess. Journal of Cosmology and Astroparticle Physics, 2015(3), Article 038. https://doi.org/10.1088/1475-7516/2015/03/038[details]
Calore, F., Cholis, I., McCabe, C., & Weniger, C. (2015). A tale of tails: Dark matter interpretations of the Fermi GeV excess in light of background model systematics. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 91(6), Article 063003. https://doi.org/10.1103/PhysRevD.91.063003[details]
Calore, F., Weniger, C., & Cholis, I. (2015). The GeV Excess Shining Through: Background Systematics for the Inner Galaxy Analysis. In Y. Fukazawa, Y. Tanaka, & R. Itoh (Eds.), 5th Fermi Symposium Proceedings: October 20-24 2014, Nagoya, Japan (pp. 80-86). Fermi. https://arxiv.org/abs/1502.02805[details]
Cholis, I., Evoli, C., Calore, F., Linden, T., Weniger, C., & Hooper, D. (2015). The Galactic Center GeV excess from a series of leptonic cosmic-ray outbursts. Journal of Cosmology and Astroparticle Physics, 2015(12), Article 005. https://doi.org/10.1088/1475-7516/2015/12/005[details]
Cline, J. M., Kainulainen, K., Scott, P., & Weniger, C. (2015). Erratum: Update on scalar singlet dark matter (Physical Review D - Particles, Fields, Gravitation and Cosmology (2013) 88 (055025)). Physical Review D - Particles, Fields, Gravitation and Cosmology, 92(3), Article 039906. https://doi.org/10.1103/PhysRevD.92.039906
Silverwood, H., Weniger, C., Scott, P., & Bertone, G. (2015). A realistic assessment of the CTA sensitivity to dark matter annihilation. Journal of Cosmology and Astroparticle Physics, 2015(3), Article 055. https://doi.org/10.1088/1475-7516/2015/03/055[details]
Wanders, M., Bertone, G., Volonteri, M., & Weniger, C. (2015). No WIMP mini-spikes in dwarf spheroidal galaxies. Journal of Cosmology and Astroparticle Physics, 2015(4), Article 004. https://doi.org/10.1088/1475-7516/2015/04/004[details]
Zandanel, F., Weniger, C., & Ando, S. (2015). The role of the eROSITA all-sky survey in searches for sterile neutrino dark matter. Journal of Cosmology and Astroparticle Physics, 2015(9), Article 060. https://doi.org/10.1088/1475-7516/2015/09/060[details]
2014
Albert, A., Gómez-Vargas, GA., Grefe, M., Muñoz, C., Weniger, C., Bloom, E. D., Charles, E., Mazziotta, M. N., & Morselli, A. (2014). Search for 100 MeV to 10 GeV gamma-ray lines in the Fermi-LAT data and implications for gravitino dark matter in the μνSSM. Journal of Cosmology and Astroparticle Physics, 2014(10), Article 023. https://doi.org/10.1088/1475-7516/2014/10/023[details]
Bringmann, T., Vollmann, M., & Weniger, C. (2014). Updated cosmic-ray and radio constraints on light dark matter: Implications for the GeV gamma-ray excess at the Galactic Center. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 90(12), Article 123001. https://doi.org/10.1103/PhysRevD.90.123001[details]
Bergström, L., Bringmann, T., Cholis, I., Hooper, D., & Weniger, C. (2013). New Limits on Dark Matter Annihilation from Alpha Magnetic Spectrometer Cosmic Ray Positron Data. Physical Review Letters, 111(17), Article 171101. https://doi.org/10.1103/PhysRevLett.111.171101[details]
Carlson, E., van der Linden, T., Profumo, S., & Weniger, C. (2013). Clustering analysis of the morphology of the 130 GeV gamma-ray feature. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 88(4), Article 043006. https://doi.org/10.1103/PhysRevD.88.043006[details]
Cline, J. M., Scott, P., Kainulainen, K., & Weniger, C. (2013). Update on scalar singlet dark matter. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 88(5), Article 055025. https://doi.org/10.1103/PhysRevD.88.055025[details]
Drewes, M., Mendizabal, S., & Weniger, C. (2013). The Boltzmann equation from quantum field theory. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 718(3), 1119-1124. https://doi.org/10.1016/j.physletb.2012.11.046
Finkbeiner, D. P., Su, M., & Weniger, C. (2013). Is the 130 GeV line real? A search for systematics in the Fermi-LAT data. Journal of Cosmology and Astroparticle Physics, 2013(1), Article 029. https://doi.org/10.1088/1475-7516/2013/01/029
Ibarra, A., Tran, D., & Weniger, C. (2013). Indirect searches for decaying dark matter. International Journal of Modern Physics A, 28(27), Article 1330040. https://doi.org/10.1142/S0217751X13300408[details]
Weniger, C., Serpico, P. D., Iocco, F., & Bertone, G. (2013). CMB bounds on dark matter annihilation: Nucleon energy losses after recombination. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 87(12), Article 123008. https://doi.org/10.1103/PhysRevD.87.123008[details]
Bergström, L., Bertone, G., Conrad, J., Farnier, C., & Weniger, C. (2012). Investigating Gamma-Ray Lines from Dark Matter with Future Observatories. Journal of Cosmology and Astroparticle Physics, 1211(11), 025. https://doi.org/10.1088/1475-7516/2012/11/025[details]
Bringmann, T., & Weniger, C. (2012). Gamma ray signals from dark matter: Concepts, status and prospects. Physics of the Dark Universe, 1(1-2), 194-217. https://doi.org/10.1016/j.dark.2012.10.005
Bringmann, T., Huang, X., Ibarra, A., Vogl, S., & Weniger, C. (2012). Fermi LAT search for internal bremsstrahlung signatures from dark matter annihilation. Journal of Cosmology and Astroparticle Physics, 2012(7), Article 054. https://doi.org/10.1088/1475-7516/2012/07/054
Weniger, C. (2012). A tentative gamma-ray line from Dark Matter annihilation at the Fermi Large Area Telescope. Journal of Cosmology and Astroparticle Physics, 2012(8), Article 007. https://doi.org/10.1088/1475-7516/2012/08/007
Weniger, C. (2012). Tentative observation of a gamma-ray line at the Fermi LAT. In F. A. Aharonian, W. Hofmann, & F. M. Rieger (Eds.), High Energy Gamma-Ray Astronomy: 5th International Meeting on High Energy Gamma-Ray Astronomy : Heidelberg, Germany, 9-13 July 2012 (pp. 470-473). (AIP Conference Proceedings; Vol. 1505). American Institute of Physics. https://doi.org/10.1063/1.4772299
2022
Zanin, R., CTA Observatory, CTA Consortium, & LST Collaboration (2022). Cherenkov Telescope Array: the World's largest VHE gamma-ray observatory. Proceedings of Science, 395, Article 005. Advance online publication. https://doi.org/10.22323/1.395.0005[details]
van Eijk, N., Roessler, B., Zuiderveen Borgesius, F., Oostveen, M., et al., U., van Son, R., Verkade, F., Vliek, M., Alberdingk Thijm, C., Apt, K., Böhler, B., den Boon, A., Breemen, K., Breemen, V., de Goede, M., van Gompel, S., Guibault, L., Helberger, N., Hins, A. W., ... Taylor, L. (2014). Academics Against Mass Surveillance. Web publication or website, Academics Against Mass Surveillance. http://www.academicsagainstsurveillance.org/[details]
Miller, B. K., Federici, M., Weniger, C., & Forré, P. D. (2023). Simulation-based Inference with the Generalized Kullback-Leibler Divergence. Paper presented at ICML 2023 Workshop: Synergy of Scientific and Machine Learning Modeling, Honolulu, Hawaii, United States. https://arxiv.org/abs/2310.01808
2020
Miller, B. K., Cole, A., Louppe, G., & Weniger, C. (2020). Simulation-efficient marginal posterior estimation with swyft: Stop wasting your precious time. Paper presented at Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada. https://ml4physicalsciences.github.io/2020/files/NeurIPS_ML4PS_2020_106.pdf[details]
Miller, B. K. (2024). Machine learning for scientific simulation: Inference and generative models. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Noordhuis, D. (2024). Neutron stars as axion laboratories: Harnessing the power of the magnetosphere. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Dekker, A. (2022). Hidden in plain sight: Searching for dark matter signals in the galactic halo. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Chrzaszcz, M., Drewes, M., Gonzalo, T. E., Harz, J., Krishnamurthy, S. & Weniger, C. (2020). Supplementary Data: A Frequentist Analysis of Three Right-Handed Neutrinos with GAMBIT. Zenodo. https://doi.org/10.5281/zenodo.3842838
2019
Edwards, T. D. P. (2019). Probing new physics underground. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Miller, B., Cole, A., Forré, P., Louppe, G. & Weniger, C. (2021). Truncated Marginal Neural Ratio Estimation - Data. Zenodo. https://doi.org/10.5281/zenodo.5592427
2020
Chrzaszcz, M., Drewes, M., Gonzalo, T. E., Harz, J., Krishnamurthy, S. & Weniger, C. (2020). Supplementary Data: A Frequentist Analysis of Three Right-Handed Neutrinos with GAMBIT. Zenodo. https://doi.org/10.5281/zenodo.3842838
2018
Hoof, S., Kahlhoefer, F., Scott, P., Weniger, C. & White, M. (18-10-2018). Supplementary Data: Axion global fits with Peccei-Quinn symmetry breaking before inflation using GAMBIT. Zenodo. https://doi.org/10.5281/zenodo.3478259
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.