Reshetikhin, N., & Stokman, J. (2022). Asymptotic boundary KZB operators and quantum Calogero-Moser spin chains. In E. Koelink, S. Kolb, N. Reshetikhin, & B. Vlaar (Eds.), Hypergeometry, Integrability and Lie Theory: Virtual Conference Hypergeometry, Integrability and Lie Theory December 7–11, 2020 Lorentz Center Leiden, The Netherlands (pp. 205-241). (Contemporary Mathematics; Vol. 780). American Mathematical Society. http://www.ams.org/bookpages/conm-780[details]
Al Qasimi, K., & Stokman, J. V. (2021). The Skein Category of the Annulus. In A. Alekseev, E. Frenkel, M. Rosso, B. Webster, & M. Yakimov (Eds.), Representation Theory, Mathematical Physics, and Integrable Systems: In Honor of Nicolai Reshetikhin (pp. 529-568). (Progress in Mathematics; Vol. 340). Birkhäuser. https://doi.org/10.1007/978-3-030-78148-4_18[details]
Disveld, N., Koornwinder, T. H., & Stokman, J. V. (2021). A nonsymmetric version of Okounkov’s BC-type interpolation Macdonald polynomials. Transformation Groups, 26(4), 1261-1292. https://doi.org/10.1007/S00031-021-09672-x[details]
Sahi, S., & Stokman, J. (2021). Some Remarks on Non-Symmetric Interpolation Macdonald Polynomials. International Mathematics Research Notices: IMRN, 2021(19), 14814-14839. Advance online publication. https://doi.org/10.1093/imrn/rnz229[details]
Stokman, J. V. (2021). Folded and contracted solutions of coupled classical dynamical Yang–Baxter and reflection equations. Indagationes Mathematicae, 32(6), 1372-1411. https://doi.org/10.1016/j.indag.2021.07.003[details]
Koornwinder, T. H., & Stokman, J. V. (2020). General overview of multivariable special functions. In T. H. Koornwinder, & J. V. Stokman (Eds.), Encyclopedia of special functions : the Askey-Bateman project. - Volume 2: Multivariable Special Functions (pp. 1-18). Cambridge University Press. Advance online publication. https://doi.org/10.1017/9780511777165.002[details]
Koornwinder, T. H., & Stokman, J. V. (Eds.) (2020). Encyclopedia of special functions : the Askey-Bateman project. - Volume 2: Multivariable special functions. Cambridge University Press. https://doi.org/10.1017/9780511777165[details]
Stokman, J. V. (2020). Macdonald-Koornwinder polynomials. In T. H. Koornwinder, & J. V. Stokman (Eds.), Encyclopedia of special functions : the Askey-Bateman project. - Volume 2: Multivariable Special Functions (pp. 258-313). Cambridge University Press. https://doi.org/10.1017/9780511777165.010[details]
Al Qasimi, K., Nienhuis, B., & Stokman, J. V. (2019). Towers of Solutions of qKZ Equations and Their Applications to Loop Models. Annales Henri Poincare, 20(11), 3743-3797. https://doi.org/10.1007/s00023-019-00836-w[details]
Galleas, W., & Stokman, J. V. (2018). On connection matrices of quantum Knizhnik-Zamolodchikov equations based on Lie super algebras. In H. Konno, H. Sakai, J. Shiraishi, T. Suzuki, & Y. Yamada (Eds.), Representation Theory, Special Functions and Painlevé Equations — RIMS 2015 (pp. 155-193). (Advanced Studies in Pure Mathematics; Vol. 76). Mathematical society of Japan. https://doi.org/10.2969/aspm/07610155[details]
Reshetikhin, N., Stokman, J., & Vlaar, B. (2018). Integral solutions to boundary quantum Knizhnik–Zamolodchikov equations. Advances in Mathematics, 323, 486-528. https://doi.org/10.1016/j.aim.2017.10.041[details]
2016
Reshetikhin, N., Stokman, J., & Vlaar, B. (2016). Boundary Quantum Knizhnik-Zamolodchikov Equations and Fusion. Annales Henri Poincaré, 17(1), 137-177. https://doi.org/10.1007/s00023-014-0395-4[details]
2015
Reshetikhin, N., Stokman, J., & Vlaar, B. (2015). Boundary Quantum Knizhnik-Zamolodchikov Equations and Bethe Vectors. Communications in Mathematical Physics, 336(2), 953-986. https://doi.org/10.1007/s00220-014-2227-2[details]
Stokman, J. V. (2015). Connection Problems for Quantum Affine KZ Equations and Integrable Lattice Models. Communications in Mathematical Physics, 338(3), 1363-1409. https://doi.org/10.1007/s00220-015-2375-z[details]
Hartwig, J. T., & Stokman, J. V. (2013). Extended trigonometric Cherednik algebras and nonstationary Schrödinger equations with delta-potentials. Journal of Mathematical Physics, 54(2), 021702. https://doi.org/10.1063/1.4790566[details]
2012
Stokman, J. V. (2012). Some remarks on very-well-poised 8ϕ7 series. Symmetry, Integrability and Geometry : Methods and Applications (SIGMA), 8, Article 039. https://doi.org/10.3842/SIGMA.2012.039[details]
Stokman, J. (2011). Quantum affine Knizhnik-Zamolodchikov equations and quantum spherical functions, I. International Mathematics Research Notices, 2011(5), 1023-1090. https://doi.org/10.1093/imrn/rnq094[details]
2010
van Meer, M., & Stokman, J. (2010). Double affine Hecke algebras and bispectral quantum Knizhnik-Zamolodchikov equations. International Mathematics Research Notices, (6), 969-1040. https://doi.org/10.1093/imrn/rnp165[details]
2009
Emsiz, E., Opdam, E. M., & Stokman, J. V. (2009). Trigonometric Cherednik algebra at critical level and quantum many-body problems. Selecta Mathematica-New Series, 14/3-4, 571-605. https://doi.org/10.1007/s00029-009-0516-y[details]
Kolb, S., & Stokman, J. V. (2009). Reflection equation algebras, coideal subalgebras, and their centres. Selecta Mathematica-New Series, 15(4), 621-664. https://doi.org/10.1007/s00029-009-0007-1[details]
2008
Letzter, G., & Stokman, J. V. (2008). Macdonald difference operators and Harish-Chandra series. Proceedings of the London Mathematical Society, 97(1), 60-96. https://doi.org/10.1112/plms/pdm055[details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.