Bredeweg, B., Kragten, M., & Spitz, L. (2021). Learning about systems by developing interactive diagrams. In L. Gómez Chova, A. López Martínez, & I. Candel Torres (Eds.), 13th International Conference on Education and New Learning Technologies: 5th-6th July, 2021 (pp. 6119-6123). (EDULEARN conference proceedings; Vol. 21). IATED. https://doi.org/10.21125/edulearn.2021.1232[details]
Spitz, L., Kragten, M., & Bredeweg, B. (2021). Exploring the Working and Effectiveness of Norm-Model Feedback in Conceptual Modelling – A Preliminary Report. In I. Roll, D. McNamara, S. Sosnovsky, R. Luckin, & V. Dimitrova (Eds.), Artificial Intelligence in Education: 22nd International Conference, AIED 2021, Utrecht, The Netherlands, June 14–18, 2021 : proceedings (Vol. II, pp. 325-330). (Lecture Notes in Computer Science; Vol. 12749), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-030-78270-2_58[details]
2015
Buryak, A., Shadrin, S., Spitz, L., & Zvonkine, D. (2015). Integrals of ψ-classes over double ramification cycles. American Journal of Mathematics, 137(3), 699-737. https://doi.org/10.1353/ajm.2015.0022[details]
Dunin-Barkowski, P., Kazarian, M., Orantin, N., Shadrin, S., & Spitz, L. (2015). Polynomiality of Hurwitz numbers, Bouchard-Mariño conjecture, and a new proof of the ELSV formula. Advances in Mathematics, 279, 67-103. https://doi.org/10.1016/j.aim.2015.03.016[details]
Shadrin, S., Spitz, L., & Zvonkine, D. (2015). Equivalence of ELSV and Bouchard-Mariño conjectures for r-spin Hurwitz numbers. Mathematische Annalen, 361(3-4), 611-645. Advance online publication. https://doi.org/10.1007/s00208-014-1082-y[details]
2014
Dunin-Barkowski, P., Orantin, N., Shadrin, S., & Spitz, L. (2014). Identification of the Givental formula with the spectral curve topological recursion procedure. Communications in Mathematical Physics, 328(2), 669-700. https://doi.org/10.1007/s00220-014-1887-2[details]
Mulase, M., Shadrin, S., & Spitz, L. (2013). The spectral curve and the Schrödinger equation of double Hurwitz numbers and higher spin structures. Communications in Number Theory and Physics, 7(1), 125-143. https://doi.org/10.4310/CNTP.2013.v7.n1.a4[details]
2012
Shadrin, S., Spitz, L., & Zvonkine, D. (2012). On double Hurwitz numbers with completed cycles. Journal of the London Mathematical Society-Second Series, 86(2), 407-432. https://doi.org/10.1112/jlms/jds010[details]
2014
Spitz, L. (2014). Hurwitz numbers, moduli of curves, topological recursion, Givental's theory and their relations. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.