Aghapour, E., Sapra, D., Pimentel, A., & Pathania, A. (2024). ARM-CO-UP: ARM COoperative Utilization of Processors. ACM Transactions on Design Automation of Electronic Systems, 29(5). https://doi.org/10.1145/3656472
Aghapour, E., Shen, Y., Sapra, D., Pimentel, A. D., & Pathania, A. (2024). PiQi: Partially Quantized DNN Inference on HMPSoCs. In P. Meinerzhagen, K. Dev, & J. Yoo (Eds.), Proceedings of the 29th ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED 2024, Newport Beach, CA, USA, August 5-7, 2024 (pp. 1-6). ACM. https://doi.org/10.1145/3665314.3670841
Miedema, L., Sapra, D., Novobilsky, P., Altmeyer, S., Grelck, C., & Pimentel, A. D. (2024). FAA+RTS: Designing Fault-Aware Adaptive Real-Time Systems - From Specification to Execution. In L. Carro, F. Regazzoni, & C. Pilato (Eds.), Proc. of the 24th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), Samos, Greece (Vol. 15226, 15227). (Lecture Notes in Computer Science). Springer. https://link.springer.com/book/9783031783760
2023
Aghapour, E., Sapra, D., Pimentel, A. D., & Pathania, A. (2023). PELSI: Power-Efficient Layer-Switched Inference. In 2023 IEEE 29th International Conference on Embedded and Real-Time Computing Systems and Applications: RTCSA 2023 : Niigata, Japan, 30 August -1 September 2023 : proceedings (pp. 12-17). IEEE Computer Society. https://doi.org/10.1109/RTCSA58653.2023.00011[details]
Sapra, D., & Pimentel, A. D. (2023). Exploring Multi-core Systems with Lifetime Reliability and Power Consumption Trade-offs. In C. Silvano, C. Pilato, & M. Reichenbach (Eds.), Embedded Computer Systems: Architectures, Modeling, and Simulation: 23rd International Conference, SAMOS 2023, Samos, Greece, July 2–6, 2023 : proceedings (pp. 72–87). (Lecture Notes in Computer Science; Vol. 14385). Springer. https://doi.org/10.1007/978-3-031-46077-7_6[details]
Aghapour, E., Sapra, D., Pimentel, A., & Pathania, A. (2022). CPU-GPU Layer-Switched Low Latency CNN Inference. In H. Fabelo, S. Ortega, & A. Skavhaug (Eds.), 2022 25th Euromicro Conference on Digital System Design: DSD 2022 : 31 August-2 September 2022, Maspalomas, Spain : proceedings (pp. 324-331). IEEE Computer Society. https://doi.org/10.1109/DSD57027.2022.00051[details]
Minakova, S., Sapra, D., Stefanov, T., & Pimentel, A. D. (2022). Scenario Based Run-time Switching for Adaptive CNN-based Applications at the Edge. ACM Transactions on Embedded Computing Systems, 21(2), Article 14. Advance online publication. https://doi.org/10.1145/3488718[details]
Odyurt, U., Sapra, D., & Pimentel, A. D. (2021). The Choice of AI Matters: Alternative Machine Learning Approaches for CPS Anomalies. In H. Fujita, A. Selamat, JC.-W. Lin, & M. Ali (Eds.), Advances and Trends in Artificial Intelligence : From Theory to Practice: 34th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2021, Kuala Lumpur, Malaysia, July 26–29, 2021 : proceedings (Vol. II, pp. 474-484). (Lecture Notes in Computer Science; Vol. 12799), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-030-79463-7_40[details]
van Ipenburg, I., Sapra, D., & Pimentel, A. D. (2021). Exploring Cell-Based Neural Architectures for Embedded Systems. In M. Kamp, I. Koprinska, A. Bibal, T. Bouadi, B. Frénay, L. Galárraga, J. Oramas, & L. Adilova (Eds.), Machine Learning and Principles and Practice of Knowledge Discovery in Databases: International Workshops of ECML PKDD 2021, virtual event, September 13-17, 2021 : proceedings (Vol. I, pp. 363–374). (Communications in Computer and Information Science; Vol. 1524). Springer. https://doi.org/10.1007/978-3-030-93736-2_28[details]
Sapra, D., & Pimentel, A. D. (2020). An evolutionary optimization algorithm for gradually saturating objective functions. In GECCO'20: proceedings of the 2020 Genetic and Evolutionary Computation Conference : July 8-12, 2020, Cancún, Mexico (pp. 886-893). Association for Computing Machinery. https://doi.org/10.1145/3377930.3389834[details]
Sapra, D., & Pimentel, A. D. (2020). Constrained evolutionary piecemeal training to design convolutional neural networks. In H. Fujita, P. Fournier-Viger, M. Ali, & J. Sasaki (Eds.), Trends in Artificial Intelligence Theory and Applications : Artificial Intelligence Practices: 33rd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2020, Kitakyushu, Japan, September 22-25, 2020 : proceedings (pp. 709-721). (Lecture Notes in Computer Science; Vol. 12144), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-030-55789-8_61[details]
Sapra, D., & Pimentel, A. D. (2020). Deep Learning Model Reuse and Composition in Knowledge Centric Networking. In ICCCN 2020: the 29th International Conference on Computer Communication and Networks : final program : August 3-August 6, 2020, Honolulu, Hawaii, USA (pp. 716-726). (Proceedings International Conference on Computer Communications and Networks; Vol. 29). IEEE. https://doi.org/10.1109/ICCCN49398.2020.9209668[details]
Meloni, P., Loi, D., Busia, P., Deriu, G., Pimentel, A. D., Sapra, D., Stefanov, T., Minakova, S., Conti, F., Benini, L., Pintor, M., Biggio, B., Moser, B., Shepeleva, N., Fragoulis, N., Theodorakopoulos, I., Masin, M., & Palumbo, F. (2019). Optimization and deployment of CNNs at the Edge: The ALOHA experience. In ACM International Conference on Computing Frontiers 2019 (CF 2019) : proceedings : April 30-May 2, 2019, Alghero, Sardinia, Italy (pp. 326-332). Association for Computing Machinery. https://doi.org/10.1145/3310273.3323435[details]
Meloni, P., Loi, D., Deriu, G., Pimentel, A. D., Sapra, D., Moser, B., Shepeleva, N., Conti, F., Benini, L., Ripolles, O., Solans, D., Pintor, M., Biggio, B., Stefanov, T., Minakova, S., Fragoulis, N., Theodorakopoulos, I., Masin, M., & Palumbo, F. (2018). ALOHA: an architectural-aware framework for deep learning at the edge. In M. Martina, & W. Fornanciari (Eds.), INTelligent Embedded Systems Architectures and Applications (INTESA): workshop proceedings 2018 : October 4, 2018, Torino, Italy (pp. 19-26). The Association for Computing Machinery. https://doi.org/10.1145/3285017.3285019[details]
Meloni, P., Loi, D., Deriu, G., Pimentel, A. D., Sapra, D., Pintor, M., Biggio, B., Ripolles, O., Solans, D., Conti, F., Benini, L., Stefanov, T., Minakova, S., Moser, B., Shepeleva, N., Masin, M., Palumbo, F., Fragoulis, N., & Theodorakopoulos, I. (2018). Architecture-aware design and implementation of CNN algorithms for embedded inference: the ALOHA project. In Proceeding of 2018 30th International Conference on Microelectronics (pp. 52-55). IEEE. https://doi.org/10.1109/ICM.2018.8704093[details]
Sapra, D., & Altmeyer, S. (2017). Work In Progress: Design-Space Exploration of Multi-core Processors for Safety-Critical Real-Time Systems. In 2017 IEEE Real-Time Systems Symposium: proceedings : 5-8 December 2017, Paris, France (pp. 360-362). IEEE Computer Society. https://doi.org/10.1109/RTSS.2017.00040[details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.