Blom, T., & Mooij, J. M. (2023). Causality and independence in perfectly adapted dynamical systems. Journal of Causal Inference, 11(1), Article 20210005. https://doi.org/10.1515/jci-2021-0005[details]
de Kroon, A. A. W. M., Belgrave, D., & Mooij, J. M. (2022). Causal Bandits without prior knowledge using separating sets. Proceedings of Machine Learning Research, 177, 407-427. https://proceedings.mlr.press/v177/kroon22a.html[details]
Blom, T., Van Diepen, M., & Mooij, J. M. (2021). Conditional independences and causal relations implied by sets of equations. Journal of Machine Learning Research, 22(178), 1-62. http://jmlr.org/papers/v22/20-863.html[details]
Boeken, P. A., & Mooij, J. M. (2021). A Bayesian nonparametric conditional two-sample test with an application to Local Causal Discovery. Proceedings of Machine Learning Research, 161, 1565-1575. https://proceedings.mlr.press/v161/boeken21a.html[details]
Bongers, S., Forré, P., Peters, J., & Mooij, J. M. (2021). Foundations of structural causal models with cycles and latent variables. The Annals of Statistics, 49(5), 2885-2915. https://doi.org/10.1214/21-AOS2064[details]
Mooij, J. M., & Claassen, T. (2020). Constraint-Based Causal Discovery with Partial Ancestral Graphs in the presence of Cycles. Proceedings of Machine Learning Research, 124, 1159-1168. http://proceedings.mlr.press/v124/m-mooij20a.html[details]
Mooij, J. M., Magliacane, S., & Claassen, T. (2020). Joint Causal Inference from Multiple Contexts. Journal of Machine Learning Research, 21(99), Article 99. https://www.jmlr.org/papers/v21/[details]
Blom, T., Bongers, S., & Mooij, J. M. (2019). Beyond Structural Causal Models: Causal Constraints Models. In A. Globerson, & R. Silva (Eds.), Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence: UAI 2019, Tel Aviv, Israel, July 22-25, 2019 Article 205 AUAI Press. http://auai.org/uai2019/proceedings/papers/205.pdf[details]
Forré, P., & Mooij, J. M. (2019). Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias. In A. Globerson, & R. Silva (Eds.), Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence: UAI 2019, Tel Aviv, Israel, July 22-25, 2019 Article 15 AUAI Press. http://auai.org/uai2019/proceedings/papers/15.pdf[details]
Magliacane, S., van Ommen, T., Claassen, T., Bongers, S., Versteeg, P., & Mooij, J. M. (2019). Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), 32nd Conference on Neural Information Processing Systems 2018: Montreal, Canada, 3-8 December 2018 (Vol. 15, pp. 10846-10856). (Advances in Neural Information Processing Systems; Vol. 31). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/8282-domain-adaptation-by-using-causal-inference-to-predict-invariant-conditional-distributions[details]
Blom, T., Klimovskaia, A., Magliacane, S., & Mooij, J. M. (2018). An Upper Bound for Random Measurement Error in Causal Discovery. In A. Globerson, & R. Silva (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Fourth Concerence (2018) : August 6-10, 2018, Monterey, California, USA (pp. 570-579). AUAI Press. http://auai.org/uai2018/proceedings/papers/208.pdf[details]
Forré, P., & Mooij, J. M. (2018). Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders. In A. Globerson, & R. Silva (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Fourth Concerence (2018) : August 6-10, 2018, Monterey, California, USA (pp. 269-278). AUAI Press. http://auai.org/uai2018/proceedings/papers/117.pdf[details]
Louizos, C., Shalit, U., Mooij, J., Sontag, D., Zemel, R., & Welling, M. (2018). Causal Effect Inference with Deep Latent-Variable Models. In U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, R. Fergus, S. V. N. Vishwanathan, & R. Garnett (Eds.), 31st Conference on Advances in Neural Information Processing Systems (NIPS 2017): Long Beach, California, USA, 4-9 December 2017 (Vol. 10, pp. 6447-6457). (Advances in Neural Information Processing Systems; Vol. 30). Neural Information Processing Systems. https://papers.nips.cc/paper/2017/file/94b5bde6de888ddf9cde6748ad2523d1-Paper.pdf[details]
Rubenstein, P. K., Bongers, S., Schölkopf, B., & Mooij, J. M. (2018). From Deterministic ODEs to Dynamic Structural Causal Models. In A. Globerson, & R. Silva (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Fourth Concerence (2018) : August 6-10, 2018, Monterey, California, USA (pp. 114-123). Article 43 AUAI Press. http://auai.org/uai2018/proceedings/papers/43.pdf[details]
Magliacane, S., Claassen, T., & Mooij, J. (2017). Ancestral Causal Inference. In D. D. Lee, U. von Luxburg, R. Garnett, M. Sugiyama, & I. Guyon (Eds.), 30th Annual Conference on Neural Information Processing Systems 2016: Barcelona, Spain, 5-10 December 2016 (Vol. 7, pp. 4473-4481). (Advances in Neural Information Processing Systems; Vol. 29). Curran Associates. http://papers.nips.cc/paper/6266-ancestral-causal-inference[details]
Rubenstein, P. K., Weichwald, S., Bongers, S., Mooij, J. M., Janzing, D., Grosse-Wentrup, M., & Schölkopf, B. (2017). Causal Consistency of Structural Equation Models. In G. Elidan, & K. Kersting (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Third Conference (2017) : 11-15 August 2017, Sydney, Australia Article 11 AUAI Press. http://auai.org/uai2017/proceedings/papers/11.pdf[details]
van Ommen, T., & Mooij, J. M. (2017). Algebraic Equivalence of Linear Structural Equation Models. In G. Elidan, & K. Kersting (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Third Conference (2017) : 11-15 August 2017, Sydney, Australia Article 277 AUAI Press. http://auai.org/uai2017/proceedings/papers/277.pdf[details]
Meinshausen, N., Hauser, A., Mooij, J. M., Peters, J., Versteeg, P., & Bühlmann, P. (2016). Methods for causal inference from gene perturbation experiments and validation. Proceedings of the National Academy of Sciences of the United States of America, 113(27), 7361-7368. https://doi.org/10.1073/pnas.1510493113[details]
Mooij, J. M., Peters, J., Janzing, D., Zscheischler, J., & Schölkopf, B. (2016). Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks. Journal of Machine Learning Research, 17, Article 32. http://jmlr.org/papers/v17/14-518.html[details]
Mooij, J. M., & Cremers, J. (2015). An Empirical Study of one of the Simplest Causal Prediction Algorithms. In R. Silva, I. Shpitser, R. Evans, J. Peters, & T. Claassen (Eds.), Proceedings of the UAI 2015 Workshop on Advances in Causal Inference: co-located with the 31st Conference on Uncertainty in Artificial Intelligence (UAI 2015) : Amsterdam, The Netherlands, July 16, 2015 (pp. 30-39). Article 2 (CEUR Workshop Proceedings; Vol. 1504). CEUR-WS. http://ceur-ws.org/Vol-1504/uai2015aci_paper2.pdf[details]
de Leeuw, C. A., Mooij, J. M., Heskes, T., & Posthuma, D. (2015). MAGMA: Generalized Gene-Set Analysis of GWAS Data. PLoS Computational Biology, 11(4), Article e004219. https://doi.org/10.1371/journal.pcbi.1004219[details]
Cornia, N., & Mooij, J. M. (2014). Type-II Errors of Independence Tests Can Lead to Arbitrarily Large Errors in Estimated Causal Effects: An Illustrative Example. In J. M. Mooij, D. Janzing, J. Peters, T. Claassen, & A. Hyttinen (Eds.), Proceedings of the UAI 2014 Workshop Causal Inference: Learning and Prediction: co-located with 30th Conference on Uncertainty in Artificial Intelligence (UAI 2014) : Quebec City, Canada, July 27, 2014 (pp. 35-42). (CEUR Workshop Proceedings; Vol. 1274). CEUR-WS. http://ceur-ws.org/Vol-1274/uai2014ci_paper7.pdf[details]
Peters, J., Mooij, J. M., Janzing, D., & Schölkopf, B. (2014). Causal Discovery with Continuous Additive Noise Models. Journal of Machine Learning Research, 15, 2009-2053. http://jmlr.org/papers/v15/peters14a.html[details]
Claassen, T., Mooij, J. M., & Heskes, T. (2013). Learning sparse causal models is not NP-hard. In A. Nicholson, & P. Smyth (Eds.), Uncertainty in artificial intelligence: proceedings of the twenty-ninth conference (2013): July 12-14, 2013, Bellevue, Washington, United States (pp. 172-181). AUAI Press. http://auai.org/uai2013/prints/papers/121.pdf[details]
Mooij, J. M., & Heskes, T. (2013). Cyclic causal discovery from continuous equilibrium data. In A. Nicholson, & P. Smyth (Eds.), Uncertainty in artificial intelligence: proceedings of the twenty-ninth conference (2013): July 12-14, 2013, Bellevue, Washington, United States (pp. 431-439). AUAI Press. http://auai.org/uai2013/prints/papers/23.pdf[details]
Mooij, J. M., Janzing, D., & Schölkopf, B. (2013). From Ordinary Differential Equations to Structural Causal Models: the deterministic case. In A. Nicholson, & P. Smyth (Eds.), Uncertainty in artificial intelligence: proceedings of the twenty-ninth conference (2013): July 12-14, 2013, Bellevue, Washington, United States (pp. 440-448). AUAI Press. http://auai.org/uai2013/prints/proceedings.pdf[details]
Mooij, J. M., Janzing, D., Peters, J., Claassen, T., & Hyttinen, A. (Eds.) (2014). Proceedings of the UAI 2014 Workshop Causal Inference: Learning and Prediction: co-located with 30th Conference on Uncertainty in Artificial Intelligence (UAI 2014) : Quebec City, Canada, July 27, 2014. (CEUR Workshop Proceedings; Vol. 1274). CEUR-WS. http://ceur-ws.org/Vol-1274[details]
2022
Mooij, J. M. (2022). Causality: from data to science. [details]
Bongers, S. R. (2022). Causal modeling & dynamical systems: A new perspective on feedback. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Louizos, C. (2022). Probabilistic reasoning for uncertainty & compression in deep learning. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Forré, P., & Mooij, J. M. (2017). Markov Properties for Graphical Models with Cycles and Latent Variables. Informatics Institute, University of Amsterdam. https://arxiv.org/abs/1710.08775[details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.