Feng, F., Huang, B., Magliacane, S., & Zhang, K. (2023). Factored Adaptation for Non-Stationary Reinforcement Learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), 36th Conference on Neural Information Processing Systems (NeurIPS 2022): New Orleans, Louisiana, USA, 28 November-9 December 2022 (Vol. 41, pp. 31957-31971). (Advances in Neural Information Processing Systems; Vol. 35). Neural Information Processing Systems Foundation. https://doi.org/10.48550/arXiv.2203.16582[details]
Lippe, P., Magliacane, S., Löwe, S., Asano, Y. M., Cohen, T., & Gavves, E. (2023). Causal Representation Learning for Instantaneous and Temporal Effects in Interactive Systems. In The Eleventh International Conference on Learning Representations https://openreview.net/forum?id=itZ6ggvMnzS
Liu, Y., Magliacane, S., Kofinas, M., & Gavves, E. (2023). Graph switching dynamical systems. In International Conference on Machine Learning
2022
Lippe, P., Magliacane, S., Löwe, S., Asano, Y. M., Cohen, T., & Gavves, E. (2022). CITRIS: Causal Identifiability from Temporal Intervened Sequences. Proceedings of Machine Learning Research, 162, 13557-13603. https://proceedings.mlr.press/v162/lippe22a.html[details]
Hunt, N., Fulton, N., Magliacane, S., Hoang, T. N., Das, S., & Solar-Lezama, A. (2021). Verifiably Safe Exploration for End-to-End Reinforcement Learning. In HSCC2021: proceedings of the 24th International Conference on Hybrid Systems: Computation and Control (part of CPS-IoT Week) : May 19-21, 2021, Nashville, TN, USA Article 14 The Association for Computing Machinery. https://doi.org/10.1145/3447928.3456653[details]
Li, X., Magliacane, S., & Groth, P. (2021). The Challenges of Cross-Document Coreference Resolution in Email. In K-CAP '21: Proceedings of the 11th Knowledge Capture Conference : December 2-3, 2021 : virtual event, USA (pp. 273-276). Association for Computing Machinery. https://doi.org/10.1145/3460210.3493573[details]
Mooij, J. M., Magliacane, S., & Claassen, T. (2020). Joint Causal Inference from Multiple Contexts. Journal of Machine Learning Research, 21(99), Article 99. https://www.jmlr.org/papers/v21/[details]
Magliacane, S., van Ommen, T., Claassen, T., Bongers, S., Versteeg, P., & Mooij, J. M. (2019). Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), 32nd Conference on Neural Information Processing Systems 2018: Montreal, Canada, 3-8 December 2018 (Vol. 15, pp. 10846-10856). (Advances in Neural Information Processing Systems; Vol. 31). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/8282-domain-adaptation-by-using-causal-inference-to-predict-invariant-conditional-distributions[details]
Blom, T., Klimovskaia, A., Magliacane, S., & Mooij, J. M. (2018). An Upper Bound for Random Measurement Error in Causal Discovery. In A. Globerson, & R. Silva (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Fourth Concerence (2018) : August 6-10, 2018, Monterey, California, USA (pp. 570-579). AUAI Press. http://auai.org/uai2018/proceedings/papers/208.pdf[details]
Magliacane, S., Claassen, T., & Mooij, J. (2017). Ancestral Causal Inference. In D. D. Lee, U. von Luxburg, R. Garnett, M. Sugiyama, & I. Guyon (Eds.), 30th Annual Conference on Neural Information Processing Systems 2016: Barcelona, Spain, 5-10 December 2016 (Vol. 7, pp. 4473-4481). (Advances in Neural Information Processing Systems; Vol. 29). Curran Associates. http://papers.nips.cc/paper/6266-ancestral-causal-inference[details]
Hoekstra, R., Magliacane, S., Rietveld, L., de Vries, G., Wibisono, A., & Schlobach, S. (2015). Hubble: Linked Data Hub for Clinical Decision Support. In E. Simperl, B. Norton, D. Mladenic, E. Della Valle, I. Fundulaki, A. Passant, & R. Troncy (Eds.), The Semantic Web: ESWC 2012 Satellite Events: ESWC 2012 Satellite Events, Heraklion, Crete, Greece, May 27-31, 2012 : revised selected papers (pp. 458-462). (Lecture Notes in Computer Science; Vol. 7540). Springer. https://doi.org/10.1007/978-3-662-46641-4_45[details]
2023
Lippe, P., Magliacane, S., Löwe, S., Asano, Y. M., Cohen, T., & Gavves, E. (2023). BISCUIT: Causal Representation Learning from Binary Interactions. Proceedings of Machine Learning Research, 216, 1263-1273. https://proceedings.mlr.press/v216/lippe23a.html[details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.