I am Benjamin Martin an Assistant Professor at the Department of Theoretical and Computational Ecology at the University of Amsterdam. This is my University research page. Here you can find information on my previous and current research.
Bhattarai, B., Hilliard, B., Reeder, W. J., Budwig, R., Martin, B. T., Xing, T., & Tonina, D. (2023). Effect of surface hydraulics and salmon redd size on redd‐induced hyporheic exchange. Water Resources Research. https://doi.org/10.1029/2022WR033977
Bhattarai, B., Hilliard, B., Reeder, W. J., Budwig, R., Martin, B. T., Xing, T., & Tonina, D. (2023). The role of riverine bed roughness, egg pocket location, and egg pocket permeability on Salmonid Redd‐induced hyporheic flows. Water Resources Research, 59(11). https://doi.org/10.1029/2023WR035548
Fahimipour, A. K., Gil, M. A., Celis, M. R., Hein, G. F., Martin, B. T., & Hein, A. M. (2023). Wild animals suppress the spread of socially transmitted misinformation. Proceedings of the National Academy of Sciences of the United States of America, 120(14), Article e2215428120. https://doi.org/10.1073/pnas.2215428120[details]
Hilliard, B., Budwig, R., Skifton, R. S., Durgesh, V., Reeder, W. J., Bhattarai, B., Martin, B. T., Xing, T., & Tonina, D. (2023). Measuring porous media velocity fields and grain bed architecture with a quantitative PLIF-based technique. Measurement Science and Technology, 34(12), Article 125805. https://doi.org/10.1088/1361-6501/acfb2b
2022
Fitzgerald, A. M., & Martin, B. T. (2022). Quantification of thermal impacts across freshwater life stages to improve temperature management for anadromous salmonids. Conservation Physiology, 10(1), Article coac013. https://doi.org/10.1093/conphys/coac013
FitzGerald, A. & Martin, B. (2022). Quantification of thermal impacts across freshwater life stages to improve temperature management for anadromous salmonids. DRYAD. https://doi.org/10.5061/dryad.cjsxksn7b
Fitzgerald, A. M., Boughton, D. A., Fuller, J., John, S. N., Martin, B. T., Harrison, L. R., & Mantua, N. J. (2022). Physical and biological constraints on the capacity for life-history expression of anadromous salmonids: an Eel River, California, case study. Canadian Journal of Fisheries and Aquatic Sciences, 79(7), 1023-1041. https://doi.org/10.1139/cjfas-2021-0229
FitzGerald, A., Boughton, D., Fuller, J., John, S., Martin, B., Harrison, L. & Mantua, N. (2021). Physical and biological constraints on the capacity for life-history expression of anadromous salmonids: an Eel River, California, case study. DRYAD. https://doi.org/10.5061/dryad.ksn02v74x
Lo, V. K., Martin, B. T., Danner, E. M., Cocherell, D. E., Cech, J. J., & Fangue, N. A. (2022). The effect of temperature on specific dynamic action of juvenile fall-run Chinook salmon, Oncorhynchus tshawytscha. Conservation Physiology, 10(1), Article coac067. https://doi.org/10.1093/conphys/coac067
Martin, B. T., Gil, M. A., Fahimipour, A. K., & Hein, A. M. (2022). Informational constraints on predator–prey interactions. Oikos, 2022(10), Article e08143. https://doi.org/10.1111/oik.08143
2021
Apgar, T. M., Merz, J. E., Martin, B. T., & Palkovacs, E. P. (2021). Alternative migratory strategies are widespread in subyearling Chinook salmon. Ecology of Freshwater Fish, 30(1), 125-139. https://doi.org/10.1111/eff.12570
Del Rio, A. M., Mukai, G. N., Martin, B. T., Johnson, R. C., Fangue, N. A., Israel, J. A., & Todgham, A. E. (2021). Differential sensitivity to warming and hypoxia during development and long-term effects of developmental exposure in early life stage Chinook salmon. Conservation Physiology, 9(1), Article coab054. https://doi.org/10.1093/conphys/coab054
FitzGerald, A. M., John, S. N., Apgar, T. M., Mantua, N. J., & Martin, B. T. (2021). Quantifying thermal exposure for migratory riverine species: Phenology of Chinook salmon populations predicts thermal stress. Global Change Biology, 27(3), 536-549. https://doi.org/10.1111/gcb.15450[details]
Hein, A. M., Altshuler, D. L., Cade, D. E., Liao, J. C., Martin, B. T., & Taylor, G. K. (2020). An Algorithmic Approach to Natural Behavior. Current Biology, 30(11), R663-R675. https://doi.org/10.1016/j.cub.2020.04.018[details]
Martin, B. T., Dudley, P. N., Kashef, N. S., Stafford, D. M., Reeder, W. J., Tonina, D., Del Rio, A. M., Scott Foott, J., & Danner, E. M. (2020). The biophysical basis of thermal tolerance in fish eggs. Proceedings of the Royal Society B: Biological Sciences, 287(1937), Article 20201550. https://doi.org/10.1098/rspb.2020.1550[details]
2019
Friedman, W. R., Martin, B. T., Wells, B. K., Warzybok, P., Michel, C. J., Danner, E. M., & Lindley, S. T. (2019). Modeling composite effects of marine and freshwater processes on migratory species. Ecosphere, 10(7), Article e02743. https://doi.org/10.1002/ecs2.2743
Hamda, N. T., Martin, B., Poletto, J. B., Cocherell, D. E., Fangue, N. A., Van Eenennaam, J., Mora, E. A., & Danner, E. (2019). Applying a simplified energy-budget model to explore the effects of temperature and food availability on the life history of green sturgeon (Acipenser medirostris). Ecological Modelling, 395, 1-10. https://doi.org/10.1016/j.ecolmodel.2019.01.005
2018
Martin, B. T., Munch, S. B., & Hein, A. M. (2018). Reverse-engineering ecological then from data. Proceedings of the Royal Society B-Biological Sciences, 285(1878). https://doi.org/10.1098/rspb.2018.0422
Poletto, J. B., Martin, B., Danner, E., Baird, S. E., Cocherell, D. E., Hamda, N., Cech, J. J., & Fangue, N. A. (2018). Assessment of multiple stressors on the growth of larval green sturgeon Acipenser medirostris: implications for recruitment of early life-history stages. Journal of Fish Biology, 93(5), 952-960. https://doi.org/10.1111/jfb.13805
2017
Martin, B. T., Heintz, R., Danner, E. M., & Nisbet, R. M. (2017). Integrating lipid storage into general representations of fish energetics. Journal of Animal Ecology, 86(4), 812-825. https://doi.org/10.1111/1365-2656.12667
Martin, B. T., Pike, A., John, S. N., Hamda, N., Roberts, J., Lindley, S. T., & Danner, E. M. (2017). Phenomenological vs. biophysical models of thermal stress in aquatic eggs. Ecology Letters, 20(1), 50-59. https://doi.org/10.1111/ele.12705
2016
Martin, B. T., Czesny, S., Wahl, D. H., & Grimm, V. (2016). Scale-dependent role of demography and dispersal on the distribution of populations in heterogeneous landscapes. Oikos, 125(5), 667-673. https://doi.org/10.1111/oik.02345
Nisbet, R. M., Martin, B. T., & de Roos, A. M. (2016). Integrating ecological insight derived from individual-based simulations and physiologically structured population models. Ecological Modelling, 326, 101-112. Advance online publication. https://doi.org/10.1016/j.ecolmodel.2015.08.013[details]
Fiechter, J., Huff, D. D., Martin, B. T., Jackson, D. W., Edwards, C. A., Rose, K. A., Curchitser, E. N., Hedstrom, K. S., Lindley, S. T., & Wells, B. K. (2015). Environmental conditions impacting juvenile Chinook salmon growth off central California: An ecosystem model analysis. Geophysical Research Letters, 42(8), 2910-2917. https://doi.org/10.1002/2015GL063046
Martin, B. T., Nisbet, R. M., Pike, A., Michel, C. J., & Danner, E. M. (2015). Sport science for salmon and other species: ecological consequences of metabolic power constraints. Ecology Letters, 18(6), 535-544. https://doi.org/10.1111/ele.12433
2014
Grimm, V., Augusiak, J., Focks, A., Frank, B. M., Gabsi, F., Johnston, A. S. A., Liu, C., Martin, B. T., Meli, M., Radchuk, V., Thorbek, P., & Railsback, S. F. (2014). Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE. Ecological Modelling, 280, 129-139. https://doi.org/10.1016/j.ecolmodel.2014.01.018
Jager, T., Barsi, A., Hamda, N. T., Martin, B. T., Zimmer, E. I., & Ducrot, V. (2014). Dynamic energy budgets in population ecotoxicology: Applications and outlook. Ecological Modelling, 280, 140-147. https://doi.org/10.1016/j.ecolmodel.2013.06.024
Martin, B., Jager, T., Nisbet, R. M., Preuss, T. G., & Grimm, V. (2014). Limitations of extrapolating toxic effects on reproduction to the population level. Ecological Applications, 24(8), 1972-1983. https://doi.org/10.1890/14-0656.1
2013
Grimm, V., & Martin, B. T. (2013). Mechanistic effect modeling for ecological risk assessment: where to go from here? Integrated Environmental Assessment and Management, 9(3), e58-e63. https://doi.org/10.1002/ieam.1423
Jager, T., Martin, B. T., & Zimmer, E. I. (2013). DEBkiss or the quest for the simplest generic model of animal life history. Journal of Theoretical Biology, 328, 9-18. https://doi.org/10.1016/j.jtbi.2013.03.011
Martin, B. T., Jager, T., Nisbet, R. M., Preuss, T. G., & Grimm, V. (2013). Predicting Population Dynamics from the Properties of Individuals: A Cross-Level Test of Dynamic Energy Budget Theory. American Naturalist, 181(4), 506-519. https://doi.org/10.1086/669904
Martin, B. T., Jager, T., Nisbet, R. M., Preuss, T. G., Hammers-Wirtz, M., & Grimm, V. (2013). Extrapolating ecotoxicological effects from individuals to populations: a generic approach based on Dynamic Energy Budget theory and individual-based modeling. Ecotoxicology, 22(3), 574-583. https://doi.org/10.1007/s10646-013-1049-x
Sibly, R. M., Grimm, V., Martin, B. T., Johnston, A. S. A., Kulakowska, K., Topping, C. J., Calow, P., Nabe-Nielsen, J., Thorbek, P., & DeAngelis, D. L. (2013). Representing the acquisition and use of energy by individuals in agent-based models of animal populations. Methods in Ecology and Evolution, 4(2), 151-161. https://doi.org/10.1111/2041-210x.12002
2012
Martin, B. T., Zimmer, E. I., Grimm, V., & Jager, T. (2012). Dynamic Energy Budget theory meets individual-based modelling: a generic and accessible implementation. Methods in Ecology and Evolution, 3(2), 445-449. https://doi.org/10.1111/j.2041-210X.2011.00168.x
2022
FitzGerald, A. & Martin, B. (2022). Quantification of thermal impacts across freshwater life stages to improve temperature management for anadromous salmonids. DRYAD. https://doi.org/10.5061/dryad.cjsxksn7b
2021
FitzGerald, A., Boughton, D., Fuller, J., John, S., Martin, B., Harrison, L. & Mantua, N. (2021). Physical and biological constraints on the capacity for life-history expression of anadromous salmonids: an Eel River, California, case study. DRYAD. https://doi.org/10.5061/dryad.ksn02v74x
2020
FitzGerald, A., John, S., Apgar, T., Mantua, N. & Martin, B. (2020). Quantifying thermal exposure for migratory riverine species: phenology of Chinook salmon populations predicts thermal stress. DRYAD. https://doi.org/10.5061/dryad.n5tb2rbtq
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.