Dumouchelle, J., Julien, E., Kurtz, J., & Khalil, E. (2024). Neur2RO: Neural Two-Stage Robust Optimization. In The Twelfth International Conference on Learning Representations International Conference on Learning Representations (ICLR). https://openreview.net/forum?id=T5Xb0iGCCv
Kurtz, J. (2024). Approximation Guarantees for Min-Max-Min Robust Optimization and k-Adaptability Under Objective Uncertainty. SIAM Journal on Optimization, 34(2), 2121-2149. https://doi.org/10.1137/23M1595084
Maragno, D., Röber, T. E., Kurtz, J., Goedhart, R., Birbil, S. I., & den Hertog, D. (2024). Finding regions of counterfactual explanations via robust optimization. INFORMS Journal on Computing. Advance online publication. https://doi.org/10.1287/ijoc.2023.0153
2023
Goerigk, M., & Kurtz, J. (2023). Data-Driven Robust Optimization using Unsupervised Deep Learning. Computers & Operations Research, 151, Article 106087. https://doi.org/10.1016/j.cor.2022.106087[details]
Bah, B., Kurtz, J., & Schaudt, O. (2021). Discrete optimization methods for group model selection in compressed sensing. Mathematical programming, 190(1-2), 171-220. https://doi.org/10.1007/s10107-020-01529-7
2020
Eufinger, L., Kurtz, J., Buchheim, C., & Clausen, U. (2020). A Robust Approach to the Capacitated Vehicle Routing Problem with Uncertain Costs. INFORMS Journal on Optimization, 2(2), 79-95. https://doi.org/10.1287/ijoo.2019.0021
Goerigk, M., Kurtz, J., & Poss, M. (2020). Min–max–min robustness for combinatorial problems with discrete budgeted uncertainty. Discrete Applied Mathematics, 285, 707-725. https://doi.org/10.1016/j.dam.2020.07.011
Kaemmerling, N., & Kurtz, J. (2020). Oracle-based algorithms for binary two-stage robust optimization. Computational Optimization and Applications, 77(2), 539-569. https://doi.org/10.1007/s10589-020-00207-w
2019
Chassein, A., Goerigk, M., Kurtz, J., & Poss, M. (2019). Faster algorithms for min-max-min robustness for combinatorial problems with budgeted uncertainty. European Journal of Operational Research, 279(2), 308-319. https://doi.org/10.1016/j.ejor.2019.05.045
2018
Buchheim, C., & Kurtz, J. (2018). Complexity of min–max–min robustness for combinatorial optimization under discrete uncertainty. Discrete Optimization, 28, 1-15. https://doi.org/10.1016/j.disopt.2017.08.006
Buchheim, C., & Kurtz, J. (2018). Robust combinatorial optimization under convex and discrete cost uncertainty. EURO Journal on Computational Optimization, 6(3), 211-238. https://doi.org/10.1007/s13675-018-0103-0
Kurtz, J. (2018). Robust combinatorial optimization under budgeted-ellipsoidal uncertainty. EURO Journal on Computational Optimization, 6(4), 315-337. https://doi.org/10.1007/s13675-018-0097-7
Buchheim, C., & Kurtz, J. (2016). Min-max-min robustness: A new approach to combinatorial optimization under uncertainty based on multiple solutions. Electronic Notes in Discrete Mathematics, 52, 45-52. https://doi.org/10.1016/j.endm.2016.03.007
2014
Kawohl, B., Kroemer, S., & Kurtz, J. (2014). Radial Eigenfunctions for the Game-Theoretic p-Laplacian on a Ball. DIFFERENTIAL AND INTEGRAL EQUATIONS, 27(7-8), 659-670.
Kurtz, J., & Bah, B. (2021). Efficient and Robust Mixed-Integer Optimization Methods for Training Binarized Deep Neural Networks. ArXiv. https://doi.org/10.48550/arXiv.2110.11382
2020
Bah, B., & Kurtz, J. (2020). An integer programming approach to deep neural networks with binary activation functions. (v3 ed.) ArXiv. https://doi.org/10.48550/arXiv.2007.03326
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.