Koornwinder, T. H. (2023). Dual addition formulas: the case of continuous q-ultraspherical and q-Hermite polynomials. The Ramanujan Journal, 61(2), 425-444. Advance online publication. https://doi.org/10.1007/s11139-021-00426-7[details]
Koornwinder, T. H. (2022). Charting the q-Askey scheme. In E. Koelink, S. Kolb, N. Reshetikhin, & B. Vlaar (Eds.), Hypergeometry, Integrability and Lie Theory: Virtual Conference Hypergeometry, Integrapbility and Lie Theory, December 7-11, 2020, Lorentz Center Leiden, The Netherlands (Vol. 780, pp. 79-94). (Contemporary Mathematics - American Mathematical Society). American Mathematical Society. https://doi.org/10.1090/conm/780/15688[details]
Disveld, N., Koornwinder, T. H., & Stokman, J. V. (2021). A nonsymmetric version of Okounkov’s BC-type interpolation Macdonald polynomials. Transformation Groups, 26(4), 1261-1292. https://doi.org/10.1007/S00031-021-09672-x[details]
Koornwinder, T. H., & Stokman, J. V. (2020). General overview of multivariable special functions. In T. H. Koornwinder, & J. V. Stokman (Eds.), Encyclopedia of special functions : the Askey-Bateman project. - Volume 2: Multivariable Special Functions (pp. 1-18). Cambridge University Press. Advance online publication. https://doi.org/10.1017/9780511777165.002[details]
Koornwinder, T. H., & Stokman, J. V. (Eds.) (2020). Encyclopedia of special functions : the Askey-Bateman project. - Volume 2: Multivariable special functions. Cambridge University Press. https://doi.org/10.1017/9780511777165[details]
Diekema, E., & Koornwinder, T. H. (2019). Integral representations for Horn’s H2 function and Olsson’s Fp function. Kyushu Journal of Mathematics, 73(1), 1-24. https://doi.org/10.2206/kyushujm.73.1[details]
Koornwinder, T. H. (2018). Dual addition formulas associated with dual product formulas. In M. Zuhair Nashed, & X. Li (Eds.), Frontiers In Orthogonal Polynomials and Q-series (pp. 373-392). (Contemporary Mathematics and Its Applications: Monographs, Expositions and Lecture Notes; Vol. 1). World Scientific. https://doi.org/10.1142/9789813228887_0019[details]
Koornwinder, T. H. (2018). Quadratic transformations for orthogonal polynomials in one and two variables. In H. Konno, H. Sakai, J. Shiraishi, T. Suzuki, & Y. Yamada (Eds.), Representation Theory, Special Functions and Painlevé Equations — RIMS 2015 (pp. 419-447). (Advanced Studies in Pure Mathematics; Vol. 76). Mathematical society of Japan. https://doi.org/10.2969/aspm/07610419[details]
Koornwinder, T. H., & Mazzocco, M. (2018). Dualities in the q-Askey Scheme and Degenerate DAHA. Studies in Applied Mathematics, 141(4), 424-473. https://doi.org/10.1111/sapm.12229[details]
Koornwinder, T., Kostenko, A., & Teschl, G. (2018). Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator. Advances in Mathematics, 333, 796-821. https://doi.org/10.1016/j.aim.2018.05.038[details]
Koornwinder, T. H. (2015). Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators. Symmetry, Integrability and Geometry : Methods and Applications (SIGMA), 11, Article 074. https://doi.org/10.3842/SIGMA.2015.074[details]
Rösler, M., Koornwinder, T., & Voit, M. (2013). Limit transition between hypergeometric functions of type BC and type A. Compositio Mathematica, 149(8), 1381-1400. https://doi.org/10.1112/S0010437X13007045[details]
Diekema, E., & Koornwinder, T. H. (2012). Differentiation by integration using orthogonal polynomials, a survey. Journal of Approximation Theory, 164(5), 637-667. https://doi.org/10.1016/j.jat.2012.01.003[details]
Diekema, E., & Koornwinder, T. H. (2012). Generalizations of an integral for Legendre polynomials by Persson and Strang. Journal of Mathematical Analysis and Applications, 388(1), 125-135. https://doi.org/10.1016/j.jmaa.2011.12.001[details]
Koornwinder, T. H. (2011). On the Limit from q-Racah Polynomials to Big q-Jacobi Polynomials. Symmetry, Integrability and Geometry : Methods and Applications (SIGMA), 7, Article 040. https://doi.org/10.3842/SIGMA.2011.040[details]
Atakishiyeva, M. K., Atakishiyev, N. M., & Koornwinder, T. H. (2009). q-Extension of Mehta's eigenvectors of the finite Fourier transform for q, a root of unity. Journal of Physics. A, Mathematical and Theoretical, 42(45), 454004. https://doi.org/10.1088/1751-8113/42/45/454004[details]
Koornwinder, T. H. (2008). Zhedanov's algebra AW(3) and the double affine Hecke algebra in the rank one case. II: The spherical subalgebra. Symmetry, Integrability and Geometry : Methods and Applications (SIGMA), 4, Article 052. https://doi.org/10.3842/SIGMA.2008.052[details]
Koornwinder, T. (2010). Foreword. In R. Koekoek, P. A. Lesky, & R. F. Swarttouw (Eds.), Hypergeometric orthogonal polynomials and their q-analogues (pp. v-x). (Springer monographs in mathematics). Springer. https://doi.org/10.1007/978-3-642-05014-5[details]
Koornwinder, T. H., Wong, R., Koekoek, R., & Swarttouw, R. F. (2010). Orthogonal polynomials. In F. W. J. Olver, D. W. Lozier, R. F. Boisvert, & C. W. Clark (Eds.), NIST handbook of mathematical functions (pp. 435-484). Cambridge University Press. http://dlmf.nist.gov/18[details]
Koornwinder, T. H. (2013). Orthogonal Polynomials. In C. Schneider, & J. Blümlein (Eds.), Computer Algebra in Quantum Field Theory: integration, summation and special functions (pp. 145-170). (Texts & Monographs in Symbolic Computation). Springer. https://doi.org/10.1007/978-3-7091-1616-6_6[details]
Koornwinder, T., Braaksma, B., van Dijk, G., Dorlas, T., Faraut, J., van Hemmen, J. L., & Stegeman, J. (2012). In memoriam Erik G.F. Thomas (1939-2011): "A good definition is half the work". Nieuw Archief voor Wiskunde, 5/13(4), 281-286. http://www.nieuwarchief.nl/serie5/pdf/naw5-2012-13-4-281.pdf[details]
Koornwinder, T. H. (editor) (2009-2010). Journal of nonlinear mathematical physics (Journal).
Spreker
Koornwinder, T. (speaker) (2-11-2017). Bispectrality and dual addition formulas, International Conference on Special Functions & Applications, Bikaner, Rajasthan. http://www.ssfaindia.webs.com/conf.htm
2018
Diekema, E. (2018). The fractional orthogonal derivative for functions of one and two variables. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.