It is clear that the way we live in general, and agriculture in particular, needs to become more sustainable. Therefore, our research focuses increasingly on biological control of plant-inhabiting arthropod pests as an alternative to chemical pest control. This encompasses research on potential biological control agents (Nomikou et al., 2001, 2002; van Maanen et al., 2010; da Silva et al., 2016; Rodríguez-Cruz et al., 2017), but because increased applications of biological control leads to a multiplication of the interactions among pest and natural enemy species, we also investigate the effects of such interactions. In particular, we study how biological control is affected by interactions among plants, herbivores, omnivores and natural enemies of herbivores. Here is a list.
1. Apparent competition between plant pests
Populations of different pest species that are attacked by the same population of natural enemies are involved in apparent competition (Holt, 1977). The consequences of apparent competition for biological control can be either positive or negative at a short time scale, but are predominantly positive at a longer time scale. This means that natural enemies that attack more than one pest species can be carefully selected to improve pest control. The advantage is that natural enemies that attack several pest species are less dependent on the presence of either of the pests and can reach higher densities because there is more food available. An excellent example of this is based on the pioneering research from our group: the use of the predatory mite Amblyseius swirskii for the control of thrips plus whiteflies (Nomikou et al., 2001; Messelink et al., 2008). This species is now commonly used for biological control. Several predator species actually perform better on a diet of mixed prey species (Messelink et al., 2008; Muñoz-Cárdenas et al., 2014; Marques et al., 2015), which results in further increases of predator populations and better pest control.
2. Alternative food
A topic closely related to apparent competition is the supply of alternative food to boost populations of natural enemies. Although research on this goes back several decades (Ramakers, 1980), it has become practice in European greenhouses only recently. We are particularly interested in the short-term and long-term dynamics of pests and natural enemies in the presence of alternative food supplied on the crop plants (Nomikou et al., 2002; van Rijn et al., 2002; van Maanen et al., 2010; Duarte et al., 2015), or elsewhere in the cropping system (Muñoz-Cárdenas et al., 2017). Many plant species produce pollen and nectar, which are important food sources for natural enemies of herbivores (see Interactions through the host plant below). Such plants can be associated with crops to supply alternative food, thus increasing pest control (Rezende et al., 2014; Fonseca et al., 2017).
3. Intraguild predation among natural enemies
This is the killing and consuming of potential competitors (Polis & Holt, 1992), which occurs frequently among predators used for biological control (Cakmak et al., 2006). For example, two predatory bugs are used for biological control of aphids and thrips, both feed on nectar and pollen in the flowers of sweet pepper and one of the predators attacks and kills the other (Messelink & Janssen, 2014). Theory predicts that intraguild predation will often have negative effects on biological control, but experiments and observations suggest that this is often not the case (Janssen et al., 2006). Using biological control systems, we investigate causes for this discrepancy between theory and reality. Often, the stage structure or size structure of the populations of predators are important for intraguild predation, with older stages of one species feeding on younger, smaller stages of the other species (Montserrat et al., 2008), and it is common that adults of pairs of species attack each other's juveniles. This so-called reciprocal intraguild predation can easily result in exclusion of one of the predator species (Montserrat et al., 2012), and it is still very much an open question how and why populations of species interact in this way are still found to coexist.
4. Role reversals in predator-prey systems
Species are often ascribed one ecological role: they are predators or prey. Reality is more complex: for example, thrips larvae are considered a plant pest and prey, but they attack the eggs of their predators (Faraji et al., 2002; Janssen, Faraji, et al., 2002; Magalhães et al., 2005; de Almeida & Janssen, 2013). Predators involved in reciprocal intraguild predation start their lives as prey and develop into predators while maturing. We suspect that such ontogenetic role reversals are quite common, and are currently investigating this.
5. Behaviour and learning
Prey avoid predators and predators try to find prey. This dynamic game of hide and seek occurs both in natural ecosystems as in the ecosystems occurring in crops in which biological control is applied. We investigate these behaviours and their effects on predator-prey interactions (Pallini et al., 1998; Venzon et al., 2000; Magalhães et al., 2002; Meng et al., 2006; Lemos et al., 2015; Choh et al., 2017). We also investigate how experience with predation risk changes behaviour of prey (pests) (Nomikou et al., 2003), and how experience with prey-associated cues changes the searching behaviour of predators (Janssen et al., 2014). Ontogenetic role reversals (see Role reversals in predator-prey systems) has interesting behavioural consequences; whereas young individuals need to avoid the other species, they can attack them when adult. Experience of an individual with an adult predator early in life results in increased predation on the juveniles of this predator species later in life (Choh et al., 2012, 2014).
6. Plant-mediated interactions
Plants are not just the substrate on which all interactions occur, but they have an active role (Sabelis et al., 1999; Kant et al., 2015). They can defend themselves through the production of compounds that have negative effects on herbivore performance (direct plant defences). Often, these defences are only activated upon herbivore attack (induced defences). Plants can also involve the natural enemies of their herbivores in their defence (indirect plant defences). They can do this by supplying the natural enemies with alternative food such as pollen and nectar (see Alternative food above), or by offering protective structures to the predators (Matos et al., 2006; Ferreira et al., 2011). Plants attacked by herbivores also produce volatiles that attract natural enemies (so-called herbivore-induced plant volatiles). In response to these induced direct and indirect plant defences, several herbivore species are found not to induce such defences, or even suppress them (Sarmento et al., 2011; de Oliveira et al., 2016; Godinho et al., 2016). Furthermore, omnivores that are used as biological control agents also feed on plants and induce such plant defences (Zhang et al., 2018). We study the effects of these plant defences on the arthropod communities on plants, as well as their effects on biological control.
7. Further scientific “hobbies”…
Several topics on which I have worked in the past do not occur in this list because we temporarily do not work on them. This is not because of lack of interest, but because of shortage of projects and time. These topics include the interaction of organisms with pathogens (Elliot et al., 2000; Belliure et al., 2005; van Munster et al., 2005), behavioural manipulation of hosts by parasites (Grosman et al., 2008) and work on parasitoids in general (Janssen et al., 1995), adaptation in herbivores (Groot et al., 2005; Magalhães et al., 2007), metapopulation dynamics (Ellner et al., 2001) and the evolution of indirect plant defences (Janssen et al., 2002). Fortunately, the last two topics have been picked up again recently through a collaboration with Josinaldo Menezes and Kateřina Staňková. I hope the same will happen with the other topics.
Acknowledgements
Perhaps you think I exaggerated the number of citations of own work in the text above, for which I apologize. However, they show the people with which I have been fortunate enough to collaborate and I want to express my gratitude by citing our joint publications. This also saves me the effort of having to mention all of them here. I am sure that some are missing, for which I also apologize. Without exception, they all showed a truly inspirational passion for research, and I am happy that several of them have become close friends. I need to mention one person by name though, which is Maurice Sabelis, who sadly passed away much too early. Those who knew him need no explanation; for those who did not, words fail me.
References
see bottom of this page or next tab for a complete list
When herbivores such as spider mites attack a plant, complex plant defence mechanisms are activated.In collaboration with colleagues from the Federal Universities of Viçosa and Tocantins, Brazil, we discovered that certain spider mites are able to disrupt these mechanisms, effectively disarming the plant.
Phytopathogens and herbivores induce plant defences. There is evidence that some pathogens suppress these defences by interfering with signaling pathways involved in the defence, but such evidence is scarce for herbivores. We found that the invasive spider mite Tetranychus evansi suppresses the induction of signaling routes involved in induced plant defences in tomato. As a result, the mites performed much better on previously attacked plants than on non-attacked plants. These findings provide a new perspective on plant-herbivore interactions, plant protection and plant resistance to invasive species.
Another mite species, the closely related T. urticae can also profit from the suppression of induction of defence by T. evansi . However, the latter protects leaf area with down-regulated plant defence by covering it with a dense web that is difficult to penetrate by T. urticae .
Parasites can induce dramatic changes of behaviour in their host species. This behaviour is thought to be detrimental to the host, but beneficial to the parasite. In a joint publication, researchers from the University of Amsterdam and University of Viçosa ( Brazil ) show evidence of spectacular behavioural changes induced by a parasitic wasp in the caterpillar of a moth species.
After the wasp ( Glyptapanteles sp.) has oviposited eggs in the body of a caterpillar ( Thyrinteina leucocerae ), these develop into larvae that live on the body fluids of the caterpillar. After the wasp larvae crawl out of the caterpillar to pupate, the caterpillar acts as a bodyguard to defend them from predator attacks. This results in a twofold reduction of predation of the wasp pupae in the field.
After several days, the adult wasps emerge from their pupae and the caterpillar dies.
de Almeida AA & Janssen A (2013) Juvenile prey induce antipredator behaviour in adult predators. Experimental & Applied Acarology 59:275–282.
Belliure B, Janssen A, Maris PC, Peters D & Sabelis MW (2005) Herbivore arthropods benefit from vectoring plant viruses. Ecology Letters 8:70–79.
Cakmak I, Janssen A & Sabelis MW (2006) Intraguild interactions between the predatory mites Neoseiulus californicus and Phytoseiulus persimilis. Experimental and Applied Acarology 38:33–46.
Choh Y, Ignacio M, Sabelis MW & Janssen A (2012) Predator-prey role reversals, juvenile experience and adult antipredator behaviour. Sci Rep 2 (728):1–6.
Choh Y, Sabelis MW & Janssen A (2017) Predatory interactions between prey affect patch selection by predators. Behavioral Ecology and Sociobiology 71:66.
Choh Y, Takabayashi J, Sabelis MW & Janssen A (2014) Witnessing predation can affect strength of counterattack in phytoseiids with ontogenetic predator–prey role reversal. Animal Behaviour 93:9–13.
Duarte MV, Venzon M, Bittencourt MC de S, Rodríguez-Cruz FA, Pallini A & Janssen A (2015) Alternative food promotes broad mite control on chilli pepper plants. BioControl 60:817–825.
Elliot SL, Sabelis MW, Janssen A, van der Geest LPS, Beerling EAM & Fransen J (2000) Can plants use entomopathogens as bodyguards? Ecology Letters 3:228–235.
Ellner SP, McCauley E, Kendall BE, Briggs CJ, Hosseini PR, Wood SN, Janssen A, Sabelis MW, Turchin P, Nisbet RM & Murdoch WW (2001) Habitat structure and population persistence in an experimental community. Nature 412:538–543.
Faraji F, Janssen A & Sabelis MW (2002) The benefits of clustering eggs: the role of egg predation and larval cannibalism in a predatory mite. Oecologia 131:20–26.
Ferreira JAM, Cunha DFS, Pallini A, Sabelis MW & Janssen A (2011) Leaf domatia reduce intraguild predation among predatory mites. Ecological Entomology 36:435–441.
Fonseca MM, Lima E, Lemos F, Venzon M & Janssen A (2017) Non-crop plant to attract and conserve an aphid predator (Coleoptera: Coccinellidae) in tomato. Biological Control 115:129–134.
Godinho DP, Janssen A, Dias T, Cruz C & Magalhães S (2016) Down-regulation of plant defence in a resident spider mite species and its effect upon con-and heterospecifics. Oecologia 180:161–167.
Groot TVM, Janssen A, Pallini A & Breeuwer JAJ (2005) Adaptation in the asexual false spider mite Brevipalpus phoenicis: evidence for frozen niche variation. Experimental and Applied Acarology 36:165–176.
Grosman AH, Janssen A, de Brito EF, Cordeiro EG, Colares F, Fonseca JO, Lima ER, Pallini A & Sabelis MW (2008) Parasitoid increases survival of its pupae by inducing hosts to fight predators. PLoS One 3:e2276. doi:10.1371/journal.pone.0002276.
Holt RD (1977) Predation, apparent competition, and structure of prey communities. Theoretical Population Biology 12:197–229.
Janssen A, van Alphen JJM, Sabelis MW & Bakker K (1995) Odour-mediated avoidance of competition in Drosophila parasitoids - the ghost of competition. Oikos 73:356–366.
Janssen A, Faraji F, van der Hammen T, Magalhães S & Sabelis MW (2002) Interspecific infanticide deters predators. Ecology Letters 5:490–494.
Janssen A, Fonseca JO, Colares F, Silva L, Pedrosa ARP, Lima ER, van Wijk M, Pallini A, Oliveira CM, Sabelis MW & Lesna I (2014) Time scales of associating food and odor by predator communities in the field. Behavioral Ecology 25:1123–1130.
Janssen A, Montserrat M, HilleRisLambers R, de Roos AM, Pallini A & Sabelis MW (2006) Intraguild predation usually does not disrupt biological control. Trophic and guild interactions in biological control. (ed by J Brodeur & G Boivin) Progress in Biological Control. Springer, Dordrecht, The Netherlands, pp 21–44.
Janssen A, Sabelis MW & Bruin J (2002) Evolution of herbivore-induced plant volatiles. Oikos 97:134–138.
Kant MR, Jonckheere W, Knegt B, Lemos F, Liu J, Schimmel BCJ, Villarroel CA, Ataide LMS, Dermauw W, Glas JJ, Egas M, Janssen A, Van Leeuwen T, Schuurink RC, Sabelis MW & Alba JM (2015) Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Annals of Botany 115:1015–1051.
Lemos F, Bernardo A, Dias C, Sarmento R, Pallini A, Venzon M & Janssen A (2015) Breaking and entering: predators invade the shelter of their prey and gain protection. Experimental and Applied Acarology 67:247–257.
van Maanen R, Vila E, Sabelis MW & Janssen A (2010) Biological control of broad mites (Polyphagotarsonemus latus) with the generalist predator Amblyseius swirskii. Experimental & Applied Acarology 52:29–34.
Magalhães S, Fayard J, Janssen A, Carbonell D & Olivieri I (2007) Adaptation in a spider mite population after long-term evolution on a single host plant. Journal of Evolutionary Biology 20:2016–2027.
Magalhães S, Janssen A, Hanna R & Sabelis MW (2002) Flexible antipredator behaviour in herbivorous mites through vertical migration in a plant. Oecologia 132:143–149.
Magalhães S, Janssen A, Montserrat M & Sabelis MW (2005) Prey attack and predators defend: counterattacking prey trigger parental care in predators. Proceedings of the Royal Society of London Series B-Biological Sciences 272:1929–1933.
Marques RV, Sarmento RA, Lemos F, Pedro-Neto M, Sabelis MW, Venzon M, Pallini A & Janssen A (2015) Active prey mixing as an explanation for polyphagy in predatory arthropods: synergistic dietary effects on egg production despite a behavioural cost. Functional Ecology 29:1317–1324.
Matos CHC, Pallini A, Chaves FF, Schroereder JH & Janssen A (2006) Do domatia mediate mutualistic interactions between coffee plants and predatory mites? Entomologia Experimentalis Et Applicata 118:185–192.
Meng R-X, Janssen A, Nomikou M, Zhang Q-W & Sabelis MW (2006) Previous and present diets of mite predators affect antipredator behaviour of whitefly prey. Experimental and Applied Acarology 38:113–124.
Messelink GJ & Janssen A (2014) Increased control of thrips and aphids in greenhouses with two species of generalist predatory bugs involved in intraguild predation. Biological Control 79:1–7.
Messelink GJ, van Maanen R, van Steenpaal SEF & Janssen A (2008) Biological control of thrips and whiteflies by a shared predator: two pests are better than one. Biological Control 44:372–379.
Montserrat M, Magalhaes S, Sabelis MW, de Roos AM & Janssen A (2008) Patterns of exclusion in an intraguild predator-prey system depend on initial conditions. Journal of Animal Ecology 77:624–630.
Montserrat M, Magalhaes S, Sabelis MW, de Roos AM & Janssen A (2012) Invasion success in communities with reciprocal intraguild predation depends on the stage structure of the resident population. Oikos 121:67–76.
Muñoz-Cárdenas K, Ersin F, Pijnakker J, Houten Y van, Hoogerbrugge H, Leman A, Pappas ML, Duarte MVA, Messelink GJ, Sabelis MW & Janssen A (2017) Supplying high-quality alternative prey in the litter increases control of an above-ground plant pest by a generalist predator. Biological Control 105:19–26.
Muñoz-Cárdenas K, Fuentes LS, Cantor RF, Rodríguez CD, Janssen A & Sabelis MW (2014) Generalist red velvet mite predator (Balaustium sp.) performs better on a mixed diet. Experimental and Applied Acarology 62:19–32.
van Munster M, Janssen A, Clerivet A & van den Heuvel J (2005) Can plants use an entomopathogenic virus as a defense against herbivores? Oecologia 143:396–401.
Nomikou M, Janssen A & Sabelis MW (2003) Herbivore host plant selection: whitefly learns to avoid host plants that harbour predators of her offspring. Oecologia 136:484–488.
Nomikou M, Janssen A, Schraag R & Sabelis MW (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Experimental and Applied Acarology 25:271–291.
Nomikou M, Janssen A, Schraag R & Sabelis MW (2002) Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Experimental and Applied Acarology 27:57–68.
de Oliveira EF, Pallini A & Janssen A (2016) Herbivores with similar feeding modes interact through the induction of different plant responses. Oecologia 180:1–10.
Pallini A, Janssen A & Sabelis MW (1998) Predators induce interspecific herbivore competition for food in refuge space. Ecology Letters 1:171–177.
Polis GA & Holt RD (1992) Intraguild predation - the dynamics of complex trophic interactions. Trends in Ecology & Evolution 7:151–154.
Ramakers PJM (1980) Biological control of Thrips tabaci (Thysanoptera: Thripidae) with Amblyseius spp. (Acari: Phytoseiidae). Bulletin SROP/WPRS 1980:203–207.
Rezende MQ, Venzon M, Perez AL, Cardoso IM & Janssen A (2014) Extrafloral nectaries of associated trees can enhance natural pest control. Agriculture, Ecosystems & Environment 188:198–203.
van Rijn PCJ, van Houten YM & Sabelis MW (2002) How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology 83:2664–2679.
Rodríguez-Cruz FA, Janssen A, Pallini A, Duarte MVA, Pinto CMF & Venzon M (2017) Two predatory mite species as potential control agents of broad mites. BioControl 62:505–513.
Sabelis MW, van Baalen M, Bakker FM, Bruin J, Drukker B, Egas M, Janssen A, Lesna I, Pels B, van Rijn PCJ & Scutareanu P (1999) The evolution of direct and indirect plant defence against herbivorous arthropods. Herbivores: Between Plants and Predators. (ed by H Olff, VK Brown & RH Drent) Blackwell, pp 109–166.
Sarmento RA, Lemos F, Bleeker PM, Schuurink RC, Pallini A, Oliveira MGA, Lima ER, Kant M, Sabelis MW & Janssen A (2011) A herbivore that manipulates plant defence. Ecology Letters 14:229–236.
da Silva FR, de Moraes GJ, Lesna I, Sato Y, Vasquez C, Hanna R, Sabelis MW & Janssen A (2016) Size of predatory mites and refuge entrance determine success of biological control of the coconut mite. BioControl 61:681–689.
Venzon M, Janssen A, Pallini A & Sabelis MW (2000) Diet of a polyphagous arthropod predator affects refuge seeking of its thrips prey. Animal Behaviour 60:369–375.
Zhang NX, Messelink GJ, Alba JM, Schuurink RC, Kant MR & Janssen A (2018) Phytophagy of omnivorous predator Macrolophus pygmaeus affects performance of herbivores through induced plant defences. Oecologia 186:101–113.
Deere, J.A., Beretta, G.M., Rijn, P.C.J. van, Messelink, G.J., Leman, A., Janssen, A., 2024. Does alternative food for predatory arthropods improve biological pest control? A meta-analysis. Biol Contr 198, 105605. https://doi.org/10.1016/j.biocontrol.2024.105605
Choh, Y., Janssen, A., 2024. Host egg volatiles are involved in brood parasitism in predatory mites. Ecol Entomol. https://doi.org/10.1111/een.13376
Cardoso, A.C., Marcossi, Í., Fonseca, M.M., Kalile, M.O., Francesco, L.S., Pallini, A., Groot, T.V.M., Janssen, A., 2024. A predatory mite as potential biological control agent of Bemisia tabaci on tomato plants. J Pest Sci. https://doi.org/10.1007/s10340-024-01809-7
Marcossi, Í., Francesco, L.S., Fonseca, M.M., Pallini, A., Groot, T., De Vis, R., Janssen, A., 2024. Predatory mites as potential biological control agents for tomato russet mite and powdery mildew on tomato. J Pest Sci. https://doi.org/10.1007/s10340-024-01802-0
Beretta, G.M., Zandbergen, L., Deere, J.A., Messelink, G.J., Cárdenas, K.M., Janssen, A., 2024. Predator-prey interactions: How thrips avoid predation. Biol Contr 188: 105437. https://doi.org/10.1016/j.biocontrol.2023.105437
Choh, Y., Janssen, A., 2024. Sister predatory mites collectively protect their eggs against predators. Oecol. 204: 653-660. https://doi.org/10.1007/s00442-024-05521-2
Deere, J.A., Janssen, A., Furlong, M.J., Bonsall, M.B., 2023. Editorial: Integrating models into practice: the role of modelling in biocontrol and integrated pest management. Front Ecol Evol 11: 1243260. https://doi.org/10.3389/fevo.2023.1243260
Kalile, M.O., Cardoso, A.C., Pallini, A., Fonseca, M.M., Ferreira-Junior, T.A., Janssen, A., 2023. A predatory mite that suppresses Diaphorina citri populations on plants with pollen and oviposition sites. Entomol. Exper. Appl. https://doi.org/10.1111/eea.13326
Choh, Y., Janssen, A., 2023. A tiny cuckoo: Risk-dependent interspecific brood parasitism in a predatory mite. Funct. Ecol. 37:1594–1603. https://doi.org/10.1111/1365-2435.14332
Dias, C.R., Cardoso, A.C., Kant, M.R., Mencalha, J., Bernardo, A.M.G., da Silveira, M.C.A.C., Sarmento, R.A., Venzon, M., Pallini, A., Janssen, A., 2023. Plant defences and spider-mite web affect host plant choice and performance of the whitefly Bemisia tabaci. J. Pest Sci. 96: 499-508. https://doi.org/10.1007/s10340-022-01516-1
Lemos, F., Bajda, S., Duarte, M.V.A., Alba, J.M., Van Leeuwen, T., Pallini, A., Sabelis, M.W., Janssen, A., 2023. Imperfect diet choice reduces the performance of a predatory mite. Oecologia. https://doi.org/10.1007/s00442-023-05359-0
Legarrea, S., Janssen, A., Dong, L., Glas, J.J., van Houten, Y.M., Scala, A., Kant, M.R., 2022. Enhanced top-down control of herbivore population growth on plants with impaired defences. Funct. Ecol. 36: 2859-2872. https://doi.org/10.1111/1365-2435.14175
Dias, C.R., Ataíde, L.M.S., Meijer, T.T., Venzon, M., Pallini, A., Janssen, A., 2022. Phytophagous mite performance on intact plants and leaf discs with different defence levels. Entomol. Exper. Appl. 170: 941-947. https://doi.org/10.1111/eea.13227
Beretta, G.M., Deere, J.A., Messelink, G.J., Muñoz-Cárdenas, K., Janssen, A., 2022. Review: Predatory soil mites as biocontrol agents of above- and below-ground plant pests. Exper. Appl. Acarol. 87: 143–162. https://doi.org/10.1007/s10493-022-00723-w
Kalile, M.O., Janssen, A., Fancelli, M., Magalhães, D.G., Cardoso, A.C., Rosa, M.S., Ledo, C.A., Ragni, M., 2022. UV light attracts Diaphorina citri and its parasitoid. Biol. Contr. 170: 104928. https://doi.org/10.1016/j.biocontrol.2022.104928
Paz-Neto, A. de A., Calvet, É.C., Melo, J.W. da S., de Lima, D.B., Gondim, M.G.C., Janssen, A., 2022. Mite damage provides refuges and affects preference and performance of a subsequent herbivorous moth. J. Appl. Entomol. 146: 930-941. 10.1111/jen.13013
Revynthi, A.M., Verkleij, D., Janssen, A., Egas, M. 2022, Artificial selection for timing of dispersal in predatory mites yields lines that differ in prey exploitation strategies. Ecol. Evol. 12:e8760. https://doi.org/10.1002/ece3.8760
Janssen, A., Fonseca, M.M., Marcossi, I., Kalile, M.O., Cardoso, A.C., Walerius, A.H., Hanel, A., Marques, V., Ferla, J.J., Farias, V., Carbajal, P.A.F., Pallini, A., Nachman, G. 2022. Estimating intrinsic growth rates of arthropods from partial life tables using predatory mites as examples. Exper. Appl. Acarol. https://doi.org/10.1007/s10493-022-00701-2
Zhang, N.X., Andringa, J., Brouwer, J., Alba, J.M., Kortbeek, R.W.J., Messelink, G.J., Janssen, A. 2022. The omnivorous predator Macrolophus pygmaeus induces production of plant volatiles that attract a specialist predator. J. Pest Sci. 95: 1343–1355. https://doi.org/10.1007/s10340-021-01463-3
Marques, R.V., Sarmento, R.A., Pallini, A., Oliveira, A.G., Ferreria, D.E.S., Janssen, A. 2021. Benefit of actively mixing prey in a plant-inhabiting predatory mite. Ecol. Entomol. 47: 11-17. https://doi.org/10.1111/een.13085
Rezende, M.Q., Venzon, M., dos Santos, P.S., Cardoso, I.M., Janssen, A. 2021 Extrafloral nectary-bearing leguminous trees enhance pest control and increase fruit weight in associated coffee plants. Agric. Ecosyst. Environ. 319: 107538. https://doi.org/10.1016/j.agee.2021.107538
Messelink, G.J., Lambion, J., Janssen, A., van Rijn, P.C.J. 2021. Biodiversity in and around greenhouses: Benefits and potential risks for pest management. Insects 12: 933. https://doi.org/10.3390/insects12100933
Janssen, A., van Rijn, P.C.J. 2021 Pesticides do not significantly reduce arthropod pest densities in the presence of natural enemies. Ecol. Lett. 24: 2010-2024. https://doi.org/10.1111/ele.13819
Zanardo, L.G., Trindade, T.A., Mar, T.B., et al (2021) Experimental evolution of cowpea mild mottle virus reveals recombination-driven reduction in virulence accompanied by increases in diversity and viral fitness. Virus Res. 198389. https://doi.org/10.1016/j.virusres.2021.198389
Saitoh. F., Janssen, A., Choh, Y. 2021. Predatory mites protect own eggs against predators. Entomol. Exper. Appl. 169: 501–507. https://doi.org/10.1111/eea.13013
Anjos, D.V., Tena, A., Torezan-Silingardi, H.M., Pekas, A., Janssen, A. 2021. Ants affect citrus pests and their natural enemies in contrasting ways. Biol. Contr. 158:104611. https://doi.org/10.1016/j.biocontrol.2021.104611
Kalile, M.O., Cardoso, A.C. , Pallini, A., Fonseca, M.M., Elliot, S.L., Fialho, S.L., da S. Carvalho, T., Janssen, A., 2021. A predatory mite as potential biological control agent of Diaphorina citri. BioContr. 66: 237-248 https://doi.org/10.1007/s10526-020-10061-8.
Revynthi, A.M., van Pol, K.E., Janssen, A., Egas, M.E., 2020. Males cannibalise and females disperse in the predatory mite Phytoseiulus persimilis. Exper. Appl. Acarol. 82: 185-198. https://doi.org/10.1007/s10493-020-00552-9
Godinho, D.P., Janssen, A., Li, D., Cruz, C., Magalhães, S., 2020. The distribution of herbivores between leaves matches their performance only in the absence of competitors. Ecol. Evol. 10: 8405–8415. https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.6547
Marcossi, Í., Fonseca, M.M., Carbajal, P.A.F., Cardoso, A., Pallini, A., Janssen, A., 2020. High-quality alternative food reduces cannibalism in the predatory mite Amblyseius herbicolus (Acari: Phytoseiidae). Exper. Appl. Acarol. 81: 189-200. https://doi.org/10.1007/s10493-020-00500-7
Saitoh, F., Janssen, A., Choh, Y., 2020. The use of volatile cues in recognition of kin eggs by predatory mites. Ecol. Entomol. 45: 1220–1223. https://doi.org/10.1111/een.12872
Paz Neto, A.A., Melo, J.W.S., Lima, D.B., Gondim Junior, M.G.C., Janssen, A., 2020. Field distribution patterns of pests are asymmetrically affected by the presence of other herbivores. Bull. Entomol. Res. 1–9. https://doi.org/10.1017/S0007485320000103
Fonseca, M.M., Pallini, A., Marques, P.H., Lima, E., Janssen, A., 2020. Compatibility of two predator species for biological control of the two-spotted spider mite. Exper. Appl. Acarol. 80: 409-422. http://link.springer.com/article/10.1007/s10493-020-00472-8
Leman, A., Ingegno, B.L., Tavella, L., Janssen, A., Messelink, G.J., 2020. The omnivorous predator Macrolophus pygmaeus controls both greenhouse whitefly and poinsettia thrips in gerbera. Insect Sci. 27: 510-518. https://doi.org/10.1111/1744-7917.12655
de Oliveira, C.M., Pallini, A., Bernardo, A.M.G., Veiga, V.R., de Britto, L.A.R., Venzon, M., de Lima, E.R., Janssen, A., 2019. Associative learning in immature lacewings (Ceraeochrysa cubana (Hagen)). Entomol. Exper. Appl. 167: 775–783. https://onlinelibrary.wiley.com/doi/epdf/10.1111/eea.12821
Zhang, N.X., Messelink, G.J., Verdonkschot, S., Janssen, A., 2019. Plant feeding by an omnivorous predator affects plant phenology and omnivore performance. Biol. Contr. 135: 66-72.https://doi.org/10.1016/j.biocontrol.2019.05.006
Zhang, N.X. van Wieringen, D., Messelink, G.J., Janssen, A. 2019. Herbivores avoid host plants previously exposed to their omnivorous predator Macrolophus pygmaeus. J. Pest Sci. 92: 737–745. https://doi.org/10.1007/s10340-018-1036-3.
de Oliveira, E.F., Pallini, A., Janssen, A., 2019. Herbivore performance and plant defence after sequential attacks by inducing and suppressing herbivores. Insect Sci. 26: 108-118. https://onlinelibrary.wiley.com/doi/epdf/10.1111/1744-7917.12499
Revynthi, A.M., Egas, M., Janssen, A., Sabelis, M.W., 2018. Prey exploitation and dispersal strategies vary among natural populations of a predatory mite. Ecol. Evol. 8: 10384–10394. https://onlinelibrary.wiley.com/doi/pdf/10.1002/ece3.4446
Fonseca, M.M., Pallini, A., Lima, E., Janssen, A. 2018 Ontogenetic stage-specific reciprocal intraguild predation. Oecologia188: 743–751. https://doi.org/10.1007/s00442-018-4256-6
Marques, R.V., Sarmento, R.A., Oliveira, A.G., Rodrigues, D., Venzon, M., Pedro-Neto, M., Pallini, A., Janssen, A., 2018. Reciprocal intraguild predation and predator coexistence. Ecol. Evol. 8: 6952–6964. https://doi.org/10.1002/ece3.4211
Revynthi, A.M., Janssen, A., Egas, M., 2018. Gender-specific differences in cannibalism between a laboratory strain and a field strain of a predatory mite. Exper. Appl. Acarol. 74: 239–247. https://doi.org/10.1007/s10493-018-0232-4
De Souza, M.E.P., Cardoso, I.M., De Carvalho, A.M.X., Lopes, A.P., Jucksch, I., Janssen, A. 2018. Rock powder can improve vermicompost chemical properties and plant nutrition: an on-farm experiment. Comm. Soil Sci. Plant Nutr. 49: 1-12. https://doi.org/10.1080/00103624.2017.1418372
Zhang, N.X., Messelink, G.J., Alba, J.M., Schuurink, R.C., Kant, M.R., Janssen, A., 2018. Phytophagy of omnivorous predator Macrolophus pygmaeus affects performance of herbivores through induced plant defences. Oecologia 186: 101–113. https://doi.org/10.1007/s00442-017-4000-7
Fonseca, M.M., Lima, E., Lemos, F., Venzon, M., Janssen, A., 2017. Non-crop plant to attract and conserve an aphid predator (Coleoptera: Coccinellidae) in tomato. Biol. Contr. 115: 129–134. https://doi.org/10.1016/j.biocontrol.2017.10.005
Fonseca, M.M., Montserrat, M., Guzmán, C., Torres-Campos, I., Pallini, A., Janssen, A., 2017. How to evaluate the potential occurrence of intraguild predation. Exper. Appl. Acarol. 72: 103–114 . doi:10.1007/s10493-017-0142-x
Rodríguez-Cruz, F.A., Janssen, A., Pallini, A., Duarte, M.V.A., Pinto, C.M.F., Venzon, M., 2017. Two predatory mite species as potential control agents of broad mites. BioControl 62: 505-513. https://link.springer.com/article/10.1007/s10526-017-9813-0
Choh, Y., Sabelis, M.W., Janssen, A., 2017. Predatory interactions between prey affect patch selection by predators. Behav. Ecol. Sociobiol. 71: 66. http://rdcu.be/p8AD
Grosman, A.H., Holtz, A.M., Pallini, A., Sabelis, M.W., Janssen, A., 2017. Parasitoids follow herbivorous insects to a novel host plant, generalist predators less so. Entomol. Exper. Appl. 162: 261-271. http://onlinelibrary.wiley.com/doi/10.1111/eea.12545/epdf
Bernardo, A.M.G., de Oliveira, C.M., Oliveira, R.A., Vacacela, H.E., Venzon, M., Pallini, A., Janssen, A., 2017. Performance of Orius insidiosus on alternative foods. J. Appl.Entomol. 141: 702-707. http://onlinelibrary.wiley.com/doi/10.1111/jen.12390/epdf
Muñoz-Cárdenas, K., Ersin, F., Pijnakker, J., Houten, Y. van, Hoogerbrugge, H., Leman, A., Pappas, M.L., Duarte, M.V.A., Messelink, G.J., Sabelis, M.W., Janssen, A., 2017. Supplying high-quality alternative prey in the litter increases control of an above-ground plant pest by a generalist predator. Biol. Contr. 105, 19–26. doi:http://dx.doi.org/10.1016/j.biocontrol.2016.11.004
Lima, D.B., Oliveira, H.K.V., Melo, J.W.S., Gondim, M.G.C., Sabelis, M.W., Pallini, A., Janssen, A., 2017. Predator performance is impaired by the presence of a second prey species. Bull. Entomol. Res. 107: 313–321. doi:10.1017/S0007485316000900
da Silva, F.R., de Moraes, G.J., Lesna, I., Sato, Y., Vasquez, C., Hanna, R., Sabelis, M.W., Janssen, A., 2016. Size of predatory mites and refuge entrance determine success of biological control of the coconut mite. BioControl 61: 681-689. http://link.springer.com/article/10.1007/s10526-016-9751-2
Messelink, G.J., Vijverberg, R., Leman, A., Janssen, A., 2016. Biological control of mealybugs with lacewing larvae is affected by the presence and type of supplemental prey. BioControl 61: 555-565. http://link.springer.com/article/10.1007/s10526-016-9739-y
Dias, C.R., Bernardo, A.M.G., Mencalha, J., Freitas, C.W.C., Sarmento, R.A., Pallini, A., Janssen, A., 2016. Antipredator behaviours of a spider mite in response to cues of dangerous and harmless predators. Exper. Appl. Acarol. 69: 263–276. http://link.springer.com/article/10.1007/s10493-016-0042-5
de Oliveira, E.F., Pallini, A., Janssen, A. 2016. Herbivores with similar feeding modes interact through the induction of different plant responses. Oecologia 180: 1-10. http://link.springer.com/article/10.1007/s00442-015-3344-0
Godinho, D.P., Janssen, A., Dias, T., Cruz, C., Magalhães, S., 2016. Down-regulation of plant defence in a resident spider mite species and its effect upon con-and heterospecifics. Oecologia 180: 161–167. http://link.springer.com/article/10.1007/s00442-015-3434-z
Grosman, A.H., Molina-Rugama, A.J., Mendes-Dias, R., Sabelis, M.W., Menken, S.B.J., Pallini, A., Breeuwer, J.A.J., Janssen, A., 2015. No adaptation of a herbivore to a novel host but loss of adaptation to its native host. Sci. Rep. 5:16211. DOI: 10.1038/srep16211. http://www.nature.com/articles/srep16211
Choh, Y., Sabelis, M.W., Janssen, A., 2015. Distribution and oviposition site selection by predatory mites in the presence of intraguild predators. Exper. Appl. Acarol. 67: 477-491. DOI 10.1007/s10493-015-9970-8 http://link.springer.com/article/10.1007/s10493-015-9970-8
Duarte, M.V.A., Venzon, M., de S. Bittencourt, M.C., Rodríguez-Cruz, F.A., Pallini, A., Janssen, A. 2015. Alternative food promotes broad mite control on chilli pepper plants. BioControl 60: 817-825. http://link.springer.com/article/10.1007/s10526-015-9688-x
Lemos, F., Bernardo, A., Dias, C., Sarmento, R.A., Pallini, A., Venzon, M., Janssen, A. 2015. Breaking and entering: predators invade the shelter of their prey and gain protection. Exper. Appl. Acarol. 67: 247–257. http://link.springer.com/article/10.1007/s10493-015-9951-y
Kant, M.R., Jonckheere, W., Knegt, B., Lemos, F., Liu, J., Schimmel, B.C.J., Villarroel, C.A., Ataide, L.M.S., Dermauw, W., Glas, J.J., Egas, M., Janssen, A., Van Leeuwen, T., Schuurink, R.C., Sabelis, M.W., Alba, J.M. 2015. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Annals of Botany 115:1015–1051. http://aob.oxfordjournals.org/content/115/7/1015.full.pdf+html
Janssen, A., Sabelis, M. 2015. Alternative food and biological control by generalist predatory mites: the case of Amblyseius swirski. Exper. Appl. Acarol. 65: 413–418. http://link.springer.com/article/10.1007/s10493-015-9901-8
Marques, R.V., Sarmento R.A., Lemos F., Pedro-Neto, M., Sabelis, M.W., Venzon, M., Pallini, A., Janssen. A. 2015. Active prey mixing as an explanation for polyphagy in predatory arthropods: synergistic dietary effects on egg production despite a behavioural cost. Funct. Ecol. 29: 1317–1324. http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.12439/abstract;jsessionid=1D6712930AD3859F3DB16FC0FE33C022.f03t01?wol1URL=/doi/10.1111/1365-2435.12439/abstract®ionCode=NL&identityKey=76dc41ea-8a96-4c39-8c85-fa4e5beba556
van Maanen, R., Broufas, G., de Jong, P., Aguilar-Fenollosa, E., Revynthi, A., Sabelis, M.W., Janssen, A. 2015. Predators marked with chemical cues from one prey have increased attack success on another prey species. Ecol. Entomol. 40: 62–68. http://onlinelibrary.wiley.com/doi/10.1111/een.12159/abstract
Muñoz- Cárdenas, K., Fuentes, L.S., Cantor, R.F., Rodríguez, C.D., Janssen, A., Sabelis, M.W. 2014. Generalist red velvet mite predator ( Balaustium sp.) performs better on a mixed diet. Exper. Appl. Acarol. 62: 19-32. http://link.springer.com/article/10.1007/s10493-013-9727-1
Rezende, M.Q., Venzon, M., Perez, A.L., Cardoso, I.M., Janssen, A. 2014. Extrafloral nectaries of associated trees can enhance natural pest control. Agric. Ecosyst. Environ. 188: 198-203. http://www.sciencedirect.com/science/article/pii/S0167880914001054
Choh, Y., Takabayashi, J., Sabelis, M.W., Janssen, A. 2014. Witnessing predation can affect strength of counterattack in phytoseiids with ontogenetic predator–prey role reversal. Anim. Behav. 93: 9-13. http://www.sciencedirect.com/science/article/pii/S0003347214001699
Messelink, G.J., Janssen, A. 2014. Increased control of thrips and aphids in greenhouses with two species of generalist predatory bugs involved in intraguild predation. Biol. Contr. 79: 1–7. http://www.sciencedirect.com/science/article/pii/S1049964414001480
Janssen, A., Fonseca, J.O., Colares, F., Silva, L., Pedrosa, A.R.P., Lima, E.R., van Wijk, M., Pallini, A., Oliveira, C.M., Sabelis, M.W., Lesna, I. 2014. Time scales of associating food and odor by predator communities in the field. Behav. Ecol. 25: 1123-1130. http://beheco.oxfordjournals.org/content/25/5/1123.abstract?sid=9803d441-33c1-4ce2-8f18-55766fd733c0
de Almeida, A.A., Janssen, A., 2013. Juvenile prey induce antipredator behaviour in adult predators. Exper. Appl. Acarol. 59: 275–282. http://link.springer.com/article/10.1007/s10493-012-9601-6
Messelink, G.J., Bloemhard, C.M.J., Sabelis, M.W., Janssen, A. 2013. Biological control of aphids in the presence of thrips and their enemies. BioContr. 58: 45-55. http://link.springer.com/article/10.1007/s10526-012-9462-2
Sabelis, M.W., Janssen, A., Lesna, I. 2012. Consequences of trait-mediated indirect interactions for biological control of plant pests. In T. Ohgushi, O.J. Schmitz, R.D. Holt (Eds): Interaction Richness and Complexity: Ecological and Evolutionary Aspects of Trait-Mediated Indirect Interactions. Cambridge University Press, Cambridge, UK. arne.janssen@uva.nl
Montserrat, M., Magalhães, S., Sabelis, M.W., de Roos, A.M., Janssen, A. 2012. Invasion success in communities with reciprocal intraguild predation depends on the stage structure of the resident population. Oikos 121: 67–76. http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0706.2011.19369.x/abstract
Messelink, G.J., Sabelis, M.W., Janssen, A. 2012. Generalist predators, food web complexities and biological pest control in greenhouse crops. In M.L. Larramendy, S. Soloneski (Eds) Integrated Pest Management and Pest Control - Current and Future Tactics. InTech, Rijeka, Croatia. pp. 191-214. ISBN: 978-953-51-0050-8. arne.janssen@uva.nl
van der Hammen, T., Montserrat, M., Sabelis, M.W., de Roos, A.M., Janssen, A. 2012. Whether ideal free or not, predatory mites distribute so as to maximize reproduction. Oecologia 169: 95-104. http://link.springer.com/article/10.1007/s00442-011-2190-y
van Maanen, R., Broufas, G., Oveja, M.F., Sabelis, M.W., Janssen, A., 2012. Intraguild predation among plant pests: western flower thrips feed on whitefly crawlers. BioControl 57: 533–539. http://link.springer.com/article/10.1007/s10526-011-9433-z
Meng, R.-X., Sabelis, M.W., Janssen, A., 2012. Limited predator-induced dispersal in whiteflies. PLoS ONE 7(9): e45487. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045487
Choh, Y., Ignacio, M., Sabelis, M.W. & Janssen, A., 2012. Predator-prey role reversals, juvenile experience and adult antipredator behaviour. Sci. Rep. 2, 728. http://www.nature.com/articles/srep00728
van Maanen, R., Messelink, G.J., van Holstein-Saj, R., Sabelis, M.W., Janssen, A. 2012. Prey temporarily escape from predation in the presence of a second prey species. Ecol. Entomol. 37: 529-535. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2311.2012.01395.x/abstract
Sabelis, M.W., Janssen, A., Takabayashi, J., 2011. Can plants evolve stable alliances with the enemies’ enemies? J. Plant Interact. 6: 71-75. http://www.tandfonline.com/doi/full/10.1080/17429145.2011.556262
Sarmento, R.A., Lemos, F., Bleeker, P.M., Schuurink, R.C., Pallini, A., Oliveira, M.G.A., Lima, E.R., Kant, M., Sabelis, M.W., Janssen, A., 2011. A herbivore that manipulates plant defence. Ecol. Lett. 14: 229–236. http://onlinelibrary.wiley.com/doi/10.1111/j.1461-0248.2010.01575.x/full
Messelink, G.J., Bloemhard, C.M.J., Cortes, J.A., Sabelis, M.W., Janssen, A., 2011. Hyperpredation by generalist predatory mites disrupts biological control of aphids by the aphidophagous gall midge Aphidoletes aphidimyza. Biol. Contr. 57: 246–252. http://www.sciencedirect.com/science/article/pii/S1049964411000454
Ferreira, J.A.M., Cunha Dalyson, F.S., Pallini, A., Sabelis, M.W., Janssen, A. 2011. Leaf domatia reduce intraguild predation among predatory mites. Ecol. Entomol. 36: 435-441. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2311.2011.01286.x/abstract
Sarmento, R.A., Lemos, F., Dias, C.R., Kikuchi, W.T., Rodrigues, J.C.P., Pallini, A., Sabelis, M.W., Janssen, A. 2011. A herbivorous mite down-regulates plant defence and produces web to exclude competitors. PLoS ONE 6(8) e23757. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023757
Ferreira, J., Pallini, A., Oliveira, C.L., Sabelis, M.W., Janssen, A., 2010. Leaf domatia do not affect population dynamics of the predatory mite Iphiseiodes zuluagai. Basic Appl. Ecol. 11: 144-152. http://www.sciencedirect.com/science/article/pii/S1439179109001327
Belliure, B., Janssen, A., Sabelis, M.W., 2010. Vector and virus induce plant responses that benefit a non-vector herbivore. Basic Appl. Ecol. 11: 162-169. http://www.sciencedirect.com/science/article/pii/S1439179109001376
Janssen, A., Grosman, A.H., Cordeiro, E.G., de Brito, E.F., Oliveira Fonseca, J., Colares, F., Pallini, A., Lima, E.R., Sabelis, M.W., 2010. Context-dependent fitness effects of behavioral manipulation by a parasitoid. Behav. Ecol. 21: 33-36. http://beheco.oxfordjournals.org/content/21/1/33.abstract?sid=9803d441-33c1-4ce2-8f18-55766fd733c0
Nomikou, M., Sabelis, M.W., Janssen, A, 2010. Pollen subsidies promote whitefly control through the numerical response of predatory mites. BioControl 55: 253 - 260. http://link.springer.com/article/10.1007/s10526-009-9233-x
van der Hammen, T., de Roos, A.M., Sabelis, M.W., Janssen, A., 2010. Order of invasion affects the spatial distribution of reciprocal intraguild predators. Oecologia 163: 79-89. http://link.springer.com/article/10.1007/s00442-010-1575-7
Choh, Y., van der Hammen, T., Sabelis, M.W., Janssen, A., 2010. Cues of intraguild predators affect the distribution of intraguild prey. Oecologia 163: 335–340. http://link.springer.com/article/10.1007/s00442-010-1605-5
Messelink, G., van Maanen, R., van Holstein-Saj, R., Sabelis, M.W., Janssen, A., 2010. Pest species diversity enhances control of spider mites and whiteflies by a generalist phytoseiid predator. BioControl 55: 387 - 398. http://link.springer.com/article/10.1007/s10526-009-9258-1
Lemos, F., Sarmento, R.A., Pallini, A., Dias, C.R., Sabelis, M.W., Janssen, A., 2010. Spider mite web mediates anti-predator behaviour. Exp. Appl. Acarol. 52: 1-10. http://link.springer.com/article/10.1007/s10493-010-9344-1
van Maanen, R., Vila, E., Sabelis, M.W., Janssen, A., 2010. Biological control of broad mites ( Polyphagotarsonemus latus) with the generalist predator Amblyseius swirskii. Exp. Appl. Acarol. 52: 29-34. http://link.springer.com/article/10.1007/s10493-010-9343-2
Cakmak, I., Janssen, A., Sabelis, M.W., Baspinar H., 2009. Biological control of an acarine pest by single and multiple natural enemies. Biol. Contr. 50: 60-65. http://www.sciencedirect.com/science/article/pii/S1049964409000541
Sabelis, M.W., Hanna, R., Onzo, A., Pallini, A., Cakmak, I., Janssen, A., 2009. Multiple predators, intraguild interactions and biological control of a single spider mite species. IOBC Bull. 50: 83-94. arne.janssen@uva.nl
Roth, S., Janssen, A., Sabelis, M.W., 2008. Odour-mediated sexual attraction in nabids (Heteroptera: Nabidae). Eur. J. Entomol. 105: 159-162. http://www.eje.cz/artkey/eje-200801-0022_Odour-mediated_sexual_attraction_in_nabids_Heteroptera_Nabidae.php
Messelink, G., van Maanen, R., van Steenpaal, S., Janssen, A., 2008. Biological control of thrips and whiteflies by a shared predator: Two pests are better than one. Biol. Contr. 44: 372-379. http://www.sciencedirect.com/science/article/pii/S1049964407002514
Messelink, G., Ramakers, P.M.J., Cortez, J.A., Janssen, A., 2008. How to enhance pest control by generalist predatory mites in greenhouse crops. In P.G. Mason, D.R. Gillespie, C. Vincent (Eds.): Proc. 3rd Int. Symp. Biol. Contr. Arthrop. Christchurch, New Zealand, 8-13 February 2009. pp. 309-318. arne.janssen@uva.nl
Montserrat, M., Magalhães, S., Sabelis, M.W., de Roos, A.M., Janssen, A., 2008. Patterns of exclusion in an intraguild predator-prey system depend on initial conditions. J. Anim. Ecol. 77: 624-630. http://www.onlinelibrary.wiley.com/doi/10.1111/j.1365-2656.2008.01363.x/abstract
Ferreira, J.A.M, Eshuis, B., Janssen, A., Sabelis, M.W., 2008. Domatia reduce larval cannibalism in predatory mites. Ecol. Entomol. 33: 374-379. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2311.2007.00970.x/abstract
Grosman, A.H., Janssen, A., de Brito, E.F., Cordeiro, E.G., Colares, F., Oliveira Fonseca, J., Lima, E.R., Pallini, A., Sabelis, M.W., 2008. Parasitoid increases survival of its pupae by inducing hosts to fight predators. PLoS ONE 3 (6): e2276. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002276
Belliure, B., Janssen, A., Sabelis, M.W., 2008. Herbivore benefits from vectoring plant virus through reduction of period of vulnerability to predation. Oecologia 156: 797–806. http://link.springer.com/article/10.1007/s00442-008-1027-9
Sabelis, M.W., Janssen, A. Lesna, I. Aratchige, N.S. Nomikou M. & van Rijn, P.C.J. 2008. Developments in the use of predatory mites for biological pest control. IOBC/WPRS Bull. 12: 187-199. arne.janssen@uva.nl
van Maanen, R. and A. Janssen, 2008. Prey preference of the generalist predator Amblyseius swirskii. IOBC/WPRS Bull. 32: 241-244. arne.janssen@uva.nl
Montserrat, M., Bas, C., Magalhães, S., Sabelis, M.W., de Roos, A.M., Janssen, A., 2007. Predators induce egg retention in prey. Oecologia 150: 699-705. http://link.springer.com/article/10.1007/s00442-006-0527-8
Oliveira, H., Janssen, A., Pallini, A., Venzon, M., Fadini, M., Duarte, V., 2007. A phytoseiid predator from the tropics as potential biological control agent for the spider mites Tetranychus urticae Koch (Acari: Tetranychidae). Biol. Contr. 42: 105-109. http://www.sciencedirect.com/science/article/pii/S1049964407000953
Sarmento, R.A., Venzon, M., Pallini, A., Oliveira, E.E., Janssen, A., 2007. Use of odours by Cycloneda sanguinea to assess patch quality. Entomol. Exp. Appl. 124: 313-318. http://onlinelibrary.wiley.com/doi/10.1111/j.1570-7458.2007.00587.x/abstract
Magalhães, S., Fayard, J., Janssen, A., Carbonell, D., Olivieri, I., 2007. Adaptation in a spider mite population after long-term evolution on a single host plant. J. Evol. Biol. 20: 2016-2027. http://onlinelibrary.wiley.com/doi/10.1111/j.1420-9101.2007.01365.x/full
Janssen, A., Sabelis, M.W., Magalhães, S., Montserrat, M., & van der Hammen, T., 2007. Habitat structure affects intraguild predation. Ecology 88: 2713-2719. http://onlinelibrary.wiley.com/doi/10.1890/06-1408.1/abstract
Sabelis, M.W., Takabayashi, J., Janssen, A., Kant, M., Wijk, M. van, Sznajder, B.A., Aratchige, N.S., Lesna, I.K.A., Belliure, B. & Schuurink, R.C., 2007. Ecology meets plant physiology: herbivore-induced plant responses and their indirect effects on arthropod communities. In T. Ohgushi, T.P. Craig & P.W. Price (Eds.): Ecological Communities: Plant Mediation in Indirect Interaction Webs. Cambridge: Cambridge University Press. pp. 188-217. arne.janssen@uva.nl
Takabayashi, J., Sabelis, M.W., Janssen, A., Shiojiri, K., van Wijk, M., 2006. Can plants betray the presence of multiple herbivore species to predators and parasitoids? The role of learning in phytochemical networks. Ecol. Res. 21: 3-8. http://link.springer.com/article/10.1007/s11284-005-0129-7
Çakmak, I., Janssen, A., Sabelis, M.W., 2006. Intraguild interactions between the predatory mites Neoseiulus californicus and Phytoseiulus persimilis. Exp. Appl. Acarol. 28: 33-46. http://link.springer.com/article/10.1007/s10493-005-6247-7
Meng, R., Janssen, A., Nomikou, M., Zhang, Q.W., Sabelis, M.W. 2006. Previous and present diets of mite predators affect antipredator behaviour of whitefly prey. Exp. Appl. Acarol. 38: 113-124. http://link.springer.com/article/10.1007/s10493-006-0010-6
Matos, C.H.C, Pallini, A., Chaves, F.F., Schoereder, J.H., Janssen, A., 2006. Do domatia mediate mutualistic interactions between coffee plants and predatory mites? Entomol. Exp. Appl. 118: 185-192. http://onlinelibrary.wiley.com/doi/10.1111/j.1570-7458.2006.00381.x/abstract
de Bruijn, P.J.A., Egas, M., Janssen, A., Sabelis, M.W., 2006. Pheromone-induced priming of a defensive response in Western flower thrips. J. Chem. Ecol. 32: 1599-1603. http://link.springer.com/article/10.1007/s10886-006-9092-1
Montserrat, M., Janssen, A., Magalhães, S., Sabelis, M.W., 2006. To be an intraguild predator or a cannibal: Is prey quality decisive? Ecol. Entomol. 31: 430-436. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2311.2006.00804.x/abstract
Janssen, A., Montserrat, M., HilleRisLambers, R., de Roos, A.M., Pallini, A., Sabelis, M.W., 2006. Intraguild predation usually does not disrupt biological control. In Trophic and guild interactions in biological control (eds J. Brodeur & G. Boivin), Vol. 3, pp. 21 - 44. Springer, Dordrecht, The Netherlands. arne.janssen@uva.nl
Sabelis, M.W., Janssen, A., Diekmann, O., Jansen, V.A.A., van Gool, E., van Baalen, M., 2005. Global persistence despite local extinction in acarine predator-prey systems: Lessons from experimental and mathematical exercises. Adv. Ecol. Res. 17: Population Dynamics and Laboratory Ecology, pp. 183-220. arne.janssen@uva.nl
Belliure, B, Janssen, A., Maris, P.C., Peters, D., Sabelis, M.W., 2005. Herbivore arthropods benefit from vectoring plant-viruses. Ecol. Lett. 8: 70-79. http://onlinelibrary.wiley.com/doi/10.1111/j.1461-0248.2004.00699.x/full
Magalhães, S., Tudorache, C., Montserrat, M., van Maanen, R., Sabelis, M.W., Janssen, A., 2005. Diet of intraguild predators affects antipredator behaviour in intraguild prey. Behav. Ecol. 16: 364-370. http://beheco.oxfordjournals.org/content/16/2/364.abstract?sid=9803d441-33c1-4ce2-8f18-55766fd733c0
van Munster, M., Janssen, A., Clérivet, A., van den Heuvel, J., 2005. Can plants use an entomopathogenic virus as defense against herbivores? Oecologia 143: 396-401. http://link.springer.com/article/10.1007/s00442-004-1818-6
Hountondji, F.C.C., Sabelis, M.W., Hanna, R., Janssen, A., 2005. Herbivore-induced plant volatiles trigger sporulation in entomopathogenic fungi: the case of Neozygites tanajoae infecting the cassava green mite. J. Chem. Ecol. 31: 1003-1021. http://link.springer.com/article/10.1007/s10886-005-4244-2
Grosman, A, van Breemen, M., Holtz, A., Pallini, A., Molina Rugama, A., Pengel, H., Venzon, M., Sabelis, M.W., Janssen, A. 2005. Searching behaviour of an omnivorous predator for novel and native host plants of its herbivores: a study on arthropod colonization of eucalyptus in Brazil. Entomol. Exp. Appl. 116: 135-142. http://onlinelibrary.wiley.com/doi/10.1111/j.1570-7458.2005.00307.x/abstract
Groot, T.V.M., Janssen, A., Pallini, A., Breeuwer, J.A.J. 2005. Adaptation in the asexual false spider mite Brevipalpus phoenicis: evidence for frozen niche variation. Exp. Appl. Acarol. 36: 165-176. http://link.springer.com/article/10.1007/s10493-005-3360-6#page-1
Magalhães, S., Janssen, A., Montserrat, M., Sabelis, M.W. 2005. Prey attack and predators defend: counterattacking prey trigger parental care in predators. P. Roy. Soc. B. 272: 1929-1933. http://rspb.royalsocietypublishing.org/content/272/1575/1929.short
Magalhães, S., Janssen, A., Montserrat, M., Sabelis, M.W., 2005. Host plant species modifies the diet of an omnivore feeding on three trophic levels. Oikos 111: 47-56. http://onlinelibrary.wiley.com/doi/10.1111/j.0030-1299.2005.13897.x/abstract
Nomikou, M., Meng, R., Schraag, R., Sabelis, M.W., Janssen, A. 2005. How predatory mites find plants with whitefly prey. Exp. Appl. Acarol. 36: 263-275. http://link.springer.com/article/10.1007/s10493-005-6650-0
Sabelis, M.W., van Rijn, P.C.J., Janssen, A., 2005. Fitness consequences of food-for-protection strategies in plants. In Wäckers, F.L., van Rijn, P.C.J., Bruin, J. (eds): Plant-provided food for carnivorous insects: A protective mutualism and its applications. Cambridge University Press, Cambridge, UK. pp. 109-134. arne.janssen@uva.nl
Nomikou, M., Janssen, A., Schraag, R., Sabelis, M.W., 2004. Vulnerability of Bemisia tabaci immatures to phytoseiid predators: Consequences for oviposition and influence of alternative food. Entomol. Exp. Appl. 110: 95-102. http://onlinelibrary.wiley.com/doi/10.1111/j.0013-8703.2004.00114.x/abstract
Onzo, A., Hanna, R., Janssen, A., Sabelis, M.W., 2004. Interactions between two Neotropical phytoseiid predators on cassava plants and consequences for biological control of a shared spider mite prey: a screenhouse evaluation. Biocontr. Sci. Techn. 14: 63-76. http://www.tandfonline.com/doi/abs/10.1080/09583150310001638548#.VxAjzHq689Y
Janssen, A., Sabelis, M.W., 2004. Food web interactions and ecosystem processes. In Weisser, W.W., Siemann, E. (eds.): Insects and Ecosystem Function. Ecological Studies 173. Springer, Heidelberg. pp. 175-191. arne.janssen@uva.nl
Nomikou, M., Janssen, A., Sabelis, M.W., 2003. Phytoseiid predators of whiteflies feed and reproduce on non-prey food sources. Exp. Appl. Acarol. 31: 15-26. http://link.springer.com/article/10.1023/B%3AAPPA.0000005142.31959.e8
Nomikou, M., Janssen, A., Sabelis, M.W., 2003. Phytoseiid predator of whitefly feeds on plant tissue. Exp. Appl. Acarol. 31: 27-36. http://link.springer.com/article/10.1023/B%3AAPPA.0000005150.33813.04
Janssen, A., Willemse, E., van der Hammen, T., 2003. Poor host plant quality causes omnivore to consume eggs of its predator. J. Anim. Ecol. 72: 478-483. http://www.onlinelibrary.wiley.com/doi/10.1046/j.1365-2656.2003.00717.x/abstract
Nomikou, M., Janssen, A., Sabelis, M.W., 2003. Herbivore host plant selection: whitefly learns to avoid host plants that harbour predators of her offspring. Oecologia 136: 484-488. http://link.springer.com/article/10.1007/s00442-003-1289-1
Hochberg, M.E., Bertault, G., Poitrineau, K., Janssen, A., 2003. Olfactory orientation of the truffle beetle, Leiodes cinnamomea. Entomol. Exp. Appl. 109: 146-153. http://onlinelibrary.wiley.com/doi/10.1046/j.1570-7458.2003.00099.x/abstract
Nomikou, M., Janssen, A., Schraag, R., Sabelis, M.W., 2002. Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Exp. Appl. Acarol. 27: 57-68. http://link.springer.com/article/10.1023/A:1021559421344
Faraji, F., Janssen, A., Sabelis, M.W., 2002. The benefits of clustering eggs: the role of egg predation and larval cannibalism in a predatory mite. Oecologia 131: 20-26. http://link.springer.com/article/10.1007/s00442-001-0846-8
Venzon, M., Janssen, A., Sabelis, M.W.2 2002. Prey preference and reproductive success of the generalist predator Orius laevigatus. Oikos 97: 116-124. http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2002.970112.x/abstract
Janssen, A., Sabelis, M.W., Bruin, J., 2002. Evolution of herbivore-induced plant volatiles. Oikos 97: 134-138. http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2002.970114.x/abstract
Agrawal, A.A., Janssen, A., Bruin. J., Posthumus, M.A., Sabelis, M.W., 2002. An ecological cost of plant defence: attractiveness of bitter cucumber plants to natural enemies of herbivores. Ecol. Lett. 5: 377-385. http://onlinelibrary.wiley.com/doi/10.1046/j.1461-0248.2002.00325.x/full
Magalhães, S., Janssen, A., Hanna, R., Sabelis, M.W., 2002. Flexible antipredator behaviour in herbivorous mites through vertical migration in a plant. Oecologia 132: 143-149. http://link.springer.com/article/10.1007/s00442-002-0950-4
Janssen, A., Faraji, F., van der Hammen, T., Magalhães, S., Sabelis, M.W., 2002. Interspecific infanticide deters predators. Ecol. Lett. 5: 490-494. http://onlinelibrary.wiley.com/doi/10.1046/j.1461-0248.2002.00349.x/full
Faraji, F., Janssen, A., Sabelis, M.W., 2002. Oviposition patterns in a predatory mite: Avoiding the risk of egg predation caused by prey. Ecol. Entomol. 27: 660-664. http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2311.2002.00456.x/full
Sabelis, M.W., van Baalen, M., Pels, B. Egas, M., Janssen, A., 2002. Evolution of exploitation and defense in tritrophic interactions. In Dieckmann, U., Metz, J.A. Sabelis, M.W., Sigmund, K. (eds): Adaptive dynamics of infectious diseases: In pursuit of virulence management. Cambridge, Cambridge University Press. pp. 297-321. arne.janssen@uva.nl
Nomikou, M., Janssen, A., Schraag, R., Sabelis, M.W., 2001. Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp. Appl. Acarol. 25: 271-291. http://link.springer.com/article/10.1023/A%3A1017976725685
Faraji, F., Janssen, A., Sabelis, M.W., 2001. Predatory mites avoid ovipositing near counter-attacking prey. Exp. Appl. Acarol. 25: 613-623. http://link.springer.com/article/10.1023/A%3A1016100212909
Venzon, M., Janssen, A., Sabelis, M.W., 2001. Prey preference, intraguild predation and population dynamics of an arthropod food web on plants. Exp. Appl. Acarol. 25: 785-808. http://link.springer.com/article/10.1023/A%3A1020443401985
Venzon, M., Pallini, A. Janssen, A. 2001. Interactions mediated by predators in arthropod food webs. Neotrop. Entomol. 30: 1-9. http://www.scielo.br/scielo.php?pid=S1519-566X2001000100002&script=sci_arttext&tlng=es
Sabelis, M.W., Janssen, A., Kant, M.K., 2001. The enemy of my enemy is my ally. Science 291: 2104-2105. http://science.sciencemag.org/content/291/5511/2104.full
Ellner, S.P., McCauley, E., Kendall, B.E., Briggs, C.J., Hosseini, P., Wood, S.N., Janssen, A., Sabelis, M.W., Turchin, P., Nisbet, R.M., Murdoch, W.W., 2001. Habitat structure and population persistence in an experimental community. Nature 412: 538-543. http://www.nature.com/nature/journal/v412/n6846/full/412538a0.html
Faraji, F., Janssen, A., van Rijn, P.C.J., Sabelis, M.W., 2000. Kin recognition by the predatory mite Iphiseius degenerans: discrimination among own, conspecific, and heterospecific eggs. Ecol. Entomol. 25: 147-155. http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2311.2000.00240.x/full
Elliot, S.L., Sabelis, M.W., Janssen, A., van der Geest L.P.S., Beerling, E.A.M., Fransen, J., 2000. Can plants use entomopathogens as bodyguards? Ecol. Lett. 3: 228-235. http://onlinelibrary.wiley.com/doi/10.1046/j.1461-0248.2000.00137.x/full
Venzon, M., Janssen, A., Pallini, A., Sabelis, M.W., 2000. Diet of a polyphagous predator affects refuge-seeking of its prey. Anim. Behav. 60: 369-375. http://www.sciencedirect.com/science/article/pii/S0003347200914830
McCauley, E., Kendall, B.E., Janssen, A., Wood, S., Murdoch, W.W., Hosseini, P., Briggs, C.J., Ellner, S.P., Nisbet, R.M., Sabelis, M.W., Turchin, P. 2000. Inferring colonization processes from population dynamics in spatially-structured predator-prey systems. Ecology 81: 3350–3361. http://onlinelibrary.wiley.com/doi/10.1890/0012-9658%282000%29081[3350:ICPFPD]2.0.CO;2/full
Sabelis, M.W., van Baalen, M., Bruin, J., Egas, M., Jansen, V.A.A., Janssen, A., Pels, B., 1999. The evolution of overexploitation and mutualism in plant-herbivore-predator interactions and its impact on population dynamics. In B.A. Hawkins & H.V. Cornell (Eds.): Theoretical Approaches to Biological Control. Cambridge University Press, pp. 259-282. arne.janssen@uva.nl
Janssen, A., 1999. Plants with spider-mite prey attract more predatory mites than clean plants under greenhouse conditions. Entomol. Exp. Appl. 90: 191-198. http://onlinelibrary.wiley.com/doi/10.1046/j.1570-7458.1999.00438.x/abstract
Sabelis, M.W., Janssen, A., Bruin, J., Bakker, F.M., Drukker, B., Scutareanu, P., van Rijn, P.C.J., 1999. Interactions between arthropod predators and plants: A conspiracy against herbivorous arthropods? In J. Bruin, L.P.S. van der Geest & M.W. Sabelis (Eds): Ecology and Evolution of the Acari. Kluwer Acad. Publ., Dordrecht, The Netherlands. pp. 207-229. arne.janssen@uva.nl
Pallini, A., Janssen, A., Sabelis, M.W., 1999. Do western flower thrips avoid plants infested with spider mites? Interactions between potential competitors. In J. Bruin, L.P.S. van der Geest & M.W. Sabelis (Eds): Ecology and Evolution of the Acari. Kluwer Acad. Publ., Dordrecht, The Netherlands. pp. 375-380. arne.janssen@uva.nl
Janssen, A., Pallini, A., Venzon, M., Sabelis, M.W. 1999. Absence of odour-mediated avoidance of heterospecific competitors by the predatory mite Phytoseiulus persimilis. Entomol. Exp. Appl. 92: 73-82. http://onlinelibrary.wiley.com/doi/10.1046/j.1570-7458.1999.00526.x/abstract
Sabelis, M.W., Janssen, A., Pallini, A., Venzon, M., Bruin, J., Drukker, B., Scutareanu, P., 1999. Behavioural responses of predatory and herbivorous arthropods to induced plant volatiles: From evolutionary ecology to agricultural applications. In A. Agrawal, S. Tuzun, E. Bent (Eds): Induced plant defenses against pathogens and herbivores. American Phytopathological Society, St. Paul, Minnesota, USA. pp. 269-296. arne.janssen@uva.nl
Pallini, A., Janssen, A., Sabelis, M.W., 1999. Spider mites avoid plants with predators. Exp. Appl. Acarol. 23: 803-815. http://link.springer.com/article/10.1023/A%3A1006266232714
Venzon, M., Janssen, A., Sabelis, M.W., 1999. Attraction of a generalist predator towards herbivore-infested plants. Entomol. Exp. Appl. 93: 305-314. http://onlinelibrary.wiley.com/doi/10.1046/j.1570-7458.1999.00591.x/abstract
Janssen, A., Pallini, A., Venzon, M., Sabelis, M.W., 1998. Behaviour and indirect food web interactions among plant inhabiting arthropods. A review. Exp. Appl. Acarol. 22: 497-521. http://link.springer.com/article/10.1023/A%3A1006089924336
Pallini, A., Janssen, A., Sabelis, M.W. 1998. Predators induce interspecific herbivore competition for food in refuge space. Ecol. Lett. 1: 171-177. http://onlinelibrary.wiley.com/doi/10.1046/j.1461-0248.1998.00019.x/full
Sabelis, M.W., van Baalen, M., Bakker, F.M., Bruin, J., Drukker, B., Egas, M., Janssen, A., Lesna, I., Pels, B., van Rijn, P.C.J., Scutareanu, P., 1998. Evolution of direct and indirect plant defence against herbivorous arthropods. In H. Olff, R.H. Drent & V.K. Brown, (Eds): Herbivores: Between Plants and Predators. Blackwell Science, London, pp. 109-166.
Janssen, A. Bruin, J., Jacobs, G., Schraag, R., Sabelis, M.W., 1997. Predators use volatiles to avoid prey patches with conspecifics. J. Anim. Ecol. 66: 223-232. http://www.jstor.org/stable/6024?seq=1#page_scan_tab_contents
Pallini, A., Janssen, A., Sabelis, M.W., 1997. Odour-mediated responses of phytophagous mites to conspecific and heterospecific competitors. Oecologia 110: 179-185. http://link.springer.com/article/10.1007/s004420050147
Janssen, A., van Gool, E., Lingeman, R., Jacas, J., van de Klashorst, G., 1997. Metapopulation dynamics of a persisting predator-prey system in the laboratory: Time series analysis. Exp. Appl. Acarol. 21: 415-430. http://link.springer.com/article/10.1023/A%3A1018479828913
Drukker, B., Janssen, A., Ravensberg, W., Sabelis, M.W., 1997. Improved control capacity of the mite predator Phytoseiulus persimilis (Acari: Phytoseiidae) on tomato. Exp. Appl. Acarol. 21: 507-518. http://link.springer.com/article/10.1023/B:APPA.0000018885.35044.c6
Janssen, A., van Alphen, J.J.M., Sabelis, M.W., Bakker, K., 1995. Specificity of odour-mediated avoidance of competition in Drosophila parasitoids. Behav. Ecol. Sociobiol. 36: 229-235. http://link.springer.com/article/10.1007/BF00165831
Janssen, A., van Alphen, J.J.M., Sabelis, M.W., Bakker, K., 1995. Odour-mediated avoidance of competition in Drosophila parasitoids: The ghost of competition. Oikos 73: 356-366. http://www.jstor.org/stable/3545959?seq=1#page_scan_tab_contents
Sabelis, M.W., Janssen, A., 1994. Evolution of life history patterns in the Phytoseiidae. In M.A. Houck (Ed): Mites: Ecological and Evolutionary Analyses of Life History Patterns. Chapman & Hall, New York. pp. 70-98.
Vet, L.E.M., Datema, A., Janssen, A., Snellen, H., 1994. The relation between clutch size and fitness in a larval-pupal endoparasitoid. Norw. J. Agric. Sci. Supp. 16: 141-145.
Vet, L.E.M., Datema, A., Janssen, A., Snellen, H., 1994. Clutch size in a larval-pupal endoparasitoid: consequences for fitness. J. Anim. Ecol. 63: 807-815. http://www.jstor.org/stable/5258?seq=1#page_scan_tab_contents
Janssen, A., Yaninek, J.S. (Eds), 1993. Biological Control of the Cassava Green Mite. Special Issue Exp. Appl. Acarol. 17. 160 pp.
Janssen, A., Yaninek, J.S.,1993. Cassava green mites: a challenge for experts in biological control. Exp. Appl. Acarol. 17: 1-4. http://link.springer.com/article/10.1007/BF00156940
Janssen, A., Sabelis, M.W., 1992. Phytoseiid life-histories, local predator-prey dynamics, and strategies for control of tetranychid mites. Exp. Appl. Acarol. 14: 233-250. http://link.springer.com/article/10.1007/BF01200566
Janssen, A., van Alphen, J.J.M., Sabelis, M.W., Bakker, K., 1991. Microhabitat selection behaviour of Leptopilina heterotoma changes when odour of competitor is present. Redia 74: 203-210.
van der Hoeven, W.A.D. , Janssen, A., de Boer, R., 1991. Is the allergen level of house dust related to age of the house? Proc. Exp. Appl. Entomol. 2: 35-40. http://nev.nl/pages/publicaties/proceedings/nummers/02/35-40.pdf
Janssen, A. Hofker, C.D., Braun, A.R., Mesa, N., Sabelis, M.W., Bellotti, A.C. ,1990. Preselecting predatory mites for biological control: the use of an olfactometer. B. Entomol. Res. 80: 177-181. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=2362916&fileId=S0007485300013390
Janssen, A., 1989. Optimal host selection by Drosophila parasitoids in the field. Funct. Ecol. 3: 469-479. http://www.jstor.org/stable/2389621?seq=1#page_scan_tab_contents
Janssen, A., Driessen, G., Haan, M. de, Roodbol, N., 1988. The impact of parasitoids on natural populations of temperate woodland Drosophila. Neth. J. Zool. 38: 61-73. arne.janssen@uva.nl
Van Dinh, N., Janssen, A., Sabelis, M.W., 1988. Reproductive success of Amblyseius idaeus and A. anonymus on a diet of two-spotted spider mites. Exp. Appl. Acarol. 4: 41-51. http://link.springer.com/article/10.1007/BF01213840
Van Dinh, N., Sabelis, M.W., Janssen, A., 1988. Influence of humidity and water availability on the survival of Amblyseius idaeus and A. anonymus (Acarinae: Phytoseiidae). Exp. Appl. Acarol. 4: 27-40. http://link.springer.com/article/10.1007/BF01213839
Sabelis, M.W., Janssen, A., Helle, W. (Eds), 1988. Population dynamics of Spider Mites and Predatory Mites. Proc. Europ. Assoc. Acarol. Amsterdam, The Netherlands, 5-10 July 1987. Special Issue Exp. Appl. Acarol. 4: 187-318.
Sabelis, M.W., Janssen, A., Helle, W. (Eds), 1988. Population dynamics of Spider Mites and Predatory Mites. Proc. Europ. Assoc. Acarol. Amsterdam, The Netherlands, 5-10 July 1987. Special Issue Exp. Appl. Acarol. 5: 186-342.
van Alphen, J.J.M., Janssen, A.R.M., 1982. Host selection by Asobara tabida, a larval parasitoid of fruit- inhabiting Drosophila species. Neth. J. Zool. 32 : 194-214. arne.janssen@uva.nl