Ayukawa, Y., Asai, S., Gan, P., Tsushima, A., Ichihashi, Y., Shibata, A., Komatsu, K., Houterman, P. M., Rep, M., Shirasu, K., & Arie, T. (2021). A pair of effectors encoded on a conditionally dispensable chromosome of Fusarium oxysporum suppress host-specific immunity. Communications biology, 4, Article 707. https://doi.org/10.1038/s42003-021-02245-4[details]
van der Does, H. C., Constantin, M. E., Houterman, P. M., Takken, F. L. W., Cornelissen, B. J. C., Haring, M. A., van den Burg, H. A., & Rep, M. (2019). Fusarium oxysporum colonizes the stem of resistant tomato plants, the extent varying with the R-gene present. European Journal of Plant Pathology, 154(1), 55-65. https://doi.org/10.1007/s10658-018-1596-3[details]
Chellappan Biju, V., Fokkens, L., Houterman, P. M., Rep, M., & Cornelissen, B. J. C. (2017). Multiple evolutionary trajectories have led to the emergence of races in Fusarium oxysporum f. sp. lycopersici. Applied and Environmental Microbiology, 83(4), Article e02548-16. Advance online publication. https://doi.org/10.1128/AEM.02548-16[details]
van Dam, P., Fokkens, L., Ayukawa, Y., van der Gragt, M., Ter Horst, A., Brankovics, B., Houterman, P. M., Arie, T., & Rep, M. (2017). A mobile pathogenicity chromosome in Fusarium oxysporum for infection of multiple cucurbit species. Scientific Reports, 7, Article 9042. https://doi.org/10.1038/s41598-017-07995-y[details]
Niehaus, E-M., Münsterkötter, M., Proctor, R. H., Brown, D. W., Sharon, A., Idan, Y., Oren-Young, L., Sieber, C. M., Novák, O., Pěnčík, A., Tarkowská, D., Hromadová, K., Freeman, S., Maymon, M., Elazar, M., Youssef, S. A., El-Shabrawy, E. S. M., Shalaby, A. B. A., Houterman, P., ... Tudzynski, B. (2016). Comparative "Omics" of the Fusarium fujikuroi Species Complex Highlights Differences in Genetic Potential and Metabolite Synthesis. Genome Biology and Evolution, 8(11), 3574-3599. https://doi.org/10.1093/gbe/evw259[details]
Shahi, S., Fokkens, L., Houterman, P. M., & Rep, M. (2016). Suppressor of fusion, a Fusarium oxysporum homolog of Ndt80, is required for nutrient-dependent regulation of anastomosis. Fungal Genetics and Biology, 95, 49-57. Advance online publication. https://doi.org/10.1016/j.fgb.2016.08.005[details]
Gawehns, F., Ma, L., Bruning, O., Houterman, P. M., Boeren, S., Cornelissen, B. J. C., Rep, M., & Takken, F. L. W. (2015). The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection. Frontiers in Plant Science, 6, Article 967. https://doi.org/10.3389/fpls.2015.00967[details]
Ma, L., Houterman, P. M., Gawehns, F., Cao, L., Sillo, F., Richter, H., Clavijo-Ortiz, M. J., Schmidt, S. M., Boeren, S., Vervoort, J., Cornelissen, B. J. C., Rep, M., & Takken, F. L. W. (2015). The AVR2-SIX5 gene pair is required to activate I-2-mediated immunity in tomato. New Phytologist, 208(2), 507-518. Advance online publication. https://doi.org/10.1111/nph.13455[details]
Gawehns, F., Houterman, P. M., Ait Ichou, F., Michielse, C. B., Hijdra, M., Cornelissen, B. J. C., Rep, M., & Takken, F. (2014). The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2 mediated cell death. Molecular Plant-Microbe Interactions, 27(4), 336-348. https://doi.org/10.1094/MPMI-11-13-0330-R[details]
2013
Schmidt, S. M., Houterman, P. M., Schreiver, I., Ma, L., Amyotte, S., Chellappan, B., Boeren, S., Takken, F. L. W., & Rep, M. (2013). MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics, 14, 119. https://doi.org/10.1186/1471-2164-14-119[details]
Ma, L-J., van der Does, H. C., Borkovich, K. A., Coleman, J. J., Daboussi, M. J., Di Pietro, A., Dufresne, M., Freitag, M., Grabherr, M., Henrissat, B., Houterman, P. M., Kang, S., Shim, W. B., Woloshuk, C., Xie, X., Xu, J. -R., Antoniw, J., Baker, S. E., Bluhm, B. H., ... Rep, M. (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 464(7287), 367-373. https://doi.org/10.1038/nature08850[details]
Takken, F., van Ooijen, G., Lukasik, E., Ma, L., Gawehns, F., Houterman, P., & Rep, M. (2010). How to resist a tomato resistance gene? In H. Antoun, T. Avis, L. Brisson, D. Prévost, & M. Trepanier (Eds.), Proceedings of the 14th International Congress on Molecular Plant-Microbe Interactions: Quebec City, Quebec, Canada, July 19-23, 2009 (Biology of plant-microbe interactions; Vol. 7). International Society for Molecular Plant-Microbe Interactions. [details]
2009
Houterman, P. M., Ma, L., van Ooijen, G., de Vroomen, M. J., Cornelissen, B. J. C., Takken, F. L. W., & Rep, M. (2009). The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly. Plant Journal, 58(6), 970-978. https://doi.org/10.1111/j.1365-313X.2009.03838.x[details]
Lievens, B., Houterman, P. M., & Rep, M. (2009). Effector gene screening allows unambiguous identification of Fusarium oxysporum f. sp. lycopersici races and discrimination from other formae speciales. FEMS Microbiology Letters, 300(2), 201-215. https://doi.org/10.1111/j.1574-6968.2009.01783.x[details]
2008
Houterman, P. M., Cornelissen, B. J. C., & Rep, M. (2008). Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathogens, 4(5), Article e1000061. https://doi.org/10.1371/journal.ppat.1000061[details]
van der Does, H. C., Lievens, B., Claes, L., Houterman, P. M., Cornelissen, B. J. C., & Rep, M. (2008). The presence of a virulence locus discriminates Fusarium oxysporum isolates causing tomato wilt from other isolates. Environmental Microbiology, 10(6), 1475-1485. https://doi.org/10.1111/j.1462-2920.2007.01561.x[details]
2007
Houterman, P. M., Speijer, D., Dekker, H. L., de Koster, C. G., Cornelissen, B. J. C., & Rep, M. (2007). The mixed proteome of Fusarium oxysporum-infected tomato xylem vessels. Molecular Plant Pathology, 8, 215-221. https://doi.org/10.1111/j.1364-3703.2007.00384.x[details]
2006
Rep, M., van der Does, H. C., Meijer, M., Houterman, P. M., Dekker, H. L., Speijer, D., de Koster, C. G., & Cornelissen, B. J. C. (2006). Secrets of xylem colonization- The xylem sap proteome of tomato infected with Fusarium oxysporum IS-MPM1. In C. Quinto, S. Lopes-Lara Sanchez, & O. Geiger (Eds.), Biology of Plant-Microbe Interactions. (pp. 597-601) [details]
2005
Rep, M., Meijer, M., Houterman, P. M., van der Does, H. C., & Cornelissen, B. J. C. (2005). Fusarium oxysporum evades the 1-3-meidated resistance without altering the matching avirulence gene. Molecular Plant-Microbe Interactions, 18(1), 15-23. https://doi.org/10.1094/MPMI-18-0015[details]
2004
Rep, M., van der Does, H. C., Meijer, M., van Wijk, R., Houterman, P. M., Dekker, H. L., de Koster, C. G., & Cornelissen, B. J. C. (2004). A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for 1-3-mediated resistance in tomato. Molecular Microbiology, 53(5), 1373-1383. https://doi.org/10.1111/j.1365-2958.2004.04177.x[details]
Takken, F. L. W., van Wijk, R., Michielse, C. B., Houterman, P. M., Ram, A. F. J., & Cornelissen, B. J. C. (2004). A one-step method to convert vectors into binary vectors suited for Agrobacterium-mediated transformation. Current Genetics, 45(4), 242-248. https://doi.org/10.1007/s00294-003-0481-5[details]
2003
Rep, M., Dekker, H. L., Vossen, J. H., de Boer, A. D., Houterman, P. M., de Koster, C. G., & Cornelissen, B. J. C. (2003). A tomato xylem sap protein represents a new family of small cysteine-rich proteins with structural similarity to lipid transfer proteins. FEBS Letters, 534, 82-86. https://doi.org/10.1016/S0014-5793(02)03788-2[details]
Teunissen, H. A. S., Rep, M., Houterman, P. M., Cornelissen, B. J. C., & Haring, M. A. (2003). Construction of a mitotic linkage map of Fusarium oxysporum based on Foxy-AFLPs. Molecular Genetics and Genomics, 269, 215-226. https://doi.org/10.1007/s00438-003-0825-3[details]
2002
Rep, M., Dekker, H. L., Vossen, J. H., de Boer, A., Houterman, P. M., Speijer, D., Back, J. W., de Koster, C. G., & Cornelissen, B. J. C. (2002). Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato. Plant Physiology, 130, 904-917. https://doi.org/10.1104/pp.007427[details]
1999
Does, M. P., Houterman, P. M., Dekker, H. L., & Cornelissen, B. J. C. (1999). Processing, targeting, and antifungal activity of stinging nettle agglutinin in transgenic tobacco. Plant Physiology, 120, 421-431. https://doi.org/10.1104/pp.120.2.421[details]
Does, M. P., Ng, D. K., Dekker, H. L., Peumans, W. J., Houterman, P. M., van Damme, E. J. M., & Cornelissen, B. J. C. (1999). Characterization of Urtica dioica agglutinin isolectins and the encoding gene family. Plant Molecular Biology, 39, 335-347. https://doi.org/10.1023/A:1006134932290[details]
1997
Does, M. P., Houterman, P. M., Ng, D., & Cornelissen, B. J. C. (1997). Production of Urtica dioica agglutinin in transgenic tobacco plants: targeting, localization, processing and antifungal activity. In Book of abstracts of the fifth international congress of Plant Molecular Biology Singapore. [details]
1999
Johansson, A., Bruin, J., Houterman, P. M., & Haring, M. A. (1999). Volatile signal transfer in plant defence against spider mites. Poster session presented at 13th John Innes Symposium, .
1997
Does, M. P., Houterman, P. M., Ng, D., & Cornelissen, B. J. C. (1997). Processing, localization and antifungal activity of Urtica dioica agglutinin in transgenic tobacco. Acta Botanica Neerlandica, 46, 331-331. [details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.