Bakker, T., van Hoof, H., & Welling, M. (2023). Learning Objective-Specific Active Learning Strategies with Attentive Neural Processes. In D. Koutra, C. Plant, M. Gomez Rodriguez, E. Baralis, & F. Bonchi (Eds.), Machine Learning and Knowledge Discovery in Databases : Research Track : European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023 : proceedings (Vol. I, pp. 3-19). (Lecture Notes in Computer Science; Vol. 14169), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.48550/arXiv.2309.05477, https://doi.org/10.1007/978-3-031-43412-9_1[details]
Bondesan, R., Gagrani, M., Jeon, W., Lott, C., Rainone, C., Teague, H., Van Hoof, H., Yang, Y., Zappi, P., & Zeng, W. (2023). Neural Topological Ordering for Computation Graphs. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), 36th Conference on Neural Information Processing Systems (NeurIPS 2022): New Orleans, Louisiana, USA, 28 November-9 December 2022 (Vol. 23, pp. 17327-17339). (Advances in Neural Information Processing Systems; Vol. 35). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper_files/paper/2022/hash/6ef586bdf0af0b609b1d0386a3ce0e4b-Abstract-Conference.html[details]
Van Hoof, H., & Wang, Q. (2023). Learning Expressive Meta-Representations with Mixture of Expert Neural Processes. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), 36th Conference on Neural Information Processing Systems (NeurIPS 2022): New Orleans, Louisiana, USA, 28 November-9 December 2022 (Vol. 34, pp. 26242-26255). (Advances in Neural Information Processing Systems; Vol. 35). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper_files/paper/2022/hash/a815fe7cad6af20a6c118f2072a881d2-Abstract-Conference.html[details]
Wang, Q., & van Hoof, H. C. (2023). Bridge the inference gap of neural processes via expectation maximization. In International Conference on Learning Representations https://openreview.net/pdf?id=A7v2DqLjZdq
Wang, Q., Federici, M., & van Hoof, H. C. (2023). Bridge the Inference Gaps of Neural Processes via Expectation Maximization. In International Conference on Learning Representations https://openreview.net/forum?id=A7v2DqLjZdq
Wöhlke, J., Schmitt, F., & van Hoof, H. (2023). Learning Hierarchical Planning-Based Policies from Offline Data. In D. Koutra, C. Plant, M. Gomes Rodriguez, E. Baralis, & F. Bonchi (Eds.), Machine Learning and Knowledge Discovery in Databases: Research Track : European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023 : proceedings (Vol. IV, pp. 489–505). (Lecture Notes in Computer Science; Vol. 14172), ( Lecture Notes in Artificial Intelligence ). Springer. https://doi.org/10.1007/978-3-031-43421-1_29[details]
Giri, C., Granmo, O-C., van Hoof, H., & Blakely, C. D. (2022). Logic-based AI for Interpretable Board Game Winner Prediction with Tsetlin Machine. In 2022 International Joint Conference on Neural Networks (IJCNN): 2022 conference proceedings (pp. 5528-5536). IEEE. https://doi.org/10.1109/IJCNN55064.2022.9892796[details]
Höpner, N., Tiddi, I., & van Hoof, H. (2022). Leveraging class abstraction for commonsense reinforcement learning via residual policy gradient methods. In L. De Raedt (Ed.), Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence: IJCAI 2022, Vienna, Austria, 23-29 July 2022 (pp. 3050-3056). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2022/423[details]
Kool, W., van Hoof, H., Gromicho, J., & Welling, M. (2022). Deep Policy Dynamic Programming for Vehicle Routing Problems. In P. Schaus (Ed.), Integration of Constraint Programming, Artificial Intelligence, and Operations Research: 19th International Conference, CPAIOR 2022, Los Angeles, CA, USA, June 20-23, 2022 : proceedings (pp. 190–213). (Lecture Notes in Computer Science; Vol. 13292). Springer. https://doi.org/10.48550/arXiv.2102.11756, https://doi.org/10.1007/978-3-031-08011-1_14[details]
Long, A., Blair, A., & van Hoof, H. (2022). Fast and Data Efficient Reinforcement Learning from Pixels via Non-Parametric Value Approximation. In K. Sycara, V. Honavar, & M. Spaan (Eds.), Proceedings of the 36th AAAI Conference on Artificial Intelligence: AAAI-22 : virtual conference, Vancouver, Canada, February 22-March 1, 2022 (Vol. 7, pp. 7620-7627). AAAI Press. https://doi.org/10.1609/aaai.v36i7.20728[details]
Mansoury, M., Mobasher, B., & van Hoof, H. C. (2022). Exposure-Aware Recommendation using Contextual Bandits. In 5th FAccTRec Workshop on Responsible Recommendation in conjunction with ACM RecSys 2022 ACM.
Wang, Q., & van Hoof, H. (2022). Model-based Meta Reinforcement Learning using Graph Structured Surrogate Models and Amortized Policy Search. Proceedings of Machine Learning Research, 162, 23055-23077. https://proceedings.mlr.press/v162/wang22z.html[details]
Wöhlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). In L. De Raedt (Ed.), Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence: IJCAI 2022, Vienna, Austria, 23-29 July 2022 (pp. 3558-3565). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2022/494[details]
van der Pol, E., van Hoof, H., Oliehoek, F., & Welling, M. (2022). Multi-Agent MDP Homomorphic Networks. In Proceedings of the International Conference on Learning Representations OpenReview. https://doi.org/10.48550/arXiv.2110.04495
2021
Bakker, T., Van Hoof, H., & Welling, M. (2021). Experimental design for MRI by greedy policy search. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 23, pp. 18954-18966). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/daed210307f1dbc6f1dd9551408d999f-Abstract.html[details]
Van Der Pol, E., Worrall, D., Van Hoof, H., Oliehoek, F., & Welling, M. (2021). MDP homomorphic networks: Group symmetries in reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 6, pp. 4199-4210). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/2be5f9c2e3620eb73c2972d7552b6cb5-Abstract.html[details]
Wang, S., Sporrel, K., van Hoof, H., Simons, M., de Boer, R. D. D., Ettema, D., Nibbeling, N., Deutekom, M., & Kröse, B. (2021). Reinforcement Learning to Send Reminders at Right Moments in Smartphone Exercise Application: A Feasibility Study. International Journal of Environmental Research and Public Health, 18(11), Article 6059. Advance online publication. https://doi.org/10.3390/ijerph18116059[details]
Wang, S., Zhang, C., Kröse, B., & van Hoof, H. (2021). Optimizing Adaptive Notifications in Mobile Health Interventions Systems: Reinforcement Learning from a Data-driven Behavioral Simulator. Journal of medical systems, 45(12), Article 102. Advance online publication. https://doi.org/10.1007/s10916-021-01773-0[details]
Akata, Z., Balliet, D., de Rijke, M., Dignum, F., Dignum, V., Eiben, G., Fokkens, A., Grossi, D., Hindriks, K., Hoos, H., Hung, H., Jonker, C., Monz, C., Neerincx, M., Oliehoek, F., Prakken, H., Schlobach, S., van der Gaag, L., van Harmelen, F., ... Welling, M. (2020). A Research Agenda for Hybrid Intelligence: Augmenting Human Intellect With Collaborative, Adaptive, Responsible, and Explainable Artificial Intelligence. Computer, 53(8), 18-28. https://doi.org/10.1109/MC.2020.2996587[details]
Huang, J., Oosterhuis, H., de Rijke, M., & van Hoof, H. (2020). Keeping Dataset Biases out of the Simulation: A Debiased Simulator for Reinforcement Learning based Recommender Systems. In RECSYS 2020: 14th ACM Conference on Recommender Systems : Virtual Event, Brazil, September 22-26, 2020 (pp. 190–199). The Association for Computing Machinery. https://doi.org/10.1145/3383313.3412252[details]
Kool, W., van Hoof, H., & Welling, M. (2020). Estimating Gradients for Discrete Random Variables by Sampling without Replacement. In International Conference on Learning Representations
Manjanna, S., Van Hoof, H., & Dudek, G. (2020). Policy Search on Aggregated State Space for Active Sampling. In J. Xiao, T. Kröger, & O. Khatib (Eds.), Proceedings of the 2018 International Symposium on Experimental Robotics (pp. 211-221). (Springer Proceedings in Advanced Robotics; Vol. 11). Springer. https://doi.org/10.1007/978-3-030-33950-0_19[details]
Shang, W., van der Wal, D., van Hoof, H., & Welling, M. (2020). Stochastic Activation Actor Critic Methods. In U. Brefeld, E. Fromont, A. Hotho, A. Knobbe, M. Maathuis, & C. Robardet (Eds.), Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019 : proceedings (Vol. III, pp. 103-117). (Lecture Notes in Computer Science; Vol. 11908), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-030-46133-1_7[details]
Wöhlke, J., Schmitt, F., & van Hoof, H. (2020). A Performance-Based Start State Curriculum Framework for Reinforcement Learning. In AAMAS'20: proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems : May 9-13, 2020, Auckland, New Zealand (pp. 1503-1511). International Foundation for Autonomous Agents and Multiagent Systems. https://dl.acm.org/doi/10.5555/3398761.3398934[details]
van der Heiden, T., Mirus, F., & van Hoof, H. (2020). Social Navigation with Human Empowerment Driven Deep Reinforcement Learning. In I. Farkaš, P. Masulli, & S. Wermter (Eds.), Artificial Neural Networks and Machine Learning – ICANN 2020: 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15–18, 2020 : proceedings (Vol. II, pp. 395-407). (Lecture Notes in Computer Science; Vol. 12397). Springer. https://doi.org/10.1007/978-3-030-61616-8_32[details]
Caccia, L., van Hoof, H., Courville, A., & Pineau, J. (2019). Deep Generative Modeling of LiDAR Data. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): Macau, China, 3-8 November 2019 (pp. 5034-5040). IEEE. https://doi.org/10.1109/IROS40897.2019.8968535[details]
Kool, W., van Hoof, H., & Welling, M. (2019). Attention, learn to solve routing problems! In ICLR 2019: International Conference on Learning Representations : New Orleans, Louisiana, United States, May 6-May 9, 2019 OpenReview. https://arxiv.org/abs/1803.08475[details]
Kool, W., van Hoof, H., & Welling, M. (2019). Buy 4 REINFORCE Samples, Get a Baseline for Free! In Deep RL Meets Structured Prediction Workshop at ICLR https://openreview.net/forum?id=r1lgTGL5DE
Kool, W., van Hoof, H., & Welling, M. (2019). Stochastic Beams and Where To Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement. Proceedings of Machine Learning Research, 97, 3499-3508. http://proceedings.mlr.press/v97/kool19a.html[details]
Thakur, S., van Hoof, H., Gamboa Higuera, J. C., Precup, D., & Meger, D. (2019). Uncertainty Aware Learning from Demonstrations in Multiple Contexts using Bayesian Neural Networks. In 2019 International Conference on Robotics and Automation (ICRA) : Montreal, Quebec, Canada, 20-24 May 2019 (Vol. 1, pp. 768-774). IEEE. https://doi.org/10.1109/ICRA.2019.8794328[details]
Barbaros, V., van Hoof, H., Abdolmaleki, A., & Meger, D. (2018). Eager and Memory-Based Non-Parametric Stochastic Search Methods for Learning Control. In 2018 IEEE International Conference on Robotics and Automation (ICRA): May 21-25, 2018, Brisbane, Australia (pp. 5090-5096). IEEE. https://doi.org/10.1109/ICRA.2018.8460633[details]
Dong, Y., Shen, Y., Crawford, E., van Hoof, H., & Cheung, J. C. K. (2018). BanditSum: Extractive Summarization as a Contextual Bandit. In E. Riloff, D. Chiang, J. Hockenmaier, & J. Tsujii (Eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing : EMNLP 2018: Brussels, Belgium, Oct. 31-Nov. 4 (pp. 3739-3748). The Association for Computational Linguistics. https://doi.org/10.18653/v1/D18-1409[details]
Manjanna, S., van Hoof, H., & Dudek, G. (2018). Reinforcement Learning with Non-uniform State Representations for Adaptive Search. In 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics: SSRR 2018 : Philadelphia, PA, USA on August 6-8, 2018 IEEE. https://doi.org/10.1109/SSRR.2018.8468649[details]
Smith, M. J. A., Van Hoof, H., & Pineau, J. (2018). An Inference-Based Policy Gradient Method for Learning Options. Proceedings of Machine Learning Research, 80, 4703-4712. http://proceedings.mlr.press/v80/smith18a.html[details]
van Hoof, H., Neumann, G., & Peters, J. (2017). Non-parametric Policy Search with Limited Information Loss. Journal of Machine Learning Research, 18, Article 73. http://jmlr.org/papers/v18/16-142.html
van Hoof, H., Tanneberg, D., & Peters, J. (2017). Generalized Exploration in Policy Search. Machine Learning, 106(9-10), 1705-1724. https://doi.org/10.1007/s10994-017-5657-1
2016
Daniel, C., Hoof, H. V., Neumann, G., & Peters, J. (2016). Probabilistic Inference for Determining Options in Reinforcement Learning. Machine Learning, 104(2-3), 337-357. https://doi.org/10.1007/s10994-016-5580-x
Yi, Z., Calandra, R., Veiga, F., van Hoof, H., Hermans, T., Zhang, Y., & Peters, J. (2016). Active Tactile Object Exploration with Gaussian Processes. In IROS 2016: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems : October 9-14, 2016, Daejeon Convention Center, Daejeon, Korea (pp. 4925-4930). IEEE. https://doi.org/10.1109/IROS.2016.7759723
van Hoof, H., Chen, N., Karl, M., Smart, P. V. D., & Peters, J. (2016). Stable Reinforcement Learning with Auto-Encoders for Tactile and Visual Data. In International Conference on Intelligent Robots and Systems (pp. 3928-3934). IEEE. https://doi.org/10.1109/IROS.2016.7759578
2015
Kroemer, O., Daniel, C., Neumann, G., van Hoof, H., & Peters, J. (2015). Towards Learning Hierarchical Skills for Multi-Phase Manipulation Tasks. In Proceedings of the International Conference on Robotics and Automation (ICRA) IEEE. https://doi.org/10.1109/ICRA.2015.7139389
Veiga, F. F., van Hoof, H., Peters, J., & Hermans, T. (2015). Stabilizing Novel Objects by Learning to Predict Tactile Slip. In W. Burgard (Ed.), IROS Hamburg 2015 conference digest: IEEE/RSJ International Conference on Intelligent Robots and Systems : September 28-October 02, 2015, Hamburg, Germany (pp. 5065-5072). IEEE. https://doi.org/10.1109/IROS.2015.7354090
van Hoof, H., Hermans, T., Neumann, G., & Peters, J. (2015). Learning Robot In-Hand Manipulation with Tactile Features. In Proceedings of the International Conference on Humanoid Robots (HUMANOIDS) IEEE. https://doi.org/10.1109/HUMANOIDS.2015.7363524
van Hoof, H., Peters, J., & Neumann, G. (2015). Learning of Non-Parametric Control Policies with High-Dimensional State Features. Proceedings of Machine Learning Research, 38, 1004-1012. http://www.jmlr.org/proceedings/papers/v38/vanhoof15.pdf
2014
Bischoff, B., Nguyen-Tuong, D., van Hoof, H. C., McHutchon, A., Rasmussen, C. E., Knoll, A. C., Peters, J., & Deisenroth, M. P. (2014). Policy Search For Learning Robot Control Using Sparse Data. In Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA) IEEE. https://doi.org/10.1109/ICRA.2014.6907422
Kroemer, O., van Hoof, H., Neumann, G., & Peters, J. (2014). Learning to Predict Phases of Manipulation Tasks as Hidden States. In Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA) IEEE. https://doi.org/10.1109/ICRA.2014.6907441
van Hoof, H., Kroemer, O., & Peters, J. (2014). Probabilistic Segmentation and Targeted Exploration of Objects in Cluttered Environments. IEEE Transactions on Robotics, 5, 1198-1209. https://doi.org/10.1109/TRO.2014.2334912
van Hoof, H., Kroemer, O., Ben Amor, H., & Peters, J. (2012). Maximally Informative Interaction Learning for Scene Exploration. In IEEE/RSJ International Conference on Intelligent Robots and Systems : IROS 2012 : 7-12 Oct. 2012, Vilamoura, Algarve, Portugal IEEE. https://doi.org/10.1109/IROS.2012.6386008
2023
Chen, N., Mayol-Cuevas, W. W., Karl, M., Aljalbout, E., Zeng, A., Cortese, A., Burgard, W., & van Hoof, H. (2023). Editorial: Language, affordance and physics in robot cognition and intelligent systems. Frontiers in Robotics and AI, 10, Article 1355576. https://doi.org/10.3389/frobt.2023.1355576[details]
Mollinga, J., & van Hoof, H. C. (2020). An autonomous free airspace en-route controller using deep reinforcement learning techniques. Paper presented at 9th International Conference for Research in Air Transportation, Tampa, Florida, United States. http://www.icrat.org/ICRAT/seminarContent/2020/papers/ICRAT2020_paper_29.pdf
Prijs / subsidie
Bolhuis, P., van Hoof, H., Jabbari Farouji, S., Quattrocchio, F. M., Schall, P. & Perez de Alba Ortiz, A. (2023). AI4SMM postdoctoral fellowship.
2024
Bakker, T. B. (2024). Learning adaptive sensing and active learning. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Wöhlke, J. G. (2024). Reinforcement learning and planning for autonomous agent navigation: With a focus on sparse reward settings. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Hoogeboom, E. (2023). Normalizing flows and diffusion models for discrete and geometric data. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Kool, W. (2022). Learning and optimization in combinatorial spaces: With a focus on deep learning for vehicle routing. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Wang, Q. (2022). Functional representation learning for uncertainty quantification and fast skill transfer. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Shang, W. (2021). Crafting deep learning models for reinforcement learning and computer vision applications. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.