Helminck, G. F., & Weenink, J. A. (2023). Scaling Invariance of the k[S]-Hierarchy and Its Strict Version. Lobachevskii Journal of Mathematics, 44(9), 3927-3940. https://doi.org/10.1134/S199508022309010X[details]
Helminck, G. F., & Panasenko, E. A. (2020). Reductions of the strict KP hierarchy. Theoretical and Mathematical Physics(Russian Federation), 205(2), 1411-1425. https://doi.org/10.1134/S0040577920110021[details]
Helminck, G. F., & Weenink, J. A. (2020). Integrable hierarchies in the N×N-matrices related to powers of the shift operator. Journal of Geometry and Physics, 148, Article 103560. https://doi.org/10.1016/j.geomphys.2019.103560[details]
Helminck, G. F., Poberezhny, V. A., & Polenkova, S. V. (2020). Extensions of the discrete KP hierarchy and its strict version. Theoretical and Mathematical Physics(Russian Federation), 204(3), 1140-1153. https://doi.org/10.1134/S0040577920090044[details]
2019
Helminck, G. F. (2019). A Geometric Construction of Solutions of the Strict h-Hierarchy. Theoretical and Mathematical Physics(Russian Federation), 200(1), 985-1005. https://doi.org/10.1134/S0040577919070043[details]
Helminck, G. F., & Panasenko, E. A. (2019). Expressions in Fredholm Determinants for Solutions of the Strict KP Hierarchy. Theoretical and Mathematical Physics(Russian Federation), 199(2), 637-651. https://doi.org/10.1134/S0040577919050027[details]
Helminck, G. F., & Panasenko, E. A. (2019). Geometric Solutions of the Strict KP Hierarchy. Theoretical and Mathematical Physics(Russian Federation), 198(1), 48-68. https://doi.org/10.1134/S0040577919010045[details]
Helminck, G. F., & Twilt, F. (2019). Newton flows for elliptic functions III & IV: Pseudo Newton graphs: bifurcation and creation of flows. European Journal of Mathematics, 5(4), 1364-1395. https://doi.org/10.1007/s40879-018-0289-y[details]
Helminck, G. F., Poberezhny, V. A., & Polenkova, S. V. (2019). Strict Versions of Integrable Hierarchies in Pseudodifference Operators and the Related Cauchy Problems. Theoretical and Mathematical Physics(Russian Federation), 198(2), 197-214. https://doi.org/10.1134/S004057791902003X[details]
2018
Helminck, G. F., & Twilt, F. (2018). Newton flows for elliptic functions I Structural stability: characterization & genericity. Complex Variables and Elliptic Equations, 63(6), 815-835. https://doi.org/10.1080/17476933.2017.1350853[details]
Helminck, G. F., Poberezhny, V. A., & Polenkova, S. V. (2018). A geometric construction of solutions of the strict dKP(Λ0) hierarchy. Journal of Geometry and Physics, 131, 189-203. https://doi.org/10.1016/j.geomphys.2018.05.015[details]
2017
Helminck, G. F. (2017). An integrable hierarchy including the AKNS hierarchy and its strict version. Theoretical and Mathematical Physics(Russian Federation), 192(3), 1324-1336. https://doi.org/10.1134/S0040577917090045[details]
Helminck, G. F., & Twilt, F. (2017). Newton flows for elliptic functions II: Structural stability: classification and representation. European Journal of Mathematics, 3(3), 691-727. https://doi.org/10.1007/s40879-017-0146-4[details]
Helminck, G. F. (2016). The Strict AKNS Hierarchy: Its Structure and Solutions. Advances in Mathematical Physics, 2016, Article 3649205. https://doi.org/10.1155/2016/3649205[details]
Helminck, G. F., Panasenko, E. A., & Polenkova, S. V. (2015). Bilinear equations for the strict KP hierarchy. Theoretical and Mathematical Physics, 185(3), 1803-1815. https://doi.org/10.1007/s11232-015-0380-1[details]
2014
Helminck, G. F., & Helminck, A. G. (2014). Infinite dimensional symmetric spaces and Lax equations compatible with the infinite Toda chain. Journal of Geometry and Physics, 85, 60-74. https://doi.org/10.1016/j.geomphys.2014.05.023[details]
Helminck, G. F., Helminck, A. G., & Panasenko, E. A. (2014). Cauchy problems related to integrable deformations of pseudo differential operators. Journal of Geometry and Physics, 85, 196-205. https://doi.org/10.1016/j.geomphys.2014.05.004[details]
2013
Helminck, G. F., Helminck, A. G., & Panasenko, E. A. (2013). Integrable deformations in the algebra of pseudodifferential operators from a Lie algebraic perspective. Theoretical and Mathematical Physics, 174(1), 134-153. https://doi.org/10.1007/s11232-013-0011-7[details]
2012
Helminck, G. F., & Opimakh, A. V. (2012). The zero curvature form of integrable hierarchies in the Z x Z-matrices. Algebra Colloquium, 19(2), 237-262. https://doi.org/10.1142/S1005386712000168[details]
Helminck, G. F., Panasenko, E. A., & Sergeeva, A. O. (2012). A formal infinite dimensional Cauchy problem and its relation to integrable hierarchies. In M. L. Ge, C. Bai, & N. Jing (Eds.), Quantized Algebra and Physics: Proceedings of the International Workshop on Quantizided Algebra and Physics, Tianjin, China, 23 - 26 July 2009 (pp. 89-108). World Scientific. https://doi.org/10.1142/9789814340458_0005[details]
Helminck, G. F., Helminck, A. G., & Opimakh, A. V. (2011). Reprint of: equivalent forms of multi component Toda hierarchies. Journal of Geometry and Physics, 61(9), 1755-1781. https://doi.org/10.1016/j.geomphys.2011.06.012[details]
2010
Helminck, G. F., & Panasenko, E. A. (2010). An algebraic characterization of the bilinear relations of the matrix hierarchy associated with a commutative algebra of k×k-matrices. Acta Applicandae Mathematicae, 109(1), 45-59. https://doi.org/10.1007/s10440-009-9440-6[details]
Helminck, G. F., & Poberezhny, V. A. (2010). Moving poles of meromorphic linear systems on ℙ1(ℂ) in the complex plane. Theoretical and Mathematical Physics, 165(3), 1637-1649. https://doi.org/10.1007/s11232-010-0134-z[details]
Helminck, G. F., & Poberezhny, V. A. (2010). Подвижные полюсы мероморфных линейных систем на P1(C) в комплексной плоскости. Теоретическая и математическая физика, 165(3), 472-487. https://doi.org/10.4213/tmf6588[details]
Helminck, G. F., Helminck, A. G., & Opimakh, A. V. (2010). The relative frame bundle of an infinite-dimensional flag variety and solutions of integrable hierarchies. Theoretical and Mathematical Physics, 165(3), 1610-1636. https://doi.org/10.1007/s11232-010-0133-0[details]
Helminck, G. F., Helminck, A. G., & Opimakh, A. V. (2010). Относительное расслоение реперов бесконечномерного многообразия флагов и решения интегрируемых иерархий. Теоретическая и математическая физика, 165(3), 440-471. http://mi.mathnet.ru/tmf6587[details]
2008
Helminck, G. F., & Opimakh, A. V. (2008). Composition series for representations of the generalized Lorentz group associated with a cone. Bulgarian Journal of Physics, 35, 335-351. [details]
Helminck, G. F., & Polenkova, S. V. (2008). An analytic framework for the two-dimensional infinite Toda hierarchy associated with a commutative algebra. Theoretical and Mathematical Physics, 155(1), 659-672. https://doi.org/10.1007/s11232-008-0055-2[details]
Twilt, F., Helminck, G. F., Snuverink, M., & van den Brug, L. (2008). Newton flows for elliptic functions: A pilot study. Optimization, 57(1), 113-134. https://doi.org/10.1080/02331930701778965[details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.