Boelrijk, J., Molenaar, S. R. A., Bos, T. S., Dahlseid, T. A., Ensing, B., Stoll, D. R., Forré, P., & Pirok, B. W. J. (2024). Enhancing LC×LC separations through multi-task Bayesian optimization. Journal of Chromatography A, 1726, Article 464941. https://doi.org/10.1016/j.chroma.2024.464941[details]
Federici, M., Forré, P. D., Tomioka, R., & Veeling, B. S. (in press). Latent Representation and Simulation of Markov Processes via Time-Lagged Information Bottleneck. In ICLR 2024: 12th International Conference on Learning Representations OpenReview. https://doi.org/10.48550/arXiv.2309.07200
Lippert, F., Kranstauber, B., Forré, P. D., & van Loon, E. E. (2024). Towards detailed and interpretable hybrid modeling of continental-scale bird migration. In AI for Science Workshop at the 41st International Conference on Machine Learning (ICML), 2024 https://doi.org/10.48550/arXiv.2407.10259
Liu, C., Ruhe, D., Eijkelboom, F., & Forré, P. (in press). Clifford Group Equivariant Simplicial Message Passing Neural Networks. In The International Conference on Learning Representations 2024 OpenReview. https://doi.org/10.48550/arXiv.2402.10011
Boelrijk, J., van Herwerden, D., Ensing, B., Forré, P., & Samanipour, S. (2023). Predicting RP-LC retention indices of structurally unknown chemicals from mass spectrometry data. Journal of Cheminformatics, 15(1), Article 28. https://doi.org/10.1186/s13321-023-00699-8[details]
Forré, P., Miller, B. K., & Weniger, C. (2023). Contrastive Neural Ratio Estimation. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), 36th Conference on Neural Information Processing Systems (NeurIPS 2022): New Orleans, Louisiana, USA, 28 November-9 December 2022 (Vol. 5, pp. 3262-3278). (Advances in Neural Information Processing Systems; Vol. 35). Neural Information Processing Systems Foundation. https://doi.org/10.48550/arXiv.2210.06170[details]
Lippert, F., Kranstauber, B., van Loon, E. E., & Forré, P. D. (in press). Deep Gaussian Markov Random Fields for Graph-Structured Dynamical Systems. In 37th Conference on Neural Information Processing Systems (NeurIPS 2023) (Advances in Neural Information Processing Systems; Vol. 36). Neural Information Processing Systems Foundation. https://doi.org/10.48550/arXiv.2306.08445
Ruhe, D. J. J., Forré, P. D., & Brandstetter, J. K. (2023). Clifford Group Equivariant Neural Networks. Advances in Neural Information Processing Systems.
2022
Apostol, A. C., Stol, M. C., & Forré, P. (2022). Pruning by leveraging training dynamics. AI Communications, 35(2), 65-85. Advance online publication. https://doi.org/10.3233/AIC-210127[details]
Bos, T. S., Boelrijk, J., Molenaar, S. R. A., Veer, B. V. ., Niezen, L. E., van Herwerden, D., Samanipour, S., Stoll, D. R., Forré, P., Ensing, B., Somsen, G. W., & Pirok, B. W. J. (2022). Chemometric Strategies for Fully Automated Interpretive Method Development in Liquid Chromatography. Analytical Chemistry, 94(46), 16060-16068. https://doi.org/10.1021/acs.analchem.2c03160[details]
Cole, A., Forre, P., Louppe, G., Miller, B. K., & Weniger, C. (2022). Truncated Marginal Neural Ratio Estimation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), 35th Conference on Neural Information Processing Systems (NeurIPS 2021) : online, 6-14 December 2021 (Vol. 1, pp. 129-143). (Advances in Neural Information Processing Systems; Vol. 34). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2021/hash/01632f7b7a127233fa1188bd6c2e42e1-Abstract.html[details]
Miller, B., Cole, A., Forré, P., Louppe, G. & Weniger, C. (2021). Truncated Marginal Neural Ratio Estimation - Data. Zenodo. https://doi.org/10.5281/zenodo.5592427
Forre, P., Hoogeboom, E., Jaini, P., Nielsen, D., & Welling, M. (2022). Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), 35th Conference on Neural Information Processing Systems (NeurIPS 2021) : online, 6-14 December 2021 (Vol. 15, pp. 12454-12465). (Advances in Neural Information Processing Systems; Vol. 34). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2021/hash/67d96d458abdef21792e6d8e590244e7-Abstract.html[details]
Lippert, F., Kranstauber, B., Forré, P. D., & van Loon, E. E. (2022). Learning to predict spatiotemporal movement dynamics from weather radar networks. Methods in Ecology and Evolution, 13(12), 2811-2826. Advance online publication. https://doi.org/10.1111/2041-210X.14007[details]
Lippert, F., Kranstauber, B., Forré, P. & van Loon, E. . (2022). Data from: Learning to predict spatio-temporal movement dynamics from static sensor networks. Zenodo. https://doi.org/10.5281/zenodo.6364941
Lippert, F., Kranstauber, B., Forré, P. & van Loon, E. . (2022). Data from: Learning to predict spatio-temporal movement dynamics from weather radar networks. Zenodo. https://doi.org/10.5281/zenodo.6874789
Ruhe, D., Kuiack, M., Rowlinson, A., Wijers, R., & Forré, P. (2022). Detecting dispersed radio transients in real time using convolutional neural networks. Astronomy and Computing, 38, Article 100512. https://doi.org/10.1016/j.ascom.2021.100512[details]
Ruhe, D., Wong, K., Cranmer, M., & Forré, P. (2022). Normalizing Flows for Hierarchical Bayesian Analysis: A Gravitational Wave Population Study. In Machine Learning and the Physical Sciences: Workshop at the 36th conference on Neural Information Processing Systems (NeurIPS) : December 3, 2022 ML4PS. https://doi.org/10.48550/arXiv.2211.09008[details]
Apostol, A. C., Stol, M. C., & Forré, P. (2021). FlipOut: Uncovering Redundant Weights via Sign Flipping. In M. Baratchi, L. Cao, W. A. Kosters, J. Lijffijt, J. N. van Rijn, & F. W. Takes (Eds.), Artificial Intelligence and Machine Learning: 32nd Benelux Conference, BNAIC/Benelearn 2020, Leiden, The Netherlands, November 19–20, 2020 : revised selected papers (pp. 15-29). (Communications in Computer and Information Science; Vol. 1398). Springer. https://doi.org/10.1007/978-3-030-76640-5_2[details]
Bongers, S., Forré, P., Peters, J., & Mooij, J. M. (2021). Foundations of structural causal models with cycles and latent variables. The Annals of Statistics, 49(5), 2885-2915. https://doi.org/10.1214/21-AOS2064[details]
Falorsi, L., de Haan, P., Davidson, T. R., & Forré, P. (2019). Reparameterizing Distributions on Lie Groups. Proceedings of Machine Learning Research, 89, 3244-3253. https://arxiv.org/abs/1903.02958[details]
Forré, P., & Mooij, J. M. (2019). Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias. In A. Globerson, & R. Silva (Eds.), Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence: UAI 2019, Tel Aviv, Israel, July 22-25, 2019 Article 15 AUAI Press. http://auai.org/uai2019/proceedings/papers/15.pdf[details]
Patrini, G., van den Berg, R., Forré, P., Carioni, M., Bhargav, S., Welling, M., Genewein, T., & Nielsen, F. (2019). Sinkhorn AutoEncoders. In A. Globerson, & R. Silva (Eds.), Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence: UAI 2019, Tel Aviv, Israel, July 22-25, 2019 Article 253 AUAI Press. https://arxiv.org/abs/1810.01118[details]
Forré, P., & Mooij, J. M. (2018). Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders. In A. Globerson, & R. Silva (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Fourth Concerence (2018) : August 6-10, 2018, Monterey, California, USA (pp. 269-278). AUAI Press. http://auai.org/uai2018/proceedings/papers/117.pdf[details]
Federici, M., Forre, P., & Tomioka, R. (2022). An Information-theoretic Approach to Distribution Shifts. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), 35th Conference on Neural Information Processing Systems (NeurIPS 2021) : online, 6-14 December 2021 (Vol. 21, pp. 17628-17641). (Advances in Neural Information Processing Systems; Vol. 34). Neural Information Processing Systems Foundation. https://doi.org/10.48550/arXiv.2106.03783[details]
Keller, T. A., Peters, J. W. T., Jaini, P., Hoogeboom, E., Forré, P., & Welling, M. (2021). Self Normalizing Flows. Proceedings of Machine Learning Research, 139, 5378-5387. https://arxiv.org/abs/2011.07248[details]
Pandeva, T. P., Forré, P. D., Ramdas, A., & Shekhar, S. (2024). Deep anytime-valid hypothesis testing.
2023
Miller, B. K., Federici, M., Weniger, C., & Forré, P. D. (2023). Simulation-based Inference with the Generalized Kullback-Leibler Divergence. Paper presented at ICML 2023 Workshop: Synergy of Scientific and Machine Learning Modeling, Honolulu, Hawaii, United States. https://arxiv.org/abs/2310.01808
2022
Lippert, F., Kranstauber, B., van Loon, E. E., & Forré, P. (2022). Physics-informed inference of aerial animal movements from weather radar data. Paper presented at Workshop AI for Science: Progress and Promises, New Orleans, Louisiana, United States. https://doi.org/10.48550/arXiv.2211.04539[details]
Maile, K., Wilson, D. G., & Forré, P. (2022). Towards architectural optimization of equivariant neural networks over subgroups. Paper presented at NeurIPS 2022 Workshop: NeurReps, New Orleans, Louisiana, United States. https://openreview.net/forum?id=KJFpArxWe-g[details]
Ruhe, D. J. J., & Forré, P. D. (2022). Self-Supervised Inference in State-Space Models. Paper presented at The Tenth International Conference on Learning Representations. https://openreview.net/forum?id=VPjw9KPWRSK
2021
Gallego-Posada, J., & Forré, P. D. (2021). Simplicial Regularization. Paper presented at ICLR 2021 Workshop: Geometrical and Topological Representation Learning. https://openreview.net/forum?id=x9xn6HKgefz
2020
Falorsi, L., & Forré, P. D. (2020). Neural Ordinary Differential Equations on Manifolds. Paper presented at ICML 2020 workshop INNF+: Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models. https://arxiv.org/abs/2006.06663
Federici, M., Dutta, A., Forré, P., Kushman, N., & Akata, Z. (2020). Learning Robust Representations via Multi-View Information Bottleneck. Paper presented at 8th International Conference on Learning Representations, Addis Abeba, Ethiopia. https://openreview.net/pdf?id=B1xwcyHFDr
2018
Falorsi, L., de Haan, P., Davidson, T. R., De Cao, N., Weiler, M., Forré, P., & Cohen, T. S. (2018). Explorations in Homeomorphic Variational Auto-Encoding. Paper presented at ICML18 Workshop on Theoretical Foundations and Applications of Deep Generative Models, Stockholm, Sweden. https://arxiv.org/abs/1807.04689[details]
Samanipour, S., Praetorius, A. & Forré, P. (2023). AI4Plastics.
2024
Boelrijk, J. H. M. (2024). Bayesian optimization for liquid chromatography separations. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Miller, B. K. (2024). Machine learning for scientific simulation: Inference and generative models. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Forré, P., & Mooij, J. M. (2017). Markov Properties for Graphical Models with Cycles and Latent Variables. Informatics Institute, University of Amsterdam. https://arxiv.org/abs/1710.08775[details]
Lippert, F., Kranstauber, B., Forré, P. & van Loon, E. . (2022). Data from: Learning to predict spatio-temporal movement dynamics from static sensor networks. Zenodo. https://doi.org/10.5281/zenodo.6364941
Lippert, F., Kranstauber, B., Forré, P. & van Loon, E. . (2022). Data from: Learning to predict spatio-temporal movement dynamics from weather radar networks. Zenodo. https://doi.org/10.5281/zenodo.6874789
2021
Miller, B., Cole, A., Forré, P., Louppe, G. & Weniger, C. (2021). Truncated Marginal Neural Ratio Estimation - Data. Zenodo. https://doi.org/10.5281/zenodo.5592427
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.