Guillaume, M. C., & Branco Dos Santos, F. (2023). Assessing and reducing phenotypic instability in cyanobacteria. Current Opinion in Biotechnology, 80, Article 102899. https://doi.org/10.1016/j.copbio.2023.102899[details]
Imbimbo, P., D'Elia, L., Corrado, I., Alvarez-Rivera, G., Marzocchella, A., Ibáñez, E., Pezzella, C., Branco dos Santos, F., & Monti, D. M. (2023). An Alternative Exploitation of Synechocystis sp. PCC6803: A Cascade Approach for the Recovery of High Added-Value Products. Molecules, 28(7), Article 3144. https://doi.org/10.3390/molecules28073144[details]
Mager, M., Pineda Hernandez, H., Brandenburg, F., López-Maury, L., McCormick, A. J., Nürnberg, D. J., Orthwein, T., Russo, D. A., Victoria, A. J., Wang, X., Zedler, J. A. Z., Branco Dos Santos, F., & Schmelling, N. M. (2023). Interlaboratory Reproducibility in Growth and Reporter Expression in the Cyanobacterium Synechocystis sp. PCC 6803. ACS Synthetic Biology, 12(6), 1823-1835. https://doi.org/10.1021/acssynbio.3c00150[details]
Battaglino, B., Du, W., Pagliano, C., Jongbloets, J. A., Re, A., Saracco, G., & Branco dos Santos, F. (2021). Channeling Anabolic Side Products toward the Production of Nonessential Metabolites: Stable Malate Production in Synechocystis sp. PCC6803. ACS Synthetic Biology, 10(12), 3518-3526. https://doi.org/10.1021/acssynbio.1c00440[details]
Shabestary, K., Hernández, H. P., Miao, R., Ljungqvist, E., Hallman, O., Sporre, E., Branco Dos Santos, F., & Hudson, E. P. (2021). Cycling between growth and production phases increases cyanobacteria bioproduction of lactate. Metabolic Engineering, 68, 131-141. https://doi.org/10.1016/j.ymben.2021.09.010[details]
Caicedo-Burbano, P., Smit, T., Pineda Hernández, H., Du, W., & Branco dos Santos, F. (2020). Construction of Fully Segregated Genomic Libraries in Polyploid Organisms Such as Synechocystis sp. PCC 6803. ACS Synthetic Biology, 9(10), 2632-2638. Advance online publication. https://doi.org/10.1021/acssynbio.0c00353[details]
Ekkers, D. M., Branco Dos Santos, F., Mallon, C. A., Bruggeman, F., & van Doorn, G. S. (2020). The omnistat: A flexible continuous-culture system for prolonged experimental evolution. Methods in Ecology and Evolution, 11(8), 932-942. https://doi.org/10.1111/2041-210X.13403[details]
Wu, W., Du, W., Gallego, R. P., Hellingwerf, K. J., van der Woude, A. D., & Branco Dos Santos, F. (2020). Using osmotic stress to stabilize mannitol production in Synechocystis sp. PCC6803. Biotechnology for Biofuels, 13, Article 117. https://doi.org/10.1186/s13068-020-01755-3[details]
Chen, Q., Arents, J., Schuurmans, J. M., Ganapathy, S., de Grip, W. J., Cheregi, O., Funk, C., Branco Dos Santos, F., & Hellingwerf, K. J. (2019). Functional Expression of Gloeobacter Rhodopsin in PSI-Less Synechocystis sp. PCC6803. Frontiers in Bioengineering and Biotechnology, 7, Article 67. https://doi.org/10.3389/fbioe.2019.00067[details]
Chen, Q., Arents, J., Schuurmans, J. M., Ganapathy, S., de Grip, W. J., Cheregi, O., Funk, C., Dos Santos, F. B., & Hellingwerf, K. J. (2019). Combining retinal-based and chlorophyll-based (oxygenic) photosynthesis: Proteorhodopsin expression increases growth rate and fitness of a ∆PSI strain of Synechocystis sp. PCC6803. Metabolic Engineering, 52, 68-76. https://doi.org/10.1016/j.ymben.2018.11.002[details]
Du, W., Jongbloets, J. A., Guillaume, M., van de Putte, B., Battaglino, B., Hellingwerf, K. J., & Branco Dos Santos, F. (2019). Exploiting Day- and Night-Time Metabolism of Synechocystis sp. PCC 6803 for Fitness-Coupled Fumarate Production around the Clock. ACS Synthetic Biology, 8(10), 2263-2269. https://doi.org/10.1021/acssynbio.9b00289[details]
Kristjansdottir, T., Bosma, E. F., Branco dos Santos, F., Özdemir, E., Herrgård, M. J., França, L., Ferreira, B., Nielsen, A. T., & Gudmundsson, S. (2019). A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Microbial Cell Factories, 18, Article 186. https://doi.org/10.1186/s12934-019-1229-3[details]
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., Branco Dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM8 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086689.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM6 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086671.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., Branco Dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM5 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086662.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., Branco Dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM4 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086653.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM3 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086644.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM2 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086638.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., Branco Dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM1 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086632.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., Branco Dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM8 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086689.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM2 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086638.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM3 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086644.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., Branco Dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM4 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086653.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., Branco Dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM5 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086662.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., Branco Dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM1 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086632.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM6 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086671.v1
Price, C. E., Branco dos Santos, F., Hesseling, A., Uusitalo, J. J., Bachmann, H., Benavente, V., Goel, A., Berkhout, J., Bruggeman, F. J., Marrink, S-J., Montalban-Lopez, M., de Jong, A., Kok, J., Molenaar, D., Poolman, B., Teusink, B., & Kuipers, O. P. (2019). Adaption to glucose limitation is modulated by the pleotropic regulator CcpA, independent of selection pressure strength. BMC Evolutionary Biology, 19, Article 15. https://doi.org/10.1186/s12862-018-1331-x[details]
Price, C. E., Hesseling, A., Uusitalo, J. J., Bachmann, H., Benavente, V., Berkhout, J., Bruggeman, F. J., Montalban-Lopez, M., Kok, J., Molenaar, D., Poolman, B., Teusink, B., Kuipers, O. P., Branco Dos Santos, F., Goel, A., Marrink, S.-J. & De Jong, A. (2019). Additional file 1: of Adaption to glucose limitation is modulated by the pleotropic regulator CcpA, independent of selection pressure strength. Figshare. https://doi.org/10.6084/m9.figshare.7576595.v1
Price, C. E., Hesseling, A., Uusitalo, J. J., Bachmann, H., Benavente, V., Berkhout, J., Bruggeman, F. J., Montalban-Lopez, M., Kok, J., Molenaar, D., Poolman, B., Teusink, B., Kuipers, O. P., Branco Dos Santos, F., Goel, A., Marrink, S.-J. & De Jong, A. (2019). Additional file 1: of Adaption to glucose limitation is modulated by the pleotropic regulator CcpA, independent of selection pressure strength. Figshare. https://doi.org/10.6084/m9.figshare.7576595.v1
Pérez, A. A., Chen, Q., Pineda Hernández, H., Branco Dos Santos, F., & Hellingwerf, K. J. (2019). On the use of oxygenic photosynthesis for the sustainable production of commodity chemicals. Physiologia Plantarum, 166(1), 413-427. https://doi.org/10.1111/ppl.12946[details]
Acuña, A. M., van Alphen, P., Branco Dos Santos, F., van Grondelle, R., Hellingwerf, K. J., & van Stokkum, I. H. M. (2018). Spectrally decomposed dark-to-light transitions in Synechocystis sp. PCC 6803. Photosynthesis Research, 137(2), 307-320. https://doi.org/10.1007/s11120-018-0505-0[details]
Acuña, A. M., van Alphen, P., Branco Dos Santos, F., van Grondelle, R., Hellingwerf, K. J., & van Stokkum, I. H. M. (2018). Spectrally decomposed dark-to-light transitions in a PSI-deficient mutant of Synechocystis sp. PCC 6803. Biochimica et Biophysica Acta - Bioenergetics, 1859(2), 57-68. https://doi.org/10.1016/j.bbabio.2017.11.002[details]
Cordara, A., Manfredi, M., van Alphen, P., Marengo, E., Pirone, R., Saracco, G., Branco Dos Santos, F., Hellingwerf, K. J., & Pagliano, C. (2018). Response of the thylakoid proteome of Synechocystis sp. PCC 6803 to photohinibitory intensities of orange-red light. Plant physiology and biochemistry : PPB, 132, 524-534. https://doi.org/10.1016/j.plaphy.2018.10.002[details]
Cordara, A., Re, A., Pagliano, C., Van Alphen, P., Pirone, R., Saracco, G., Branco dos Santos, F., Hellingwerf, K., & Vasile, N. (2018). Analysis of the light intensity dependence of the growth of Synechocystis and of the light distribution in a photobioreactor energized by 635 nm light. PeerJ, 6, e5256. https://doi.org/10.7717/peerj.5256[details]
Du, W., Caicedo Burbano, P., Hellingwerf, K. J., & Branco Dos Santos, F. (2018). Challenges in the Application of Synthetic Biology Toward Synthesis of Commodity Products by Cyanobacteria via "Direct Conversion". In W. Zhang, & X. Song (Eds.), Synthetic Biology of Cyanobacteria (pp. 3-26). (Advances in Experimental Medicine and Biology; Vol. 1080). Springer. https://doi.org/10.1007/978-981-13-0854-3_1[details]
Du, W., Jongbloets, J. A., van Boxtel, C., Pineda Hernández, H., Lips, D., Oliver, B. G., Hellingwerf, K. J., & Branco Dos Santos, F. (2018). Alignment of microbial fitness with engineered product formation: obligatory coupling between acetate production and photoautotrophic growth. Biotechnology for Biofuels, 11, Article 38. https://doi.org/10.1186/s13068-018-1037-8[details]
Feenstra, K. A., Abeln, S., Westerhuis, J. A., Brancos dos Santos, F., Molenaar, D., Teusink, B., Hoefsloot, H. C. J., & Heringa, J. (2018). Training for translation between disciplines: a philosophy for life and data sciences curricula. Bioinformatics, 34(13), i4–i12. https://doi.org/10.1093/bioinformatics/bty233[details]
Giera, M., Branco dos Santos, F., & Siuzdak, G. (2018). Metabolite-Induced Protein Expression Guided by Metabolomics and Systems Biology. Cell Metabolism, 27(2), 270-272. https://doi.org/10.1016/j.cmet.2018.01.002[details]
Lips, D., Schuurmans, J. M., Branco dos Santos, F., & Hellingwerf, K. J. (2018). Many ways towards 'solar fuel': quantitative analysis of the most promising strategies and the main challenges during scale-up. Energy and Environmental Science, 11(1), 10-22. https://doi.org/10.1039/c7ee02212c[details]
van Alphen, P., Abedini Najafabadi, H., Branco Dos Santos, F., & Hellingwerf, K. J. (2018). Increasing the Photoautotrophic Growth Rate of Synechocystis sp. PCC 6803 by Identifying the Limitations of Its Cultivation. Biotechnology Journal, 13(8), Article 1700764. https://doi.org/10.1002/biot.201700764[details]
2017
Bachmann, H., Molenaar, D., Branco dos Santos, F., & Teusink, B. (2017). Experimental evolution and the adjustment of metabolic strategies in lactic acid bacteria. FEMS Microbiology Reviews, 41(Supplement 1), S201-S219. https://doi.org/10.1093/femsre/fux024[details]
Branco dos Santos, F., Olivier, B. G., Boele, J., Smessaert, V., De Rop, P., Krumpochova, P., Klau, G. W., Giera, M., Dehottay, P., Teusink, B., & Goffin, P. (2017). Probing the genome-scale metabolic landscape of Bordetella pertussis, the causative agent of whooping cough. Applied and Environmental Microbiology, 83(21), Article e01528-17. Advance online publication. https://doi.org/10.1128/AEM.01528-17[details]
Carpine, R., Du, W., Olivieri, G., Pollio, A., Hellingwerf, K. J., Marzocchella, A., & Branco dos Santos, F. (2017). Genetic engineering of Synechocystis sp. PCC6803 for poly-β-hydroxybutyrate overproduction. Algal Research, 25, 117-127. https://doi.org/10.1016/j.algal.2017.05.013[details]
Du, W., Angermayr, S. A., Jongbloets, J. A., Molenaar, D., Bachmann, H., Hellingwerf, K. J., & Branco Dos Santos, F. (2017). Nonhierarchical Flux Regulation Exposes the Fitness Burden Associated with Lactate Production in Synechocystis sp. PCC6803. ACS Synthetic Biology, 6(3), 395-401. https://doi.org/10.1021/acssynbio.6b00235[details]
Knaus, U. G., Hertzberger, R., Pircalabioru, G. G., Yousefi, S. P. M., & Branco dos Santos, F. (2017). Pathogen control at the intestinal mucosa - H2O2 to the rescue. Gut Microbes, 8(1), 67-74. https://doi.org/10.1080/19490976.2017.1279378[details]
McLeod, A., Mosleth, E. F., Rud, I., Branco Dos Santos, F., Snipen, L., Liland, K. H., & Axelsson, L. (2017). Effects of glucose availability in Lactobacillus sakei; metabolic change and regulation of the proteome and transcriptome. PLoS ONE, 12(11), Article e0187542. https://doi.org/10.1371/journal.pone.0187542[details]
Bachmann, H., Bruggeman, F. J., Molenaar, D., Branco dos Santos, F., & Teusink, B. (2016). Public goods and metabolic strategies. Current opinion in microbiology, 31, 109-115. https://doi.org/10.1016/j.mib.2016.03.007[details]
Savakis, P., Tan, X., Qiao, C., Song, K., Hellingwerf, K. J., & Branco dos Santos, F. (2016). Slr1670 from Synechocystis sp. PCC 6803 Is Required for the Re-assimilation of the Osmolyte Glucosylglycerol. Frontiers in Microbiology, 7, Article 1350. https://doi.org/10.3389/fmicb.2016.01350[details]
Goel, A., Eckhardt, T. H., Puri, P., de Jong, A., Branco dos Santos, F., Giera, M., Fusetti, F., de Vos, W. M., Kok, J., Poolman, B., Molenaar, D., Kuipers, O. P., & Teusink, B. (2015). Protein costs do not explain evolution of metabolic strategies and regulation of ribosomal content: does protein investment explain an anaerobic bacterial Crabtree effect? Molecular Microbiology, 97(1), 77-92. https://doi.org/10.1111/mmi.13012[details]
2013
Bachmann, H., Fischlechner, M., Rabbers, I., Barfa, N., Branco dos Santos, F., Molenaar, D., & Teusink, B. (2013). Availability of public goods shapes the evolution of competing metabolic strategies. Proceedings of the National Academy of Sciences of the United States of America, 110(35), 14302-14307. Advance online publication. https://doi.org/10.1073/pnas.1308523110[details]
Branco dos Santos, F., de Vos, W. M., & Teusink, B. (2013). Towards metagenome-scale models for industrial applications - the case of Lactic Acid Bacteria. Current Opinion in Biotechnology, 24(2), 200-206. Advance online publication. https://doi.org/10.1016/j.copbio.2012.11.003[details]
2011
Santos, F., Spinler, J. K., Saulnier, D. M. A., Molenaar, D., Teusink, B., de Vos, W. M., Versalovic, J., & Hugenholtz, J. (2011). Functional identification in Lactobacillus reuteri of a PocR-like transcription factor regulating glycerol utilization and vitamin B12 synthesis. Microbial Cell Factories, 10, Article 55. https://doi.org/10.1186/1475-2859-10-55, https://doi.org/10.1186/1475-2859-10-55[details]
Saulnier, D. M., Santos, F., Roos, S., Mistretta, T. A., Spinler, J. K., Molenaar, D., Teusink, B., & Versalovic, J. (2011). Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features. PLoS ONE, 6(4). https://doi.org/10.1371/journal.pone.0018783[details]
Savakis, P., Tan, X., Du, W., Branco dos Santos, F., Lu, X., & Hellingwerf, K. J. (2015). Photosynthetic production of glycerol by a recombinant cyanobacterium. Journal of Biotechnology, 195, 46-51. Advance online publication. https://doi.org/10.1016/j.jbiotec.2014.12.015[details]
2014
Branco dos Santos, F., Du, W., & Hellingwerf, K. J. (2014). Synechocystis: not just a plug-bug for CO2, but a green E. coli. Frontiers in Bioengineering and Biotechnology, 2, Article 36. https://doi.org/10.3389/fbioe.2014.00036[details]
Caicedo Burbano, S. P. (2021). Improving the synthetic biology toolbox of Synechocystis sp. PCC 6803. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Wu, W. (2021). Photoautotrophic overproduction of mannitol in Synechocystis sp. PCC6803 using osmotic pressure as a driving force. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Bury, A. E. (2019). Design, construction and testing of a photoactivatable and diffusive protein network in Saccharomyces cerevisiae. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
van Alphen, P. (2017). Physiological studies to optimize growth of the prototype biosolar cell factory Synechocystis sp. PCC6803. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., Branco Dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM8 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086689.v1
Price, C. E., Hesseling, A., Uusitalo, J. J., Bachmann, H., Benavente, V., Berkhout, J., Bruggeman, F. J., Montalban-Lopez, M., Kok, J., Molenaar, D., Poolman, B., Teusink, B., Kuipers, O. P., Branco Dos Santos, F., Goel, A., Marrink, S.-J. & De Jong, A. (2019). Additional file 1: of Adaption to glucose limitation is modulated by the pleotropic regulator CcpA, independent of selection pressure strength. Figshare. https://doi.org/10.6084/m9.figshare.7576595.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., Branco Dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM5 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086662.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., Branco Dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM1 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086632.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., Branco Dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM4 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086653.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM3 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086644.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM2 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086638.v1
Kristjansdottir, T., Ferreira, B., Nielsen, A. T., Gudmundsson, S., Bosma, E. F., dos Santos, F., Özdemir, E., Herrgård, M. J. & França, L. (2019). MOESM6 of A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Figshare. https://doi.org/10.6084/m9.figshare.10086671.v1
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.