Lee, K., Dora, S., Mejias, J. F., Bohte, S. M., & Pennartz, C. M. A. (2024). Predictive coding with spiking neurons and feedforward gist signaling. Frontiers in Computational Neuroscience, 18, Article 1338280. https://doi.org/10.3389/fncom.2024.1338280[details]
Brucklacher, M., Bohté, S. M., Mejias, J. F., & Pennartz, C. M. A. (2023). Local minimization of prediction errors drives learning of invariant object representations in a generative network model of visual perception. Frontiers in Computational Neuroscience, 17, Article 1207361. https://doi.org/10.3389/fncom.2023.1207361[details]
Mücke, N. T., Pandey, P., Jain, S., Bohté, S. M., & Oosterlee, C. W. (2023). A Probabilistic Digital Twin for Leak Localization in Water Distribution Networks Using Generative Deep Learning. Sensors, 23(13), Article 6179. https://doi.org/10.3390/s23136179[details]
Mücke, N. T., Sanderse, B., Bohté, S. M., & Oosterlee, C. W. (2023). Markov chain generative adversarial neural networks for solving Bayesian inverse problems in physics applications. Computers and Mathematics with Applications, 147, 278-299. https://doi.org/10.1016/j.camwa.2023.07.028[details]
Sörensen, L. K. A., Bohté, S. M., de Jong, D., Slagter, H. A., & Scholte, H. S. (2023). Mechanisms of human dynamic object recognition revealed by sequential deep neural networks. PLoS Computational Biology, 19(6), Article e1011169. https://doi.org/10.1371/journal.pcbi.1011169[details]
Sörensen, L. K. A., Bohté, S. M., Slagter, H. A., & Scholte, H. S. (2022). Arousal state affects perceptual decisionmaking by modulating hierarchical sensory processing in a large-scale visual system model. PLoS Computational Biology, 18(4), Article e1009976. https://doi.org/10.1371/journal.pcbi.1009976[details]
Sörensen, L. K. A., Zambrano, D., Slagter, H. A., Bohté, S. M., & Scholte, H. S. (2022). Leveraging Spiking Deep Neural Networks to Understand the Neural Mechanisms Underlying Selective Attention. Journal of Cognitive Neuroscience, 34(4), 655-674. https://doi.org/10.1162/jocn_a_01819[details]
Sörensen, L. K. A., Zambrano, D., Slagter, H., Bohte, S. & Scholte, S. (16-12-2020). ModelTraining. Universiteit van Amsterdam. https://doi.org/10.21942/uva.13386395.v1
Sörensen, L. K. A., Zambrano, D., Slagter, H., Bohte, S. & Scholte, S. (16-12-2020). ModelAnalysis. Universiteit van Amsterdam. https://doi.org/10.21942/uva.13386377.v1
Sörensen, L. K. A., Zambrano, D., Slagter, H., Bohte, S. & Scholte, S. (16-12-2020). ModelEvaluation. Universiteit van Amsterdam. https://doi.org/10.21942/uva.13385471.v1
2021
Dora, S., Bohte, S. M., & Pennartz, C. M. A. (2021). Deep Gated Hebbian Predictive Coding Accounts for Emergence of Complex Neural Response Properties Along the Visual Cortical Hierarchy. Frontiers in Computational Neuroscience, 15, Article 666131. https://doi.org/10.3389/fncom.2021.666131[details]
Pearson, M. J., Dora, S., Struckmeier, O., Knowles, T. C., Mitchinson, B., Tiwari, K., Kyrki, V., Bohte, S., & Pennartz, C. M. A. (2021). Multimodal Representation Learning for Place Recognition Using Deep Hebbian Predictive Coding. Frontiers in Robotics and AI, 8, Article 732023. https://doi.org/10.3389/frobt.2021.732023[details]
Yin, B., Scholte, H. S., & Bohté, S. (2021). LocalNorm: Robust Image Classification Through Dynamically Regularized Normalization. In I. Farkaš, P. Masulli, S. Otte, & S. Wermter (Eds.), Artificial Neural Networks and Machine Learning – ICANN 2021: 30th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 14–17, 2021 : proceedings (Vol. IV, pp. 240-252). (Lecture Notes in Computer Science; Vol. 12894). Springer. https://doi.org/10.1007/978-3-030-86380-7_20[details]
Seijdel, N., Tsakmakidis, N., de Haan, E. H. F., Bohte, S. M., & Scholte, H. S. (2020). Depth in convolutional neural networks solves scene segmentation. PLoS Computational Biology, 16(7), Article e1008022. https://doi.org/10.1371/journal.pcbi.1008022[details]
Zambrano, D., Nusselder, R., Scholte, H. S., & Bohté, S. M. (2019). Sparse Computation in Adaptive Spiking Neural Networks. Frontiers in Neuroscience, 12, Article 987. https://doi.org/10.3389/fnins.2018.00987[details]
Scholte, H. S., Losch, M. M., Ramakrishnan, K., de Haan, E. H. F., & Bohte, S. M. (2018). Visual pathways from the perspective of cost functions and multi-task deep neural networks. Cortex, 98, 249-261. Advance online publication. https://doi.org/10.1016/j.cortex.2017.09.019[details]
Seijdel, N., Tsakmakidis, N., De Haan, E. H. F., Bohte, S. M., & Scholte, H. S. (2019). Depth in convolutional neural networks solves scene segmentation. (v1 ed.) BioRxiv. https://doi.org/10.1101/2019.12.16.877753[details]
Bohte, S. M., Scholte, H. S., & Ghebreab, S. (2012). Information-Maximizing Local Spatial Scale Selection in Early Visual Processing. Abstract from NIPS Workshop on Information in Perception and Action, Lake Tahoe, December 2012. http://www.montefiore.ulg.ac.be/~tjung/nips12workshop
2023
Sörensen, L. K. A. (2023). Deep neural network models of visual cognition. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Sörensen, L. K. A., Zambrano, D., Slagter, H., Bohte, S. & Scholte, S. (16-12-2020). ModelAnalysis. Universiteit van Amsterdam. https://doi.org/10.21942/uva.13386377.v1
Sörensen, L. K. A., Zambrano, D., Slagter, H., Bohte, S. & Scholte, S. (16-12-2020). ModelTraining. Universiteit van Amsterdam. https://doi.org/10.21942/uva.13386395.v1
Sörensen, L. K. A., Zambrano, D., Slagter, H., Bohte, S. & Scholte, S. (16-12-2020). ModelEvaluation. Universiteit van Amsterdam. https://doi.org/10.21942/uva.13385471.v1
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.