Bergstra, J. A., & Tucker, J. V. (2023). On The Axioms Of Common Meadows: Fracterm Calculus, Flattening And Incompleteness. Computer Journal, 66(7), 1565-1572. Advance online publication. https://doi.org/10.1093/comjnl/bxac026[details]
Bergstra, J. A. (2022). An Opinion on Promises, Threats, and Accusations In the 2022 Russo-Ukrainian War. Transmathematica, 2022. https://doi.org/10.36285/tm.73[details]
Bergstra, J. A. (2022). Defects and Faults in Algorithms, Programs and Instruction Sequences. Transmathematica, 2022. https://doi.org/10.36285/tm.49[details]
Bergstra, J. A. (2022). Prospective, Retrospective, and Formal Division: a contribution to philosophical arithmetic. Transmathematica, 2022. https://doi.org/10.36285/tm.71[details]
Bergstra, J. A., & Tucker, J. V. (2022). Partial arithmetical data types of rational numbers and their equational specification. Journal of Logical and Algebraic Methods in Programming, 128, Article 100797. https://doi.org/10.1016/j.jlamp.2022.100797[details]
Bergstra, J. A., & Tucker, J. V. (2022). Symmetric Transrationals: The Data Type and the Algorithmic Degree of its Equational Theory. In N. Jansen, M. Stoelinga, & P. van den Bos (Eds.), A Journey from Process Algebra via Timed Automata to Model Learning : Essays Dedicated to Frits Vaandrager on the Occasion of His 60th Birthday (pp. 63-80). (Lecture Notes in Computer Science; Vol. 13560). Springer. https://doi.org/10.1007/978-3-031-15629-8_4[details]
Bergstra, J. A., & Tucker, J. V. (2022). Which Arithmetical Data Types Admit Fracterm Flattening? Scientific Annals of Computer Science, 32(1), 87-107. https://doi.org/10.7561/SACS.2022.1.87[details]
Anderson, J. A. D. W., & Bergstra, J. A. (2021). Review of Suppes 1957 Proposals For Division by Zero. Transmathematica, 2021. https://doi.org/10.36285/tm.53[details]
Bergstra, J. A. (2021). Qualifications of Instruction Sequence Failures, Faults and Defects: Dormant, Effective, Detected, Temporary, and Permanent. Scientific Annals of Computer Science, 31(1), 1-50. https://doi.org/10.7561/SACS.2021.1.1[details]
Bergstra, J. A., & Burgess, M. (2021). Promise Theory and the Alignment of Context, Processes, Types, and Transforms. Transmathematica, 2021. https://doi.org/10.36285/tm.43[details]
Bergstra, J. A., & Middelburg, C. A. (2021). Using Hoare Logic in a Process Algebra Setting. Fundamenta Informaticae, 179(4), 321-344. https://doi.org/10.3233/FI-2021-2026[details]
Bergstra, J. A., & Ponse, A. (2021). Datatype defining rewrite systems for naturals and integers. Logical Methods in Computer Science, 17(1), Article 17. https://doi.org/10.23638/LMCS-17(1:17)2021[details]
Bergstra, J. A., Ponse, A., & Staudt, D. J. C. (2021). Non-commutative propositional logic with short-circuit evaluation. Journal of Applied Non-Classical Logics, 31(3-4), 234-278. Advance online publication. https://doi.org/10.1080/11663081.2021.2010954[details]
Bergstra, J. A. (2020). Most general algebraic specifications for an abstract datatype of rational numbers. Scientific Annals of Computer Science, 30(1), 1-24. https://doi.org/10.7561/SACS.2020.1.1[details]
Bergstra, J. A., & Middelburg, C. A. (2020). On the complexity of the correctness problem for non-zeroness test instruction sequences. Theoretical Computer Science, 802, 1-18. Advance online publication. https://doi.org/10.1016/j.tcs.2019.03.040[details]
Bergstra, J. A., & Middelburg, C. A. (2019). Process Algebra with Strategic Interleaving. Theory of Computing Systems, 63(3), 488–505 . Advance online publication. https://doi.org/10.1007/s00224-018-9873-2[details]
Bergstra, J. A., & Middelburg, C. A. (2019). Program Algebra for Turing-Machine Programs. Scientific Annals of Computer Science, 29(2), 113-139. https://doi.org/10.7561/SACS.2019.2.113[details]
Bergstra, J. A., & Middelburg, C. A. (2018). Instruction sequences expressing multiplication algorithms. Scientific Annals of Computer Science, 28(1), 39-66. https://doi.org/10.7561/SACS.2018.1.39[details]
Bergstra, J. A., & Middelburg, C. A. (2017). Axioms for behavioural congruence of single-pass instruction sequences. Scientific Annals of Computer Science, 27(2), 111-135. https://doi.org/10.7561/SACS.2017.2.111[details]
Bergstra, J. A., & Middelburg, C. A. (2017). Contradiction-tolerant process algebra with propositional signals. Fundamenta Informaticae, 153(1-2), 29-55. https://doi.org/10.3233/FI-2017-1530[details]
Bergstra, J. A., & Ponse, A. (2017). Probability Functions in the Context of Signed Involutive Meadows: Extended Abstract. In P. James, & M. Roggenbach (Eds.), Recent Trends in Algebraic Development Techniques: 23rd IFIP WG 1.3 International Workshop, WADT 2016, Gregynog, UK, September 21–24, 2016 : revised selected papers (pp. 73–87). (Lecture Notes in Computer Science; Vol. 10644). Springer. https://doi.org/10.1007/978-3-319-72044-9_6[details]
2016
Bergstra, J. A., & Middelburg, C. A. (2016). A Hoare-Like Logic of Asserted Single-Pass Instruction Sequences. Scientific Annals of Computer Science, 26(2), 125-156. https://doi.org/10.7561/SACS.2016.2.125[details]
Bergstra, J. A., & Middelburg, C. A. (2016). Instruction sequence size complexity of parity. Fundamenta Informaticae, 149(3), 297-309. https://doi.org/10.3233/FI-2016-1450[details]
Bergstra, J. A., & Middelburg, C. A. (2016). On instruction sets for Boolean registers in program algebra. Scientific Annals of Computer Science, 26(1), 1-26. https://doi.org/10.7561/SACS.2016.1.1[details]
Bergstra, J. A., & Middelburg, C. A. (2016). Transformation of fractions into simple fractions in divisive meadows. Journal of Applied Logic, 16, 92-110. Advance online publication. https://doi.org/10.1016/j.jal.2016.03.001[details]
Bergstra, J. A., & Middelburg, C. A. (2015). Division by zero in non-involutive meadows. Journal of Applied Logic, 13(1), 1-12. Advance online publication. https://doi.org/10.1016/j.jal.2014.10.001[details]
Bergstra, J. A., & Middelburg, C. A. (2015). On algorithmic equivalence of instruction sequences for computing bit string functions. Fundamenta Informaticae, 138(4), 411-434. https://doi.org/10.3233/FI-2015-1219[details]
Bergstra, J. A., & Ponse, A. (2015). Division by zero in common meadows. In R. De Nicola, & R. Hennicker (Eds.), Software, Services, and Systems: essays dedicated to Martin Wirsing on the occasion of his retirement from the Chair of Programming and Software Engineering (pp. 46-61). (Lecture Notes in Computer Science; No. 8950). Springer. https://doi.org/10.1007/978-3-319-15545-6_6[details]
Bergstra, J. A., Bethke, I., & Ponse, A. (2015). Equations for formally real meadows. Journal of Applied Logic, 13(2, pt. B), 1-23. Advance online publication. https://doi.org/10.1016/j.jal.2015.01.004[details]
Bergstra, J. A., Bethke, I., & Ponse, A. (2013). Cancellation meadows: a generic basis theorem and some applications. Computer Journal, 56(1), 3-14. Advance online publication. https://doi.org/10.1093/comjnl/bxs028[details]
Bergstra, J., & Middelburg, C. (2013). Timed tuplix calculus and the Wesseling and van den Berg equation. Scientific Annals of Computer Science, 23(2), 169-190. https://doi.org/10.7561/SACS.2013.2.169[details]
Bergstra, J., & Middelburg, C. A. (2013). Data Linkage Algebra, Data Linkage Dynamics, and Priority Rewriting. Fundamenta Informaticae, 128(4), 367-412. https://doi.org/10.3233/FI-2013-950[details]
Bergstra, J. A., & Bethke, I. (2012). On the contribution of backward jumps to instruction sequence expressiveness. Theory of Computing Systems, 50(4), 706-720. https://doi.org/10.1007/s00224-011-9376-x[details]
Bergstra, J. A., & Middelburg, C. A. (2012). Indirect jumps improve instruction sequence performance. Scientific Annals of Computer Science, 22(2), 253-265. https://doi.org/10.7561/SACS.2012.2.253[details]
Bergstra, J. A., & Middelburg, C. A. (2012). On the behaviours produced by instruction sequences under execution. Fundamenta Informaticae, 120(2), 111-144. https://doi.org/10.3233/FI-2012-753[details]
Bergstra, J. A., & Middelburg, C. A. (2012). On the expressiveness of single-pass instruction sequences. Theory of Computing Systems, 50(2), 313-328. https://doi.org/10.1007/s00224-010-9301-8[details]
Bergstra, J. A., & Ponse, A. (2012). Proposition algebra and short-circuit logic. In F. Arbab, & M. Sirjani (Eds.), Fundamentals of Software Engineering: 4th IPM International Conference, FSEN 2011, Tehran, Iran, April 20-22 2011: revised selected papers (pp. 15-31). (Lecture Notes in Computer Science; Vol. 7141). Springer. https://doi.org/10.1007/978-3-642-29320-7_2[details]
2011
Bergstra, J. A., & Bethke, I. (2011). Straight-line Instruction Sequence Completeness for Total Calculations on Cancellation Meadows. Theory of Computing Systems, 48(4), 840-864. https://doi.org/10.1007/s00224-010-9272-9[details]
Bergstra, J. A., & Middelburg, C. A. (2011). Preliminaries to an investigation of reduced product set finance. Journal of King Abdulaziz University: Islamic Economics, 24(1), 175-210. https://doi.org/10.4197/Islec.24-1.7[details]
Bergstra, J. A., & Middelburg, C. A. (2010). On the operating unit size of load/store architectures. Mathematical Structures in Computer Science, 20(3), 395-417. https://doi.org/10.1017/S0960129509990314[details]
Bergstra, J. A., & Middelburg, C. A. (2009). Instruction sequences with dynamically instantiated instructions. Fundamenta Informaticae, 96(1-2), 27-48. https://doi.org/10.3233/FI-2009-165[details]
Bergstra, J. A., & Middelburg, C. A. (2009). Transmission protocols for instruction streams. In M. Leucker, & C. Morgan (Eds.), Theoretical Aspects of Computing - ICTAC 2009: 6th International Colloquium, Kuala Lumpur, Malaysia, August 16-20, 2009 : proceedings (pp. 127-139). (Lecture Notes in Computer Science; Vol. 5684). Springer. https://doi.org/10.1007/978-3-642-03466-4_8[details]
Bergstra, J. A., & Klint, P. (2008). The Software Invention Cube: A classification scheme for software inventions. Journal of Intellectual Property Rights, 13(4), 293-300. http://nopr.niscair.res.in/handle/123456789/1779[details]
Bergstra, J. A., & Middelburg, C. A. (2008). Maurer computers for pipelined instruction processing. Mathematical Structures in Computer Science, 18(02), 373-409. https://doi.org/10.1017/S0960129507006548[details]
Bergstra, J. A., & Middelburg, C. A. (2008). Parallel processes with implicit computational capital. Electronic Notes in Theoretical Computer Science, 209, 55-81. https://doi.org/10.1016/j.entcs.2008.04.004[details]
Bergstra, J. A., & Tucker, J. V. (2008). Division safe calculation in totalised fields. Theory of Computing Systems, 43(3-4), 410-424. Advance online publication. https://doi.org/10.1007/s00224-007-9035-4[details]
Bergstra, J., Hirschfeld, Y., & Tucker, J. (2008). Fields, meadows and abstract data types. In A. Avron, N. Dershowitz, & A. Rabinovich (Eds.), Pillars of computer science: Essays dedicated to Boris (Boaz) Trakhtenbrot on the occasion of his 85th birthday (pp. 166-178). (Lecture notes in computer science; No. 4800). Springer. https://doi.org/10.1007/978-3-540-78127-1_10[details]
Bergstra, J. A., & Ponse, A. (2016). Datatype defining rewrite systems for the ring of integers, and for natural and integer arithmetic in unary view. (1 ed.) Informatics Institute, University of Amsterdam. https://arxiv.org/abs/1608.06212v1[details]
Bergstra, J. A. (2014). Four Complete Datatype Defining Rewrite Systems for an Abstract Datatype of Natural Numbers. (3 ed.) (TCS Electronic Report series; No. 1407). University of Amsterdam, Theory of Computer Science. https://ivi.fnwi.uva.nl/tcs/pub/tcsreports/TCS1407v3.pdf[details]
Bergstra, J. A., & Burgess, M. (2014). Promises, Impositions, and other Directionals. (1 ed.) Informatics Institute, University of Amsterdam. http://arxiv.org/abs/1401.3381v1[details]
Bergstra, J. A., & Ponse, A. (2014). Three Datatype Defining Rewrite Systems for Datatypes of Integers each extending a Datatype of Naturals. (2 ed.) Informatics Institute, University of Amsterdam. http://arxiv.org/abs/1406.3280v2[details]
Bergstra, J. A., & Weijland, P. (2014). Bitcoin: a Money-like Informational Commodity. (1 ed.) Informatics Institute, University of Amsterdam. http://arxiv.org/abs/1402.4778v1[details]
Bergstra, J. A., & Middelburg, C. A. (2012). Instruction Sequences for Computer Science. (Atlantis Studies in Computing; No. 2). Paris: Atlantis Press. [details]
Bergstra, J. A., & Middelburg, C. A. (2011). An application specific informal logic for interest prohibition theory. ArXiv. http://arxiv.org/abs/1104.0308[details]
Bergstra, J. A., & Middelburg, C. A. (2011). On the behaviours produced by instruction sequences under execution. ArXiv. http://arxiv.org/abs/1106.6196[details]
Bergstra, J. A., & Bethke, I. (2010). On the contribution of backward jumps to instruction sequence expressiveness. ArXiv. http://arxiv.org/abs/1005.5662[details]
Bergstra, J. A., & Middelburg, C. A. (2010). On the definition of a theoretical concept of an operating system. ArXiv. http://arxiv.org/abs/1006.0813[details]
Bergstra, J. A., & Bethke, I. (2009). Straight-line instruction sequence completeness for total calculation on cancellation meadows. ArXiv. http://arxiv.org/abs/0905.4612[details]
Bergstra, J. A., & Middelburg, C. A. (2009). Autosolvability of halting problem instances for instruction sequences. ArXiv. http://arxiv.org/abs/0911.5018[details]
Bergstra, J. A., & Middelburg, C. A. (2009). Timed tuplix calculus and the Wesseling and van den Bergh equation. ArXiv. http://arxiv.org/abs/0901.3003[details]
Bergstra, J. A., & Ponse, A. (2009). A progression ring for interfaces of instruction sequences, threads, and services. ArXiv. http://arxiv.org/abs/0909.2839[details]
Bergstra, J. A., & Middelburg, C. A. (2008). Data linkage algebra, data linkage dynamics, and priority rewriting. ArXiv. http://arxiv.org/abs/0804.4565[details]
Bergstra, J. A., Nolst Trenité, S., & van der Zwaag, M. B. (2008). Tuplix Calculus specifications of financial transfer networks. ArXiv. http://arxiv.org/abs/0805.1806[details]
Bergstra, J. A., & Middelburg, C. A. (2011). Interest prohibition and financial product innovation. In A. Escurat (Ed.), Finance islamique: regard(s) sur une finance alternative: recueil d'articles d'experts internationaux (pp. 274-284). Mazars Hadj Ali. https://keesmiddelburg.files.wordpress.com/2015/05/ipfpi.pdf
Bergstra, J. A., & van Vlijmen, S. F. M. (1998). Theoretische software-engineering: kenmerken, faseringen en classificaties. (Quaestiones Infinitae; Vol. 28). Utrecht: Zeno, the Leiden - Utrecht research institute of philosophy. [details]
2017
Bergstra, J. A., Bethke, I., & Hendriks, D. (2017). Universality of Univariate Mixed Fractions in Divisive Meadows. (1 ed.) Informatics Institute, University of Amsterdam. https://arxiv.org/abs/1707.00499[details]
Bergstra, J. A. (2016). Adams Conditioning and Likelihood Ratio Transfer Mediated Inference. (3 ed.) Informatics Institute, University of Amsterdam. https://arxiv.org/abs/1611.09351v3[details]
Bergstra, J. A. (2016). Conditional Values in Signed Meadow Based Axiomatic Probability Calculus. (3 ed.) Informatics Institute, University of Amsterdam. https://arxiv.org/abs/1609.02812v3[details]
Bergstra, J. A., & Bethke, I. (2015). A negative result on algebraic specifications of the meadow of rational numbers. (1 ed.) Universiteit van Amsterdam. https://arxiv.org/abs/1507.00548v1
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.