Akita, K., & Ando, S. (2023). Constraints on dark matter-neutrino scattering from the Milky-Way satellites and subhalo modeling for dark acoustic oscillations. Journal of Cosmology and Astroparticle Physics, 2023(11), Article 037. https://doi.org/10.1088/1475-7516/2023/11/037[details]
Ando, S., Ekanger, N., Horiuchi, S., & Koshio, Y. (2023). Diffuse neutrino background from past core collapse supernovae. Proceedings of the Japan Academy. Series B, Physical and biological sciences, 99(10), 460-479. https://doi.org/10.2183/pjab.99.026[details]
Horigome, S., Hayashi, K., & Ando, S. (2023). Cosmological prior for the J-factor estimation of dwarf spheroidal galaxies. Physical Review D, 108(8), Article 083530. https://doi.org/10.1103/PhysRevD.108.083530[details]
Zimmer, F., Correa, C. A., & Ando, S. (2023). Influence of local structure on relic neutrino abundances and anisotropies. Journal of Cosmology and Astroparticle Physics, 2023(11), Article 038. https://doi.org/10.1088/1475-7516/2023/11/038[details]
Cao, Z., LHAASO Collaboration, Ando, S., Chianese, M., Miele, G., & Ng, K. C. Y. (2022). Constraints on Heavy Decaying Dark Matter from 570 Days of LHAASO Observations. Physical Review Letters, 129(26), Article 261103. https://doi.org/10.1103/PhysRevLett.129.261103[details]
Cheek, A., du Pree, S. B., Arina, C., Dekker, A., Chianese, M., & Ando, S. (2022). Dark Matter Phenomenology from Upcoming Neutrino Telescopes. Proceedings of Science, 395, Article 550. https://doi.org/10.22323/1.395.0550[details]
Correa, C. A., Schaller, M., Ploeckinger, S., Montel, N. A., Weniger, C., & Ando, S. (2022). TangoSIDM: tantalizing models of self-interacting dark matter. Monthly Notices of the Royal Astronomical Society, 517(2), 3045-3063. https://doi.org/10.1093/mnras/stac2830[details]
Crocker, R. M., Macias, O., Mackey, D., Krumholz, M. R., Ando, S., Horiuchi, S., Baring, M. G., Gordon, C., Venville, T., Duffy, A. R., Yang, R. Z., Aharonian, F., Hinton, J. A., Song, D., Ruiter, A. J., & Filipović, M. D. (2022). Gamma-ray emission from the Sagittarius dwarf spheroidal galaxy due to millisecond pulsars. Nature Astronomy, 6(11), 1317-1324. https://doi.org/10.1038/s41550-022-01777-x[details]
Dekker, A., Ando, S., & Chianese, M. (2022). Interpreting the high-energy neutrino sky through an angular power spectrum analysis. Proceedings of Science, 395, Article 1198. https://doi.org/10.22323/1.395.1198[details]
Dekker, A., Ando, S., Correa, C. A., & Ng, K. C. Y. (2022). Warm dark matter constraints using Milky Way satellite observations and subhalo evolution modeling. Physical Review D, 106(12), Article 123026. https://doi.org/10.1103/PhysRevD.106.123026[details]
Dekker, A., Peerbooms, E., Zimmer, F., Ng, K. C. Y., & Ando, S. (2022). Probing sterile neutrinos and axion-like particles from the Galactic halo with eROSITA. Proceedings of Science, 395, Article 556. https://doi.org/10.22323/1.395.0556[details]
Hiroshima, N., Ando, S., & Ishiyama, T. (2022). Semi-analytical frameworks for subhaloes from the smallest to the largest scale. Monthly Notices of the Royal Astronomical Society, 517(2), 2728-2737. https://doi.org/10.1093/mnras/stac2857[details]
Macias, O., van Leijen, H., Song, D., Ando, S., Horiuchi, S., & Crocker, R. M. (2022). CTA sensitivity to the high-energy tail of the Fermi GeV excess. Proceedings of Science, 395, Article 562. https://doi.org/10.22323/1.395.0562[details]
Shirasaki, M., Okamoto, T., & Ando, S. (2022). Modelling self-interacting dark matter substructures - I: Calibration with N-body simulations of a Milky-Way-sized halo and its satellite. Monthly Notices of the Royal Astronomical Society, 516(3), 4594-4611. https://doi.org/10.1093/mnras/stac2539[details]
Ziegler, J. J., Edwards, T. D. P., Suliga, A. M., Tamborra, I., Horiuchi, S., Ando, S., & Freese, K. (2022). Non-universal stellar initial mass functions: large uncertainties in star formation rates at z ≈ 2–4 and other astrophysical probes. Monthly Notices of the Royal Astronomical Society, 517(2), 2471-2484. https://doi.org/10.1093/mnras/stac2748[details]
Zimmer, F., MacIas, O., Ando, S., Crocker, R. M., & Horiuchi, S. (2022). The Andromeda gamma-ray excess: background systematics of the millisecond pulsars and dark matter interpretations. Monthly Notices of the Royal Astronomical Society, 516(3), 4469-4483. https://doi.org/10.1093/mnras/stac2464[details]
Ando, S., Barik, S. K., Feng, Z., Finetti, M., Guerra Chaves , A., Kanuri, S., Kleverlaan, J., Ma, Y., Maresca Di Serracapriola, N., Meinema, M. S. P., Navarro Martinez, I., Ng, K. C. Y., Peerbooms, E., van Veen, C. A., & Zimmer, F. (2021). Decaying dark matter in dwarf spheroidal galaxies: Prospects for x-ray and gamma-ray telescopes. Physical Review D, 104(2), Article 023022. https://doi.org/10.1103/PhysRevD.104.023022[details]
Basegmez du Pree, S., Arina, C., Cheek, A., Dekker, A., Chianese, M., & Ando, S. (2021). Robust limits from upcoming neutrino telescopes and implications on minimal dark matter models. Journal of Cosmology and Astroparticle Physics, 2021(5), Article 054. https://doi.org/10.1088/1475-7516/2021/05/054[details]
Dekker, A., Peerbooms, E., Zimmer, F., Ng, K. C. Y., & Ando, S. (2021). Searches for sterile neutrinos and axionlike particles from the Galactic halo with eROSITA. Physical Review D, 104(2), Article 023021. https://doi.org/10.1103/PhysRevD.104.023021[details]
MacIas, O., van Leijen, H., Song, D., Ando, S., Horiuchi, S., & Crocker, R. M. (2021). Cherenkov Telescope Array sensitivity to the putative millisecond pulsar population responsible for the Galactic Centre excess. Monthly Notices of the Royal Astronomical Society, 506(2), 1741-1760. https://doi.org/10.1093/mnras/stab1450[details]
Ando, S., Geringer-Sameth, A., Hiroshima, N., Hoof, S., Trotta, R., & Walker, M. G. (2020). Structure formation models weaken limits on WIMP dark matter from dwarf spheroidal galaxies. Physical Review D, 102(6), Article 061302. https://doi.org/10.1103/PhysRevD.102.061302[details]
Dekker, A., Chianese, M., & Ando, S. (2020). Angular power spectrum analysis on current and future high-energy neutrino data. Journal of Physics: Conference Series, 1468, Article 012167. https://doi.org/10.1088/1742-6596/1468/1/012167[details]
Dekker, A., Chianese, M., & Ando, S. (2020). Probing dark matter signals in neutrino telescopes through angular power spectrum. Journal of Cosmology and Astroparticle Physics, 2020(9), Article 007. https://doi.org/10.1088/1475-7516/2020/09/007[details]
Hashimoto, D., Macias, O., Nishizawa, A. J., Hayashi, K., Takada, M., Shirasaki, M., & Ando, S. (2020). Constraining dark matter annihilation with HSC low surface brightness galaxies. Journal of Cosmology and Astroparticle Physics, 2020(1), Article 059. https://doi.org/10.1088/1475-7516/2020/01/059[details]
Ishiwata, K., Macias, O., Ando, S., & Arimoto, M. (2020). Probing heavy dark matter decays with multi-messenger astrophysical data. Journal of Cosmology and Astroparticle Physics, 2020(1), Article 003. https://doi.org/10.1088/1475-7516/2020/01/003[details]
Ishiyama, T., & Ando, S. (2020). The abundance and structure of subhaloes near the free streaming scale and their impact on indirect dark matter searches. Monthly Notices of the Royal Astronomical Society, 492(3), 3662-3671. https://doi.org/10.1093/mnras/staa069[details]
Shirasaki, M., Macias, O., Ando, S., Horiuchi, S., & Yoshida, N. (2020). Cross-correlation of the extragalactic gamma-ray background with the thermal Sunyaev-Zel'dovich effect in the cosmic microwave background. Physical Review D, 101(10), Article 103022. https://doi.org/10.1103/PhysRevD.101.103022[details]
Ando, S., Ishiyama, T., & Hiroshima, N. (2019). Halo Substructure Boosts to the Signatures of Dark Matter Annihilation. Galaxies, 7(3), Article 68. https://doi.org/10.3390/GALAXIES7030068[details]
Aalberts, J. L., Ando, S., Borg, W. M., Broeils, E., Broeils, J., Broeils, S., Kavanagh, B. J., Leguijt, G., Reemst, M., Van Arneman, D. R., & Vu, H. (2018). Precision constraints on radiative neutrino decay with CMB spectral distortion. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 98(2), Article 023001. https://doi.org/10.1103/PhysRevD.98.023001[details]
Ando, S., Benoit-Lévy, A., & Komatsu, E. (2018). Angular power spectrum of galaxies in the 2MASS Redshift Survey. Monthly Notices of the Royal Astronomical Society, 473(4), 4318-4325. https://doi.org/10.1093/mnras/stx2634[details]
Ciucă, I., Kawata, D., Ando, S., Calore, F., Read, J. I., & Mateu, C. (2018). A Gaia DR2 search for dwarf galaxies towards Fermi-LAT sources: implications for annihilating dark matter. Monthly Notices of the Royal Astronomical Society, 480(2), 2284-2291. https://doi.org/10.1093/MNRAS/STY1994[details]
Feyereisen, M. R., Gaggero, D., & Ando, S. (2018). One-point fluctuation analysis of IceCube neutrino events outlines a significant unassociated isotropic component and constrains the Galactic contribution. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 97(10), Article 103017. https://doi.org/10.1103/PhysRevD.97.103017[details]
Hiroshima, N., Ando, S., & Ishiyama, T. (2018). Modeling evolution of dark matter substructure and annihilation boost. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 97(12), Article 123002. https://doi.org/10.1103/PhysRevD.97.123002[details]
Klop, N., & Ando, S. (2018). Constraints on MeV dark matter using neutrino detectors and their implication for the 21-cm results. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 98(10), Article 103004. https://doi.org/10.1103/PhysRevD.98.103004[details]
Klop, N., & Ando, S. (2018). Effects of a neutrino-dark energy coupling on oscillations of high-energy neutrinos. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 97(6), Article 063006. https://doi.org/10.1103/PhysRevD.97.063006[details]
Makiya, R., Ando, S., & Komatsu, E. (2018). Joint analysis of the thermal Sunyaev-Zeldovich effect and 2MASS galaxies: Probing gas physics in the local Universe and beyond. Monthly Notices of the Royal Astronomical Society, 480(3), 3928-3941. https://doi.org/10.1093/MNRAS/STY2031[details]
Renault-Tinacci, N., Kotera, K., Neronov, A., & Ando, S. (2018). Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. Astronomy and Astrophysics, 611, Article A45. https://doi.org/10.1051/0004-6361/201730741[details]
2017
Ando, S., Feyereisen, M. R., & Fornasa, M. (2017). How bright can the brightest neutrino source be? Physical Review D. Particles, Fields, Gravitation, and Cosmology, 95(10), Article 103003. https://doi.org/10.1103/PhysRevD.95.103003[details]
Ando, S., Fornasa, M., Fornengo, N., Regis, M., & Zechlin, H-S. (2017). Astrophysical interpretation of the anisotropies in the unresolved gamma-ray background. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 95(12), Article 123006. https://doi.org/10.1103/PhysRevD.95.123006[details]
Diamanti, R., Ando, S., Gariazzo, S., Mena, O., & Weniger, C. (2017). Cold dark matter plus not-so-clumpy dark relics. Journal of Cosmology and Astroparticle Physics, 2017(6), Article 008. https://doi.org/10.1088/1475-7516/2017/06/008[details]
Feyereisen, M. R., Tamborra, I., & Ando, S. (2017). One-point fluctuation analysis of the high-energy neutrino sky. Journal of Cosmology and Astroparticle Physics, 2017(3), Article 057. https://doi.org/10.1088/1475-7516/2017/03/057[details]
Klop, L. B., Zandanel, F., Hayashi, K., & Ando, S. (2017). Impact of axisymmetric mass models for dwarf spheroidal galaxies on indirect dark matter searches. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 95(12), Article 123012. https://doi.org/10.1103/PhysRevD.95.123012[details]
Troster, T., Camera, S., Fornasa, M., Regis, M., van Waerbeke, L., Harnois-Déraps, J., Ando, S., Bilicki, M., Erben, T., Fornengo, N., Heymans, C., Hildebrandt, H., Hoekstra, H., Kuijken, K., & Viola, M. (2017). Cross-correlation of weak lensing and gamma rays: implications for the nature of dark matter. Monthly Notices of the Royal Astronomical Society, 467(3), 2706-2722. Advance online publication. https://doi.org/10.1093/mnras/stx365[details]
Ando, S., & Ishiwata, K. (2016). Constraining particle dark matter using local galaxy distribution. Journal of Cosmology and Astroparticle Physics, 2016(6), Article 045. https://doi.org/10.1088/1475-7516/2016/06/045[details]
Tamborra, I., & Ando, S. (2016). Inspecting the supernova-gamma-ray-burst connection with high-energy neutrinos. Physical Review D. Particles and Fields, 93(5), Article 053010. https://doi.org/10.1103/PhysRevD.93.053010[details]
Zandanel, F., Weniger, C., & Ando, S. (2016). Angular power spectrum of sterile neutrino decay lines: The role of eROSITA. Journal of Physics: Conference Series, 718(4), Article 042067. https://doi.org/10.1088/1742-6596/718/4/042067[details]
Ando, S., & Ishiwata, K. (2015). Constraints on decaying dark matter from the extragalactic gamma-ray background. Journal of Cosmology and Astroparticle Physics, 2015(5), Article 024. https://doi.org/10.1088/1475-7516/2015/05/024[details]
Ando, S., Tamborra, I., & Zandanel, F. (2015). Tomographic Constraints on High Energy Neutrinos of Hadronuclear Origin. Physical Review Letters, 115(22), Article 221101. https://doi.org/10.1103/PhysRevLett.115.221101[details]
Bartels, R., & Ando, S. (2015). Boosting the annihilation boost: Tidal effects on dark matter subhalos and consistent luminosity modeling. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 92(12), Article 123508. https://doi.org/10.1103/PhysRevD.92.123508[details]
Bartels, R., Zandanel, F., & Ando, S. (2015). Inverse-Compton emission from clusters of galaxies: Predictions for ASTRO-H. Astronomy & Astrophysics, 582, Article A20. https://doi.org/10.1051/0004-6361/201525758[details]
Cabrera-Catalan, M. E., Ando, S., Weniger, C., & Zandanel, F. (2015). Indirect and direct detection prospects for TeV dark matter in the nine parameter MSMM. Physical Review D. Particles and Fields, 92(3), Article 035018. https://doi.org/10.1103/PhysRevD.92.035018[details]
Diamanti, R., Cabrera Catalan, M. E., & Ando, S. (2015). Dark matter protohalos in a nine parameter MSSM and implications for direct and indirect detection. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 92(6), Article 065029. https://doi.org/10.1103/PhysRevD.92.065029[details]
Feyereisen, M. R., Ando, S., & Lee, S. K. (2015). Modelling the flux distribution function of the extragalactic gamma-ray background from dark matter annihilation. Journal of Cosmology and Astroparticle Physics, 2015(9), Article 027. https://doi.org/10.1088/1475-7516/2015/09/027[details]
Murase, K., Laha, R., Ando, S., & Ahlers, M. (2015). Testing the Dark Matter Scenario for PeV Neutrinos Observed in IceCube. Physical Review Letters, 115(7), Article 071301. https://doi.org/10.1103/PhysRevLett.115.071301[details]
Tamborra, I., & Ando, S. (2015). Diffuse emission of high-energy neutrinos from gamma-ray burst fireballs. Journal of Cosmology and Astroparticle Physics, 2015(09), Article 036. https://doi.org/10.1088/1475-7516/2015/09/036[details]
Zandanel, F., Tamborra, I., Gabici, S., & Ando, S. (2015). High-energy gamma-ray and neutrino backgrounds from clusters of galaxies and radio constraints. Astronomy & Astrophysics, 578, Article A32. https://doi.org/10.1051/0004-6361/201425249[details]
Zandanel, F., Weniger, C., & Ando, S. (2015). The role of the eROSITA all-sky survey in searches for sterile neutrino dark matter. Journal of Cosmology and Astroparticle Physics, 2015(9), Article 060. https://doi.org/10.1088/1475-7516/2015/09/060[details]
2014
Ando, S. (2014). Power spectrum tomography of dark matter annihilation with local galaxy distribution. Journal of Cosmology and Astroparticle Physics, 2014(10), Article 061. https://doi.org/10.1088/1475-7516/2014/10/061[details]
Ando, S., Benoit-Lévy, A., & Komatsu, E. (2014). Mapping dark matter in the gamma-ray sky with galaxy catalogs. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 90(2), Article 023514. https://doi.org/10.1103/PhysRevD.90.023514[details]
Tamborra, I., Ando, S., & Murase, K. (2014). Star-forming galaxies as the origin of diffuse high-energy backgrounds: Gamma-ray and neutrino connections, and implications for starburst history. Journal of Cosmology and Astroparticle Physics, 2014(9), Article 043. https://doi.org/10.1088/1475-7516/2014/09/043[details]
Zandanel, F., & Ando, S. (2014). Constraints on diffuse gamma-ray emission from structure formation processes in the Coma cluster. Monthly Notices of the Royal Astronomical Society, 440(1), 663-671. https://doi.org/10.1093/mnras/stu324[details]
Ando, S., & Komatsu, E. (2013). Constraints on the annihilation cross section of dark matter particles from anisotropies in the diffuse gamma-ray background measured with Fermi-LAT. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 87(12), 123539. https://doi.org/10.1103/PhysRevD.87.123539[details]
Ando, S., Baret, B., Bartos, I., Bouhou, B., Chassande-Mottin, E., Corsi, A., Di Palma, I., Dietz, A., Donzaud, C., Eichler, D., Finley, C., Guetta, D., Halzen, F., Jones, G., Kandhasamy, S., Kotake, K., Kouchner, A., Mandic, V., Márka, S., ... Waxman, E. (2013). Colloquium: Multimessenger astronomy with gravitational waves and high-energy neutrinos. Reviews of Modern Physics, 85(4), 1401-1420. https://doi.org/10.1103/RevModPhys.85.1401[details]
Ando, S., & Nagai, D. (2012). Fermi-LAT constraints on dark matter annihilation cross section from observations of the Fornax cluster. Journal of Cosmology and Astroparticle Physics, 2012(7), 017. https://doi.org/10.1088/1475-7516/2012/07/017[details]
Zandanel, F., Tamborra, I., Gabici, S., & Ando, S. (2016). Neutrinos from Clusters of Galaxies and Radio Constraints. Proceedings of Science, 236, Article 1117. https://doi.org/10.22323/1.236.1117[details]
Dekker, A. (2022). Hidden in plain sight: Searching for dark matter signals in the galactic halo. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Klop, L. B. (2019). Enlightening the dark: Exploring the dark sector with gamma-rays and neutrinos. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Feyereisen, M. R. (2017). Predicting the statistics of high-energy astrophysical backgrounds. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.