Breuer, N. O., Sauter, A. W. M., Mohammadi, M., & Acar, E. (2024). CAGE: Causality-Aware Shapley Value for Global Explanations. In xAI World Conference 2024
Orzan, N., Acar, E., Grossi, D., & Rădulescu, R. (2024). Learning in Public Goods Games with Non-Linear Utilities: a Multi-Objective Approach. In Proc. of the Adaptive and Learning Agents Workshop (ALA 2024)
Orzan, N., Acar, E., Radulescu, R., & Grossi, D. (2024). Emergent Cooperation under Uncertain Incentive Alignment. In N. Alechina, V. Dignum, M. Dastani, & J. S. Sichman (Eds.), AAMAS '24: Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems : May 6-10, 2024, Auckland, New Zealand (pp. 1521-1530). International Foundation for Autonomous Agents and Multiagent Systems.
Sauter, A. W. M., Boteghi, N., Acar, E., & Plaat, A. (2024). CORE: Towards Scalable and Efficient Causal Discovery with Reinforcement Learning. In N. Alechina, V. Dignum, M. Dastani, & J. S. Sichman (Eds.), AAMAS '24: Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems : May 6-10, 2024, Auckland, New Zealand (pp. 1664-1672). International Foundation for Autonomous Agents and Multiagent Systems.
Orzan, N., Acar, E., Grossi, D., & Rădulescu, R. (2023). Emergent Cooperation and Deception in Public Good Games. In Proc. of the Adaptive and Learning Agents Workshop (ALA 2023)
Sauter, A., Acar, E., & François-Lavet, V. (2023). A Meta-Reinforcement Learning Algorithm for Causal Discovery. Proceedings of Machine Learning Research, 213, 602-619. https://doi.org/10.48550/arXiv.2207.08457[details]
Feng, R., Acar, E., Wang, Y., Schlobach, S., Liu, W., & Ding, W. (2022). Computing Sufficient and Necessary Conditions in CTL: A Forgetting Approach. Information Sciences, 616, 474-504. https://doi.org/10.1016/j.ins.2022.10.124[details]
GhadimiAtigh, M., Schoep, J., Acar, E., van Noord, N., & Mettes, P. (2022). Hyperbolic Image Segmentation. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition: New Orleans, Louisiana, 19-24 June 2022 : proceedings (pp. 4443-4452). (CVPR). IEEE Computer Society. https://doi.org/10.1109/CVPR52688.2022.00441[details]
Ho, L., Acar, E., Arch-int, , S., Schlobach, K. S., & Arch-int, N. (2022). An argumentative approach for handling inconsistency in prioritized Datalog± ontologies. AI Communications.
Verma, M., & Acar, E. (2022). Learning to Cooperate with Human Evaluative Feedback and Demonstrations. In Proceedings of. HHAI2022: Augmenting Human Intellect
van Krieken, E., Acar, E., & van Harmelen, F. (2022). Analyzing Differentiable Fuzzy Logic Operators. Artificial Intelligence, 302, Article 103602. https://doi.org/10.1016/j.artint.2021.103602
2024
Azarm, C., Acar, E., & van Zeelt, M. (2024). On the Potential of Network-Based Features for Fraud Detection. (v1 ed.) ArXiv. https://doi.org/10.48550/arXiv.2402.09495
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.