For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.

Prof. dr. S. (Sebastian) Schelter

Faculty of Science
Informatics Institute

Visiting address
  • Science Park 900
Postal address
  • Postbus 94323
    1090 GH Amsterdam
Contact details
  • Publications

    2024

    • Deng, S., Sprangers, O., Li, M., Schelter, S., & de Rijke, M. (2024). Domain Generalization in Time Series Forecasting. ACM Transactions on Knowledge Discovery from Data, 18(5), Article 113. https://doi.org/10.1145/3643035 [details]

    2023

    2022

    • Ariannezhad, M., Jullien, S., Li, M., Fang, M., Schelter, S., & de Rijke, M. (2022). ReCANet: A Repeat Consumption-Aware Neural Network for Next Basket Recommendation in Grocery Shopping. In SIGIR '22: proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval : July 11-15, 2022, Madrid, Spain (pp. 1240-1250). The Association for Computing Machinery. https://doi.org/10.1145/3477495.3531708 [details]
    • Ariannezhad, M., Yahya, M., Meij, E., Schelter, S., & de Rijke, M. (2022). Understanding Financial Information Seeking Behavior from User Interactions with Company Filings. In WWW '22 Companion: companion proceedings of the Web Conference 2022: April 25, 2022, Lyon, France (pp. 586-594). Association for Computing Machinery. https://doi.org/10.1145/3487553.3524636 [details]
    • Döhmen, T., Hulsebos, M., Becks, C., & Schelter, S. (2022). GitSchemas: A Dataset for Automating Relational Data Preparation Tasks. In Proceedings, 2022 IEEE 38th International Conference on Data Engineering Workshops (ICDEW 2022): 9-11 May 2022, virtual event (pp. 74-78). IEEE Computer Society. https://doi.org/10.1109/ICDEW55742.2022.00016 [details]
    • Grafberger, S., Groth, P., & Schelter, S. (2022). Towards data-centric what-if analysis for native machine learning pipelines. In Proceedings of the Sixth Workshop on Data Management for End-to-End Machine Learning: in conjunction with the 2022 ACM SIGMOD/PODS Conference, Philadelphia, PA, USA Article 3 Association for Computing Machinery. https://doi.org/10.1145/3533028.3533303 [details]
    • Grafberger, S., Groth, P., Stoyanovich, J., & Schelter, S. (2022). Data distribution debugging in machine learning pipelines. VLDB Journal, 31(5), 1103-1126. https://doi.org/10.1007/s00778-021-00726-w [details]
    • Kersbergen, B., Sprangers, O., & Schelter, S. (2022). Serenade - Low-Latency Session-Based Recommendation in e-Commerce at Scale. In SIGMOD '22: proceedings of the 2022 International Conference on the Management of Data : June 12-17, 2022, Philadelphia, PA, USA (pp. 150-159). Association for Computing Machinery. https://doi.org/10.1145/3514221.3517901 [details]
    • Redyuk, S., Kaoudi, Z., Schelter, S., & Markl, V. (2022). DORIAN in action: Assisted Design of Data Science Pipelines. Proceedings of the VLDB Endowment, 15(12), 3714–3717. https://doi.org/10.14778/3554821.3554882 [details]
    • Sarvi, F., Heuss, M., Aliannejadi, M., Schelter, S., & de Rijke, M. (2022). Understanding and Mitigating the Effect of Outliers in Fair Ranking. In WSDM '22: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining : February 21-25, 2022 : virtual event, Tempe, AZ, USA (pp. 861-869). Association for Computing Machinery. https://doi.org/10.1145/3488560.3498441 [details]
    • Schelter, S. (2022). Letter from the Special Issue Editor. Bulletin of the Technical Committee on Data Engineering, 45(1), 2-3. http://sites.computer.org/debull/A22mar/p2.pdf [details]
    • Stoyanovich, J., Abiteboul, S., Howe, B., Jagadish, H. V., & Schelter, S. (2022). Responsible data management. Communications of the ACM, 65(6), 64-74. https://doi.org/10.1145/3488717 [details]

    2021

    • Ariannezhad, M., Jullien, S., Nauts, P., Fang, M., Schelter, S., & de Rijke, M. (2021). Understanding Multi-Channel Customer Behavior in Retail. In CIKM '21: proceedings of the 30th ACM International Conference on Information & Knowledge Management : November 1-5, 2021, virtual event, Australia (pp. 2867–2871). The Association for Computing Machinery. https://doi.org/10.1145/3459637.3482208 [details]
    • Grafberger, S., Guha, S., Stoyanovich, J., & Schelter, S. (2021). MLINSPECT: A Data Distribution Debugger for Machine Learning Pipelines. In SIGMOD '21: proceedings of the 2021 International Conference on the Management of Data : June 20 -25, 2021, virtual event, China (pp. 2736–2739). Association for Computing Machinery. https://doi.org/10.1145/3448016.3452759 [details]
    • Kersbergen, B., & Schelter, S. (2021). Learnings from a Retail Recommendation System on Billions of Interactions at bol.com. In 2021 IEEE 37th International Conference on Data Engineering: ICDE 2021 : proceedings : Chania, Greece, 19-22 April 2021 (pp. 2447-2452). (International Conference on Data Engineering; Vol. 37). IEEE Computer Society. https://doi.org/10.1109/ICDE51399.2021.00277 [details]
    • Schelter, S. (2021). Letter from the Special Issue Editor. Bulletin of the Technical Committee on Data Engineering, 44(1), 2. http://sites.computer.org/debull/A21mar/p2.pdf [details]
    • Schelter, S., Grafberger, S., & Dunning, T. (2021). HedgeCut: Maintaining Randomised Trees for Low-Latency Machine Unlearning. In SIGMOD '21: proceedings of the 2021 International Conference on the Management of Data : June 20 -25, 2021, virtual event, China (pp. 1545–1557). Association for Computing Machinery. https://doi.org/10.1145/3448016.3457239 [details]
    • Sprangers, O., Schelter, S., & de Rijke, M. (2021). Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression. In KDD ’21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining : August 14-18, 2021, virtual event, Singapore (pp. 1510-1520). Association for Computing Machinery. https://doi.org/10.1145/3447548.3467278 [details]

    2020

    2023

    2023

    2022

    2021

    • Doehmen, T., Mühleisen, H. F., Raasveldt, M., & Schelter, S. (2021). Data Quality Assertions for Machine Learning Pipeline. Paper presented at Workshop on Challenges in Deploying and Monitoring ML Systems at ICML.
    • Grafberger, S., Stoyanovich, J., & Schelter, S. (2021). Lightweight Inspection of Data Preprocessing in Native Machine Learning Pipelines. Paper presented at Conference on Innovative Data Systems Research (CIDR) 2020.
    • Grafberger, S., Stoyanovich, J., & Schelter, S. (2021). Lightweight Inspection of Data Preprocessing in Native Machine Learning Pipelines. Paper presented at Conference on Innovative Data Systems Research. http://cidrdb.org/cidr2021/papers/cidr2021_paper27.pdf
    • Redyuk, S., Kaoudi, Z., Markl, V., & Schelter, S. (2021). Automating Data Quality Validation for Dynamic Data Ingestion. Paper presented at International Conference on Extending Database Technology (EDBT 2021).
    • Schelter, S. (2021). Towards Efficient Machine Unlearning via Incremental View Maintenance. Paper presented at Workshop on Challenges in Deploying and Monitoring ML Systems at ICML. https://ssc.io/pdf/ivm-unlearning.pdf
    • Schelter, S., Rukat, T., & Biessmann, F. (2021). Jenga - A Framework to Study the Impact of Data Errors on the Predictions of Machine Learning Models. Paper presented at International Conference on Extending Database Technology (EDBT 2021).
    • Wang, L., & Schelter, S. (2021). Efficiently Maintaining Next Basket Recommendations under Additions and Deletions of Baskets and Items. Paper presented at Workshop on Online Recommender Systems and User Modeling at ACM RecSys. https://doi.org/10.48550/arXiv.2201.13313

    2020

    2024

    • Sprangers, O. R. (2024). Efficient and accurate forecasting in large-scale settings. [Thesis, fully internal, Universiteit van Amsterdam]. [details]

    2023

    • Ariannezhad, M. (2023). User-oriented recommender systems in retail. [Thesis, fully internal, Universiteit van Amsterdam]. [details]

    2024

    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Ancillary activities
    No ancillary activities