For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.

A. (Ana) Lucic PhD

Faculty of Science
ILLC

Visiting address
  • Science Park 900
Postal address
  • Postbus 94242
    1090 GE Amsterdam
Contact details
  • Publications

    2022

    • Lucic, A., Bleeker, M., Bhargav, S., Forde, J. Z., Sinha, K., Dodge, J., Luccioni, S., & Stojnic, R. (2022). ACL tutorial proposal: Towards Reproducible Machine Learning Research in Natural Language Processing. In L. Benotti, N. Okazaki, Y. Scherrer, & M. Zampieri (Eds.), The 60th Annual Meeting of the Association for Computational Linguistics: ACL 2022 : tutorial abstracts : May 22-27, 2022 (pp. 7-11). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.acl-tutorials.2 [details]
    • Lucic, A., Bleeker, M., Jullien, S., Bhargav, S., & de Rijke, M. (2022). Reproducibility as a Mechanism for Teaching Fairness, Accountability, Confidentiality, and Transparency in Artificial Intelligence. Proceedings of the AAAI Conference on Artificial Intelligence, 36(11), 12792-12800. https://doi.org/10.1609/aaai.v36i11.21558 [details]
    • Lucic, A., Bleeker, M., de Rijke, M., Sinha, K., Jullien, S., & Stojnic, R. (2022). Towards Reproducible Machine Learning Research in Information Retrieval. In SIGIR '22: proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval : July 11-15, 2022, Madrid, Spain The Association for Computing Machinery.

    2021

    • Lucic, A., ter Hoeve, M., Tolomei, G., de Rijke, M., & Silvestri, F. (2021). CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks. In DLG-KDD’21: Deep Learning on Graphs, August 14–18, 2021, Online Article 3 ACM. https://doi.org/10.1145/1122445.1122456 [details]

    2020

    • Lucic, A., Haned, H., & de Rijke, M. (2020). Why Does My Model Fail? Contrastive Local Explanations for Retail Forecasting. In FAT* '20: proceedings of the 2020 Conference on Fairness, Accountability, and Transparency : January 27-30, 2020, Barcelona, Spain (pp. 90-98). The Association for Computing Machinery. https://doi.org/10.1145/3351095.3372824 [details]

    2019

    • Olteanu, A., Garcia-Gathright, J., de Rijke, M., Ekstrand, M. D., Roegiest, A., Lipani, A., Beutel, A., Lucic, A., Stoica, A.-A., Das, A., Biega, A., Voorn, B., Hauff, C., Spina, D., Lewis, D., Oard, D. W., Yilmaz, E., Hasibi, F., Kazai, G., ... Kamishima, T. (2019). FACTS-IR: Fairness, Accountability, Confidentiality, Transparency, and Safety in Information Retrieval. SIGIR Forum, 53(2), 20-43. http://sigir.org/wp-content/uploads/2019/december/p020.pdf [details]

    2021

    2019

    • Lucic, A., Haned, H., & de Rijke, M. (2019). Contrastive Explanations for Large Errors in Retail Forecasting Predictions through Monte Carlo Simulations. In T. Miller, R. Weber, & D. Magazzeni (Eds.), Proceedings of the IJCAI 2019 Workshop on Explainable Artificial Intelligence (pp. 66-72). IJCAI. https://arxiv.org/abs/1908.00085v1 [details]
    • Lucic, A., Haned, H., & de Rijke, M. (2019). Explaining Predictions from Tree-based Boosting Ensembles. In Proceedings of FACTS-IR 2019 ArXiv. https://arxiv.org/abs/1907.02582 [details]

    2022

    • Lucic, A., Oosterhuis, H., Haned, H., & de Rijke, M. (2022). FOCUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles. Poster session presented at 36th AAAI Conference on Artificial Intelligence (AAAI-2022). https://doi.org/10.48550/arXiv.1911.12199

    2021

    • Lucic, A., Srikumar, M., Bhatt, U., Xiang, A., Taly, A., Liao, Q. V., & de Rijke, M. (2021). A Multistakeholder Approach Towards Evaluating AI Transparency Mechanisms. Paper presented at HCXAI2021: ACM CHI Workshop Human-Centered Perspectives in Explainable AI, Yokohama, Japan. https://arxiv.org/abs/2103.14976 [details]

    2022

    • Lucic, A. (2022). Explaining predictions from machine learning models: algorithms, users, and pedagogy. [Thesis, fully internal, Universiteit van Amsterdam]. [details]

    2019

    • Lucic, A., Oosterhuis, H., Haned, H., & de Rijke, M. (2019). Actionable Interpretability through Optimizable Counterfactual Explanations for Tree Ensembles. (v1 ed.) ArXiv. [details]
    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Ancillary activities
    No ancillary activities