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1 Introduction

The financial crisis 2007-2008 and the subsequent Great Recession, the most severe

economic crisis since the Great Depression in the 1930s, have increased concerns from

policy makers and academics about the empirical relevance of the standard repre-

sentative rational agent framework in macroeconomics. In an often quoted speech

during the crisis in November 2010, European Central Bank (ECB) then Governor

Jean-Claude Trichet expressed these concerns as follows:

“When the crisis came, the serious limitations of existing economic and financial

models immediately became apparent. Macro models failed to predict the crisis and

seemed incapable of explaining what was happening to the economy in a convincing

manner. As a policy-maker during the crisis, I found the available models of limited

help. In fact, I would go further: in the face of the crisis, we felt abandoned by con-

ventional tools”.

Macroeconomists have raised similar concerns. For example, Blanchard (2014) stressed

that

“The main lesson of the crisis is that we were much closer to “dark corners” –

situations in which the economy could badly malfunction – than we thought. Now

that we are more aware of nonlinearities and the dangers they pose, we should explore

them further theoretically and empirically ... If macroeconomic policy and financial

regulation are set in such a way as to maintain a healthy distance from dark corners,

then our models that portray normal times may still be largely appropriate. Another

class of economic models, aimed at measuring systemic risk, can be used to give warn-

ing signals that we are getting too close to dark corners, and that steps must be taken

to reduce risk and increase distance.”

The most important class of macromodels, before the crisis commonly used by Central

Banks and other policy institutions, are the Dynamic Stochastic General Equilibrium

(DSGE) models. In response to the critique above, since the crisis DSGE macro-

models have been adapted and extended by including financial frictions within the

NK framework, e.g. in Cúrdia & Woodford (2010, 2016), Gertler & Karadi (2011,

2013), Christiano et al. (2010) and Gilchrist et al. (2009). These extension, however,
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maintain the standard rationality framework of mainstream macroeconomics assum-

ing infinite horizon utility and profit maximization and fully rational expectations.

In the speech quoted above, Trichet went much further:

“The atomistic, optimising agents underlying existing models do not capture behaviour

during a crisis period. We need to deal better with heterogeneity across agents and the

interaction among those heterogeneous agents. We need to entertain alternative mo-

tivations for economic choices. behavioral economics draws on psychology to explain

decisions made in crisis circumstances. Agent-based modelling dispenses with the op-

timisation assumption and allows for more complex interactions between agents.”

Since the outbreak of the financial-economic crisis a heavy debate among macroe-

conomists about the future of macroeconomic theory has emerged. The recent special

issue on ‘Rebuilding macroeconomic theory” in the Oxford Review of Economic Policy

collects a number of recent discussions on this topic. Stiglitz (2018) is particularly

critical of DSGE models; Christiano et al. (2018) provide a detailed reply defend-

ing the DSGE approach. Based on questionaires and two conferences, Vines & Wills

(2018) conclude that four main changes to the core model in macro are recommended:

(i) to emphasize financial frictions, (ii) to place a limit on the operation of rational ex-

pectations, (iii) to include heterogeneous agents, and (iv) to devise more appropriate

microfoundations. There have also been more radical proposals for changing macro

by a paradigm shift to using an interdisciplinary complex systems approach, behav-

ioral agent-based models and simulation (rather than analytical tools), e.g. Battiston

et al. (2016), Bookstaber & Kirman (2018), Haldane & Turrell (2018) and Dawid &

Delli Gatti (2018).

This paper surveys some of the literature taking such a more radical, behavioral

departure from the standard representative rational agent model emphasizing the

role of non-rational expectations and bounded rationality in stylized complexity mod-

els. There is a large behavioral macroeconomics literature on this topic, but many

mainstream macro-economists seem to be largely unaware of it. We argue that allow-

ing for learning and heterogeneous expectations enriches the standard models with

non-linearities and many empirically relevant features, such as boom and bust cycles.
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In the last two decades a rich behavioral theory of expectations that fits empirical

time series observations, laboratory experiments and survey data has emerged that

should become part of the standard toolbox for policy analysis1.

Behavioral economics has become widely accepted and, one could argue, belongs

to the mainstream at least since the Nobel prizes of George Akerlof in 2001 and

Daniel Kahnemann in 2002. But much of the research in the area of behavioral

economics focused on individual behavior and macroeconomists, until recently, have

argued that behavioral biases wash out at the aggregate level. Behavioral finance

has also become well-established and, for example, much of the work of the 2013

and 2017 Nobel prize winners Robert Shiller and Richard Thaler fits into behavioral

finance. Recently, however, macroeconomists show an increased interest in behavioral

modeling. For example, at the NBER summer institute Andrew Caplin and Mike

Woodford have organized workshops on behavioral macroeconomics since 2015 and

a JEL-code (E03) for behavioral macroeconomics exists since 2017. Experimental

economics is also a well established field and, one could argue, has become part of

the mainstream since the Nobel prizes of Reinhard Selten in 1994 and Vernon Smith

in 2002. Most lab experiments however focused on individual decision making or on

strategic interactions in games with 2 or 3 players. Although market experiments with

small groups (say 6 to 10 subjects) go back a long way to at least the double auction

experiments of Smith (1962) and the influential asset market bubble experiments of

Smith et al. (1988) most macroeconomists have ignored laboratory experiments as a

research method. But macroeconomics could benefit from lab experiments in a similar

way as microeconomics has done, and macroeconomists should adress the question:

if a macro theory does not work in a simple controlled laboratory environment, why

would it work in reality? Experimental macroeconomics is becoming increasingly

popular, as a complementary method to studying stylized macrosystems and falsifying

1In a related but different survey Woodford (2014) discusses the role of non-rational expectations

within the New Keynesian modeling framework. While Woodford restricts attention to homoge-

neous expectations and stresses close to rational expectations, such as near-rational expectations

(Woodford, 2010; Adam and Woodford, 2012) and rational belief equilibria (Kurz, 1997, 2012), we

will stress behavioral features and parsimonious forecasting heuristics and emphasize the role of

heterogeneous expectations.
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macro theory in controlled laboratory environments; see e.g. the collection of papers

in Duffy (2014) and the recent Handbook chapters Duffy (2016), Arifovic & Duffy

(2018) and Mauersberger & Nagel (2018).

The starting point of our survey is the development of theories of learning in

macroeconomics originating more than 30 years ago, when macroeconomists became

aware of the multiplicity of (rational) equilibria in standard macro-model settings.

As a direct motivation and inspiration for this survey we use the following quote from

Lucas (1986) concerning stability or learning theory [emphasis added]:

Recent theoretical work is making it increasingly clear that the multiplicity of equi-

libria ... can arise in a wide variety of situations involving sequential trading, in

competitive as well as finite agent games. All but a few of these equilibria are, I

believe, behaviorally uninteresting: They do not describe behavior that collections of

adaptively behaving people would ever hit on. I think an appropriate stability theory

can be useful in weeding out these uninteresting equilibria ... But to be useful, stability

theory must be more than simply a fancy way of saying that one does not want to think

about certain equilibria. I prefer to view it as an experimentally testable hypothesis,

as a special instance of the adaptive laws that we believe govern all human behavior.

A key question for macroeconomic behaviour then is: what is the aggregate behav-

ior that a collection of adaptively behaving individuals will learn to coordinate on? A

second key question is: how can policy affect this complex coordination process? To

discuss these questions and survey the state of the art of the literature two topics are

of particular interest and deserve a brief discussion in this introduction (i) complex

systems and (ii) macro laboratory experiments.

There is no universal definition of a complex system, but there are two important

characteristics that we will stress2: (i) nonlinearity and (ii) heterogeneity. Nonlinear-

ities can lead to multiple equilibria and, as a consequence, small changes at the micro

2Another important aspect of complex systems that is receiving much attention in recent work

concerns networks. For example, financial networks may have increased systemic risk and may have

caused cascades that have exaggerated the global financial-economic crisis. This aspect of complex

systems will not be dealt with here. The interested reader is e.g. referred to Iori & Mantegna (2018)

and Goyal (2018).
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level may amplify and lead to critical transitions or tipping points at the macro level.

Figure 1 illustrates the phenomenon of a critical transition, see Scheffer (2009) for

an extensive discussion. When nonlinearities are mild, a change in parameters only

causes a gradual change in the unique stable steady state of the system. When non-

linearities become stronger, then a small change in parameters may lead to a larger

change in the stable steady state of the system, but the change is still continuous

and reversible. In the presence of very strong nonlinearities multiple steady states

arise and catastrophic changes from a ”good” steady state to a ”bad” or ”crisis”

steady state of the system may occur after small changes of parameters (e.g. Scheffer

(2009), Scheffer et al. (2012). After such a catastrophic change, the system can not

easily be recovered and pushed back to the ”good” steady state (see the caption of

Figure 1). Such strong nonlinearities can model the “dark corners” of the economy

Blanchard (2014) is referring to. It is very important to understand the key nonlin-

earities of the economy, in order to control policy parameters to prevent the system

from undesirable critical transitions and sudden collapse. Standard DSGE models

have been criticized for not being able to predict the financial-economic crisis. Such a

critique may be somewhat unfair, because crises in complex systems are very hard to

predict. However, what has been more critical for the standard DSGE models is its

almost entire focus on (log) linearized models with fully rational agents and a unique

equilibrium. In such models, by assumption, a crisis through a critical transition can

never exist. A realistic model of the macroeconomy should allow for the possibility of

a crisis other than through large exogenous shocks.

A second important aspect of complex systems is that it consists of multiple

(often many) heterogeneous agents, who interact with each other. A multi-agent

complex macro-system can not be reduced to a single, individual agent system, but

its interactions at the micro level must be studied to explain its aggregate behavior3.

Complex systems exhibit emergent macro behavior as the aggregate outcome of micro

interactions. As a simple example from physics one may think of a glass of water,

exhibiting a critical transition from liquid to solid when the temperature (which

3The key observation that macro behavior in a complex system can not be reduced to micro

behavior has been nicely summarized in the title of one of the first and seminal papers on complexity:

”More is different”, Anderson (1972).
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Figure 1: Multiple steady states and critical transitions or tipping points. Panel (a):

When nonlinearities are mild the steady state is unique and a change in parameters

only leads to a gradual change in the stable steady state of the system; Panel (b):

When nonlinearities become stronger, a small change in parameters may lead to a

larger change in the stable steady state of the system, but the change is still continuous

and reversible; Panel (c): With very strong nonlinearities multiple steady states

co-exist and catastrophic changes from a ”good” steady state to a ”bad” or ”crisis”

steady state of the system may occur after small changes of a parameter. At the point

F1 a catastrophic change occurs and the system jumps from the ”good” upper stable

steady state to the ”bad” lower steady state. After such a catastrophic change, the

system can not easily be recovered as pushing back the system to the ”good” steady

state requires that the parameter be decreased until the point F2, where the ”bad”

steady state disappears.
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may be viewed as a “policy parameter”) varies and falls below zero. In economics, a

complex system consists of many economic agents (consumers, firms, investors, banks,

etc.), which may be heterogeneous in various aspects. One would like to understand

the emergent properties of complex macroeconomic systems and, in particular, how

policy parameters might affect these emergent aggregate outcomes.

Perhaps the most crucial difference from complex systems in the natural sciences

is that in economics and the social sciences, the ”particles can think” and one needs

a theory of adaptive behavior and learning. In social-economic systems a theory

of individual adaptive behavior is part of the law of motion of the macroeconomy.

A central question to this survey is: what are the emergent properties of stylized

complex macroeconomic systems with boundedly rational heterogeneous agents. Will

a collection of boundedly rational heterogeneous agents more likely coordinate on

the (homogeneous) rational outcome or are fluctuation with booms and bust cycles

a more likely aggregate outcome? This brings us back to Lucas (1986) (see the

earlier quote) who views the question of collective behavior and coordination an

empirical question, an experimentally testable hypothesis. Indeed a large literature

on laboratory macro experiments has developed in recent years, in particular the

learning-to-forecast experiments to study coordination of expectations in the lab.

These macro experiments provide laboratory data, both at the individual (micro)

and the aggregate (macro) level, which can be used to test, falsify, calibrate or even

estimate behavioral models. In this way, behavioral theory needs laboratory testing

as a complementary tool for empirical analysis of various behavioral assumptions and

models.

The survey is organized as follows. Section 2 discusses behavioral models with

different degrees of (ir)rationality. There are many different models with boundedly

rational interacting agents. To address the ‘wilderness of bounded rationality’ our

focus is on parsimonious decision rules that are validated in empirical work and

laboratory experiments. This leads to stylized behavioral complexity models that are

still partly analytically tractable4. Section 3 discusses experimental macroeconomics

4Complementary to these stylized models there is a large and rapidly increasing literature on

agent-based simulation models using more detailed ”bottom-up” modeling of individual decision

rules of heterogeneous agents. The recent handbook on heterogeneous agent modeling (Hommes &
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and policy experiments, while Section 4 summarizes and discusses policy implications

of the observed coordination failure on non-rational, almost self-fulfilling equilibria.

2 Behavioral Models

What exactly is meant by “behavioral macroeconomics” is not easy to define. In

his Nobel prize Lecture “Behavioral macroeconomics and macroeconomic behavior”,

Akerlof (2002) uses a very broad definition that, e.g., includes models of asymmetric

information, maintaining the assumption of rational expectations, to explain mar-

ket failures5. In a recent survey Driscoll & Holden (2014) summarize and discuss

several concepts that behavioral economics has brought to macro-models, such as

fairness considerations and other regarding social preferences, cognitive biases, hy-

perbolic discounting of consumption and savings, habit formation and rule-of-thumb

consumption. De Grauwe (2012) in his Lectures on behavioral Macroeconomics em-

phasizes boundedly rational heterogeneous expectations in the New Keynesian macro-

model, where agents switch between simple forecasting heuristics based upon their

relative performance as in Brock & Hommes (1997). There are thus many possible

deviations –large or small– from the benchmark rational model. In the traditional

macroeconomic paradigm there are (at least) three crucial assumptions underlying

many models: (i) agents have rational expectations; (ii) agents behave optimal, i.e.

maximize utility, profits, etc., and, related to both; (iii) agents have an infinite hori-

zon for optimization and expectations. A pragmatic (but still admittedly subjective)

definition of behavioral macroeconomics would be that (at least) one of these as-

sumptions is relaxed and replaced by some form of bounded rationality. How many

of these assumptions should be relaxed and by how much is then a matter of debate.

For example, most agent-based models deviate from all of these three assumptions, to

build a completely new macroeconomic system from ”bottom-up” modeling of agents’

using simple micro-decision rules (heuristics); see (Dawid & Delli Gatti 2018) for a

LeBaron 2018) provides a state of the art overview; see especially the survey by Dawid & Delli Gatti

(2018) on agent-based macroeconomics.
5Other approaches emphasizing informational frictions, but maintaining rational expectations

include rational inattention (Sims 2010) and imperfect knowledge (Angeletos & Lian 2016).
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recent survey on agent-based models in macroeconomics.

In our survey we focus on stylized, behavioral models with learning and heteroge-

neous expectations. The question on what kind of (near) equilibria a population of

heterogeneous boundedly rational forecasters might coordinate will play a prominent

role throughout the survey. We start the survey with homogeneous adaptive learn-

ing (Subsection 2.1), then move to heterogeneous expectations (Subsection 2.2) and

behavioral New Keynesian models (Subsection 2.3).

2.1 Adaptive learning

In the last three decades the adaptive learning approach has become a standard

model of bounded rationality in macroeconomics. Agents behave as econometri-

cians or statisticians and use an econometric forecasting model –the perceived law

of motion– whose parameters are updated over time, e.g. through recursive ordinary

least squares, as additional observations become available. Early papers in this area

are, e.g., Marcet & Sargent (1989a,b). The comprehensive overviews given by Evans

and Honkapohja (2001) and more recently in Evans and Honkapohja (2013) have

contributed much to its popularity in macoreconomics; see also Sargent (1993) for an

early stimulating discussion of bounded rationality and learning.

Early work stressed learning of the parameters of a correctly specified model, that

is, a perceived law of motion of exactly the same form as the (simplest) rational solu-

tion, with agents learning the parameters over time. Such an analysis then provides a

stability theory of rational expectations equilibria and an equilibrium selection device

to determine which rational equilibria are stable. Stability under adaptive learning

should be seen as a minimum requirement of a REE, because without stability under

learning coordination of a population of adaptive agents on a rational equilibrium

seems highly unlikely.

2.1.1 Stability under learning

For readers not familiar with adaptive learning it is useful to discuss stability under

learning in a basic example. Consider a simple linear law of motion of the economy
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with an endogenous state variable xt driven by exogenous stochastic shocks yt:

xt = a+ bxet+1 + cyt−1 + ut, (1)

yt = d+ ρyt−1 + εt. (2)

To be concrete, one may think of xt as an asset price, whose evolution is affected

by price expectations xet+1 and by an exogenous AR(1) dividend process yt with

autocorrelation parameter ρ, 0 < ρ < 1. The simplest rational solution, called the

minimum state variable (MSV) solution is of the form

xt = α + γyt−1 + ut, (3)

with the price given as a linear function of the exogenous fundamental shocks (divi-

dends). Assume for the moment that the parameters α and γ are fixed. Given that

all agents believe that xt follows the perceived law of motion (PLM) (3) the implied

actual law of motion (ALM) becomes

xt = a+ bα + bγd+ (c+ bγρ)yt−1 + ut. (4)

A rational expectations solution is then a fixed point of the mapping T , from the

PLM (3) to the ALM (4), and must satisfy

T (α, γ) = (a+ bα + bγd, c+ bγρ). (5)

The fixed point of the T-map corresponds to a REE solution and is given by:

α =
a

1− b
+

bcd

(1− b)(1− bρ)
, γ =

c

1− bρ
. (6)

Adaptive learning means that agents learn the parameters α and γ of the PLM (3)

using estimation techniques such as ordinary least squares, which may be written

in a recursive form algorithm. A simple associated differential equation governs the

stability of the adaptive learning process and is given by
dα

dτ
= T1(α, γ)− α = a+

bcd

1− bρ
+ (b− 1)α

dγ

dτ
= T2(α, γ)− γ = c+ (bρ− 1)γ

(7)

The REE in (3) is also a fixed point of this differential equation (7) and, in this

example, it is a (locally) stable fixed point, when the parameters bρ < 1. One of the
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main general results form the adaptive learning literature is the E-stability principle

stating that a REE (i.e. a fixed point of the T-map) is locally stable under adaptive

learning processes such as OLS, when it is a locally stable fixed point of the associated

ODE. In this particular example, when agents believe that the PLM is of the form (3)

and learn the parameters through OLS, the learning process converges (locally) to the

REE. E-stability should be viewed as a necessary condition for REE to be empirically

relevant. If a REE is not E-stable, then coordination of a large population of adaptive

agents on such an equilibrium seems highly unlikely.

But what happens if the agents believe in a different PLM than the MSV solution

(3)? For example, to forecast the state variable xt it seems natural to include its

lagged value xt−1. Assume that instead of (3), agents believe that the PLM is of the

(slightly) more general form

xt = α + βxt−1 + γyt−1 + ut. (8)

This is an example where the PLM is overparameterized w.r.t. the MSV rational

solution. In a similar way one can extend the T-mapping T (α, β, γ) and simple algebra

yields for α and γ the same REE fixed point as in (6) together with β = 06. It can be

shown that this REE fixed point is again E-stable. The adaptive learning process is

therefore robust w.r.t. overparameterization of the PLM in (8) and the REE in (3) is

called strongly E-stable. Another parsimonious and perhaps plausible possibility

would be that agents believe that the PLM is of the simpler form

xt = α + βxt−1 + ut, (9)

that is, agents do not realize that xt is driven by an exogenous fundamental process

yt, but simply forecast xt by lagged observations xt−1. This is a simple example of

misspecification, where the PLM is different from the MSV solution. We will return

to the important issue of misspecification in Subsection 2.1.3.

2.1.2 Endogenous fluctuations under adaptive learning

Early work stressed adaptive learning as an equilibrium selection device of REE and

studied E-stability of rational equilibria in various models, for example, in an asset

6There is an additional REE fixed point β = 1/b, representing rational bubble solutions, see

Evans & Honkapohja (2001).
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pricing model with informed and uninformed traders (Bray 1982), the cobweb model

(Bray & Savin 1986), in a general class of linear stochastic models (Marcet & Sargent

1989b) and in linear models with private information (Marcet & Sargent 1989a).

Later work has shown that adaptive learning need not converge to a rational expec-

tations equilibrium, but learning may induce endogenous (periodic or even chaotic)

business cylce fluctuations. Examples include the learning equilibria in overlapping

generations models (Bullard 1994, Grandmont 1985, 1998); learning to believe in

chaos (Schönhofer 1999), the consistent expectations equilibria in nonlinear cobweb

models (Hommes & Sorger 1998), the learning to believe in sunspots (Woodford 1990)

and the exuberance equilibria (Bullard et al. 2008).

Constant gain learning

Adaptive learning typically generates slow learning of parameters, because standard

recursive estmiation algorithms give equal weight to all past observations. Conse-

quently, the weight given to the most recent observation becomes smaller and con-

verges to 0 as the number of observations goes to infinity. The vanishing weight

given to the most recent observation typically has a stabilizing effect on the learn-

ing dynamics. An alternative parameter updating scheme is constant gain learning,

given a fixed weight (the gain coefficient) to the most recent observations. Constant

gain learning is consistent with lab experiments and survey data, where subjects or

forecasters typically give more weight to the most recent observations. Constant gain

learning models often give a better fit to macro and financial data and are able to

generating observed stylized facts in time series data, such as high persistence, ex-

cess volatility and clustered volatility (Evans & Honkapohja (2001); Sargent (1993),

Milani (2007, 2011); Branch & Evans (2010).

Bubbles and crash dynamics under learning

Branch & Evans (2011a) develop a simple linear mean-variance asset pricing model

capable of generating bubbles and crashes when agents use constant-gain learning to

forecast expected returns and the conditional variance of stock returns7.

7There is a large literature on periodically collapsing rational bubbles. Blanchard & Watson

(1982) develop a theory of rational bubbles in which agents’ (rational) expectations are influenced by
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Agents can choose between a risk free asset paying a fixed return r and a risky

asset (say a stock) paying stochastic dividends. Denote yt as the dividend payoff and

pt as the asset price. Agents are risk averse and assumed to be myopic mean-variance

maximizers. The mean-variance demand zdt is

zdt =
E∗t (pt+1 + yt+1)− (1 + r)pt

aσ2
t

(10)

where E∗t (pt+1 + yt+1) denotes the conditional expectation of pt+1 + yt+1, a is the risk

aversion and σ2
t denotes agents’ conditional expectations about the variance of excess

returns pt+1 + yt+1− (1 + r)pt. The equilibrium price is derived from market clearing

zdt = zst and given by

pt =
1

1 + r
[E∗t (pt+1 + yt+1)− aσ2

t zst]. (11)

The term aσ2
t zst may be seen as a time-varying risk premium. Dividends yt and the

supply of shares zst are assumed to follow simple IID stochastic processes. Assuming

σ2
t = σ2 at steady state, the rational fundamental price can be computed as the

discounted sum of future dividends minus the time-varying risk premium, and is

given by

p∗t =
∞∑
j=1

βjEt(yt+j)− β
∞∑
j=0

βjaσ2Et(zst+j),

where β = 1/(1 + r) is the discount factor. There is an additionally class of rational

bubble solutions, which are given by adding to the fundamental solution a rational

bubble termβ−tηt, where ηt is an arbitrary martingale, i.e., Etηt+1 = ηt . Since

0 < β < 1 the rational bubbles are explosive. Branch & Evans (2011a) show that the

fundamental solution is E-stable under learning, while the rational bubble solutions

are unstable under learning.

In Branch & Evans (2011a) agents’ perceived law of motion is of the simple linear

AR(1) form

pt = k + cpt−1 + εt, (12)

extrinsic random variables whose properties are in line with historical bubble episodes. West (1987)

Froot & Obstfeld (1991) and Evans (1991) construct rational bubbles that periodically explode and

collapse. A controversial issue for rational bubbles is that the trigger for the bubble collapse is

often modeled by an exogenous sunspot process. In the model of Branch & Evans (2011a) bubbles

and crashes arise endogenously as self-fulfilling responses to fundamental shocks, arising from the

adaptive learning of agents.
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where εt is an IID noise term. This linear specification coincides with the general form

of the rational bubble solutions. Adaptive learning then consists of a recursive ordi-

nary least-squares updating scheme for the two parameters k and c of the conditional

mean forecast together with a recursive algorithm for the conditional variance σ2
t of

excess returns. For both learning processes constant gains can be used. Recursive

updating of both the conditional variance and the expected return implies several

mechanisms through which learning impacts stock prices. Extended periods of excess

volatility, bubbles, and crashes arise with a frequency that depends on the extent to

which past data is discounted. A central role is played by changes over time in agents’

estimates of risk. First, occasional shocks can lead agents to revise their estimates

of risk in a dramatic fashion. A sudden decrease or increase in the estimated risk

of stocks can propel the system away from the fundamentals equilibrium and into a

bubble or crash. Second, along an explosive bubble path, risk estimates tend to in-

crease and can become high enough to lead asset demand to collapse and stock prices

to crash. Third, under learning, estimates for stock returns will occasionally escape

to random walk beliefs that can be viewed as a bubble regime in which stock prices

exhibit substantial excess volatility. In this regime, revisions of risk estimates play an

important role in generating the movements of prices that sustain the random walk

beliefs. In summary, risk in an adaptive learning with constant gain setting plays

a key role in triggering asset price bubbles and crashes. These intuitive and plausi-

ble results provide insights into the mechanisms by which expectations, learning and

bounded rationality generate large swings in asset prices.

2.1.3 Misspecification equilibria

Under adaptive learning the perceived law of motion (PLM) will in general be misspec-

ified, that is, the PLM is generally different from the actual law of motion (ALM). This

observation has lead to the study of misspecification equilibria under learning (Evans

& Honkapohja (2001); Sargent (1999); Branch & McGough (2005); see especially the

stimulating survey in Branch (2006)). The idea here is that the representative agent

uses a simple, parsimonious PLM to learn about the ALM of the economy. These

simple learning equilibria may be a more plausible outcome of the learning process
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of a population of adaptive agents.

Different types of parsimonious misspecification equilibria have been proposed in

the literature. An interesting class are the natural expectations (Fuster, Laibson and

Mendel (2010), Fuster et al. (2011,2012) and Beshears et al. (2013)), where agents

use a simple parsimonious fixed (higher order) AR(p) rule in forecasting, to explain

the long-run persistence of economic shocks. Since the parameters are fixed, strictly

speaking this does not fall under adaptive learning, but its parsimony makes natural

expectations intuitive and plausible forecasting rules.

Branch (2006) considers adaptive learning where the PLM is underparametrized,

because agents do not take all relevant exogenous shock processes into account in their

PLM. These beliefs, however, satisfy a least squares orthogonality condition consistent

with Muth’s original hypothesis. The least squares orthogonality condition in these

models imposes that beliefs generate forecast errors which are orthogonal to an agent’s

forecasting model; that is, there is no discernible correlation between these forecast

errors and an agent’s model. Under this interpretation, the orthogonality condition

guarantees that agents perceive their beliefs as consistent with the real world. Thus,

agents can have misspecified (i.e. not RE) beliefs but within the context of their

forecasting model they are unable to detect their misspecification. An equilibrium

between optimally misspecified beliefs and the stochastic process for the economy is

called a Restricted Perceptions Equilibrium (RPE).

Branch & Evans (2010) apply these ideas in a mean-variance asset pricing model,

where both dividends and the supply of shares follow exogenous stochastic AR(1)

processes. There are two types of agents, who have different types of misspecified

underparametrized price forecasting models. One type has a price forecasting model

only based on the AR(1) dividend process, while the other type forecasts prices only

based on the AR(1) process for the supply of shares. The restricted perception equi-

librium requires that agents forecast in a statistically optimal manner. It is required

that the forecast model parameters are optimal linear projections, that is, the belief

parameters satisfy least-squares orthogonality conditions. Within the context of their

forecasting model, agents are unable to detect their misspecification. Of course, if

they step out of their model and run specification tests, they could detect the mis-

specification. But real-time simulations show that the misspecification is hard to
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detect and, for finite time, agents may not be able to reject their underparameterized

models. They then study a misspecification equilbrium with intrinsic heterogeneity,

and fractions of the two types of agents based on their relative performance as in

Brock & Hommes (1997). The model exhibits multiple misspecification equilibria

(ME) and the real time learning dynamics switches between these different equilibria

mimicking clustered volatility in asset returns.

Branch & Evans (2011b) use a similar appraoch in a New Keynesian macro model

and study monetary policy under learning. There are two types of exogenous shocks

to the economy, cost push shocks to the NKPC and supply shocks to the IS curve,

both following exogenous stochastic AR(1) processes. The RE MSV solution of the

economy is a linear function of both shocks. There are two types of agents in the

economy, one type using forecasts based only on the demand shocks and a second type

using forecasts based only on the supply shocks. Branch & Evans (2011b) demon-

strate that, even when monetary policy rules satisfy the Taylor principle by adjusting

nominal interest rates more than one for one with inflation, there may exist equilibria

with intrinsic heterogeneity, where the two types of agents co-exist. Under certain

conditions, there may exist multiple misspecification equilibria. These findings have

important implications for business cycle dynamics and for the design of monetary

policy. Branch & Evans (2011b) then study the role that policy plays in determining

the number and nature of Misspecification Equilibria.

2.1.4 Behavioral learning equilibria

The most crucial aspect of adaptive learning is probably the choice of the perceived

law of motion (PLM). For a large population of adaptive agents being able to coor-

dinate their beliefs, the parsimony of the PLM seems crucial. Hommes & Zhu (2014)

introduced a particularly simple form of misspecification called behavioral learning

equilibrium. The idea here is that for each variable to be forecasted in the economy

agents use a simple (misspecified) univariate AR(1) forecasting rule. A behavioral

learning equilibrium (BLE) arises when the sample average and the first-order auto-

correlations of the AR(1) rule coincide with the observed realizations. Hence, along

a BLE the parameters of the AR(1) rule are not free, but pinned down by two simple
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observable statistics, the sample average and the first-order sample autocorrelation8.

Agents thus use the optimal AR(1) forecasting heuristics. Such a simple, parsimonious

learning equilibrium may be a more plausible outcome of the coordination process of

individual expectations in large complex socio-economic systems. The use of simple

low-order autoregressive rules to forecast has also been documented in laboratory

experiments with human subjects (e.g., Assenza, Bao, Hommes & Massaro (2014)).

Hommes & Zhu (2014) apply the BLE concept in the simplest class of models,

where the actual law of motion of the economy is a one-dimensional linear stochastic

process driven by exogenous AR(1) shocks9. Two important applications of this

framework are an asset pricing model driven by AR(1) dividends and a New Keynesian

Phillips Curve (NKPC) with inflation driven by an AR(1) process for marginal costs.

The New Keynesian Philips curve (NKPC) with inflation driven by an exogenous

AR(1) process yt is given by (Woodford (2003)) πt = δπet+1 + γyt + ut,

yt = a+ ρyt−1 + εt,
(13)

where πt is the inflation at time t, πet+1 is the subjective expected inflation at date

t+1, yt is the output gap or real marginal cost, δ ∈ [0, 1) is the representative agent’s

subjective time discount factor, γ > 0 is related to the degree of price stickiness in

the economy and ρ ∈ [0, 1) describes the persistence of the AR(1) driving process. ut

and εt are IID stochastic disturbances with zero mean and finite absolute moments

with variances σ2
u and σ2

ε , respectively.

Under RE inflation πt is a linear function of the fundamental driving process yt.

The REE therefore has the same persistence and autocorrelations as the fundamental

shocks. Assume instead that agents are boundedly rational and do not recognize or

do not believe that inflation is driven by output gap or marginal costs, and therefore

do not recognize that the price should be a linear function of the exogenous shocks.

8The idea behind BLE originates from the consistent expectations equilbria in Hommes & Sorger

(1998), where the beliefs about sample average and all autocorrelations βk, for all lags k, coincide

with the realizations. Lansing (2009, 2010), applies the idea of (first-order) consistent expectations

in a New Keynesian framework.
9Hommes, Mavromatis, Özden & Zhu (2019) recently extended the BLE concept to higher di-

mensional linear stochastic models and applied it to the basic three equations New Keynesian model.
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Rather agents believe that inflation follows a stochastic AR(1) process and simply

forecast inflation by a (2-perioid ahead) univariate AR(1) rule, i.e. πet+1 = α +

β2(πt−1 − α). The implied actual law of motion then becomes πt = δ[α + β2(πt−1 − α)] + γyt + ut,

yt = a+ ρyt−1 + εt.
(14)

Hommes & Zhu (2014) compute the corresponding first-order autocorrelation coeffi-

cient F (β) of the implied ALM (14) as

F (β) = δβ2 +
γ2ρ(1− δ2β4)

γ2(δβ2ρ+ 1) + (1− ρ2)(1− δβ2ρ) · σ2
u

σ2
ε

. (15)

and show that there exists at least one nonzero BLE (α∗, β∗) with α∗ = π∗ (i.e., the

sample average equals REE inflation) and β∗ a fixed point of the autocorrelation map

F (β) in (15).

Hommes & Zhu (2014) also show that when F ′(β∗) < 1 the E-stability princi-

ple holds for the sample-autocorrelation (SAC)-learning process to learn the optimal

parameters α∗ and β∗. The time-varying parameters are given by the sample average

αt =
1

t+ 1

t∑
i=0

xi, (16)

and the first-order sample autocorrelation coefficient10

βt =

∑t−1
i=0(xi − αt)(xi+1 − αt)∑t

i=0(xi − αt)2
. (17)

Interestingly, for the New Keynesian Philips curve multiple BLE may coexists,

because the nonlinear autocorrelation map F (β) may have multiple fixed points.

Figure 2 illustrates the co-existence of a low and a high volatility BLE, which are

both stable under SAC-learning for appropriate initial states. The low persistence

regime represents a rather stable economy with inflation close to target, while the

high persistence regime is rather unstable with long lasting periods of high or low

inflation. The high persistence BLE is characterized by β∗ ≈ 0.996, very close to

unit root, and thus exhibits persistence amplification, with much more persistence

10An important and convenient feature of this natural learning process is that −1 ≤ βt ≤ 1, since

it is a (first-order) autocorrelation coefficient (Hommes & Sorger 1998).
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Figure 2: Multiple behavioral learning equilibria in the NK model. Top panels: con-

vergence of SAC-learning to low persistence BLE (α∗, β∗1) = (0.03, 0.3066); Middle

panels: convergence to high persistence BLE (α∗, β∗3) = (0.03, 0.9961) exhibiting per-

sistence amplification (for REE autocorrelation is ρ = 0.9); Bottom left panel: BLE

β∗ correspond to the three fixed points of autocorrelation map F (β) in (15). Bottom

right panel: BLE as a function of autocorrelation parameter ρ β of the shocks; more

persistent shocks lead to critical transition to persistence amplification.
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in inflation then under RE. Under SAC-learning with constant gain, the economy

may switch irregularly between phases of low and high persistence and volatility in

inflation.

This example shows how a very simple form of misspecification may lead to mul-

tiple equilibria and tipping points or critical transitions (compare Figure 1 in the

introduction to Figure 2) between different regimes of low volatility and low persis-

tence to high volatility and high persistence. For initial states close to the target

SAC learning converges to the low persistence BLE. For initial states further away

from the target SAC learning converges to the high persistence BLE. Under constant

gain learning the system may switch between both BLE. These results are consistent

with the empirical finding in (Adam 2007) that the Restricted Receptions Equilib-

rium (RPE) describes subjects’ inflation expectations surprisingly well and provides

a better explanation for the observed persistence of inflation than REE. Multiplicity

of learning equilibria leaves an important task for monetary policy to keep inflation

and output in the low volatility regime. This simple model also shows how a simple

and plausible from of misspecification brings us from a perfect rational world with

a unique equilibrium into a more realistic complex boundedly rational reality with

multiple equilbria and critical transitions.

2.1.5 Policy under adaptive learning

If coordination of a population of agents is better described by an adaptive learning

process than by rational expectations equilibrium, this has important policy impli-

cations. This section discusses some examples of policy analysis under models of

adaptive learning.

In rational expectations models one can distinguish between determinacy and in-

determinacy of equilibria. A REE is determinate when there exists a unique solution,

typically a saddle-path solution converging to the rational steady state. A REE is

indeterminate when multiple (typically a continuum) of solutions converging to the

steady state exist. In such a case often additional sunspot equilibria exist. If a REE is

determinate, it is usually assumed that agents coordinate on the unique saddle-path

solution. Such a saddle-path solution usually can only be computed by advanced com-
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putational software, such as the widely used DYNARE software, assuming that the

equations of the economy are common knowledge. A learning theory of coordination

on a saddle-path equilibrium, without the demanding assumption of perfect knowl-

edge of the law of motion of the economy, is however lacking, and without an adaptive

learning process coordination of a populations of individuals on an equilibrium, even

if it is unique, seems unlikely.

Bullard & Mitra (2002) study monetary policy under adaptive learning of the MSV

solution in the New Keyensian model and show that considering learning generally

can alter the evaluation of alternative policy rules. The (log-linearized) NK-model is

given by (Clarida et al. (1999), Woodford (2003))

xt = Ẽtxt+1 +
1

σ
(Ẽtπt+1 − it) + ut (18)

πt = κxt + δẼtπt+1 + vt, (19)

where xt is the output gap, πt inflation, it the nominal interest rate, Ẽtxt+1, Ẽtπt+1 are

expectations about next period’s output gap and inflation and ut and vt are exogenous

shocks following AR(1) processes. Eqs. (18) and (19) represent the IS-curve and the

Phililps curve. Here δ is the discount factor, and

κ =
(σ + η)(1− ω)(1− δω)

ω
, (20)

with σ and η the inverses of, respectively, the elasticity of intertemporal substitution

and the elasticity of labor supply, and (1− ω) is the fraction of firms that can adjust

their price in a given period. Expectations Ẽt follows an adaptive learning process of

the MSV solution yt = a+ byt−1 + cwt, where yt = [xt, πt]
T and wt = [ut, vt]

T .

The nominal interest rate is set by the Central Bank and Bullard & Mitra (2002)

consider three different specifications of the Taylor interest rate rule, where the inter-

est rate is set in response to deviation of inflation and output gap from the targets:

it = φππt + φxxt contemporaneous (21)

it = φππt−1 + φxxt−1 lagged (22)

it = φπẼtπt+1 + φxẼtxt+1 forward looking (23)

where the coefficients φπ, φx > 0 determine how strongly the CB responds to inflation

and output gap respectively.
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Bullard & Mitra (2002) show that for the contemporaneous interest rate rule the

determinacy (indeterminacy) region under RE coincides exactly with the E-stability

(E-instability) region under learning. In this case, the policy analysis under RE

and adaptive learning of the MSV solution are the same. For the forward looking

and the backward looking Taylor rules, however, these regions do not coincide, and

determinacy under RE does not imply E-stability under learning. This stresses the

fact that policy should be based on plausible and empirically relevant models of

adaptive learning. For all policy rules the Taylor principle holds under learning,

that is, adjusting the nominal interest rates more that one-for-one in response to

inflation above target, implies learnability. In Section 3.2 we will return to this issue

and discuss some laboratory experiments to test the validity of the Taylor principle.

Bullard & Mitra (2002) stress the general point that learnability should be a necessary

additional criterion for evaluating alternative monetary policy rules.

Monetary and fiscal policy in a non-linear NK model

Evans et al. (2008) and Benhabib et al. (2014) study the a nonlinear NK model with

a zero lower bound (ZLB) on the interest rate under adaptive learning of the steady

state. In this nonlinear NK model two steady states may coexist, the target steady

state and a ZLB steady state, and liquidity traps or deflationary spirals may arise.

The nonlinear equations describing aggregate dynamics are given by

ct = cet+1

(
πet+1

βRt

)1/σ

(24)

πt(πt − 1) = βπet+1(π
e
t+1 − 1) +

υ

αγ
(ct + gt)

1+ε
α +

1− υ
γ

(ct + gt) c
−σ
t (25)

Rt =

1 + (R∗ − 1)
(
πet+1

π∗

)φπR∗
R∗−1

(
cet+1

c∗

) φyR
∗

R∗−1
if πt ≥ π̃

R̃ if πt < π̃

, (26)

Eq. (24) describes the dynamics of net output ct (i.e. output minus government

spending) through a standard Euler equation, where cet+1 and πet+1 denote respectively

expectations of future net output and inflation, Rt is the nominal gross interest set

by the central bank, 0 < β < 1 is the discount factor and σ > 0 refers to the

intertemporal elasticity of substitution.
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Figure 3: Panel (a): Multiple equilibria with coexistence of low inflation steady

state L and targeted steady state T under aggressive monetary policy. Panel (b):

Unique equilibrium, i.e. targeted steady state T under combined monetary policy

and fiscal switching rule.

Eq. (25) is a New Keynesian Phillips Curve describing the dynamics of inflation πt,

where gt is government spending of the aggregate good, ε > 0 refers to the marginal

disutility of labour, 0 < α < 1 is the return of labour in the production function, γ > 0

is the cost of deviating from the inflation target under Rotemberg price adjustment

costs, and υ > 1 is the elasticity of substitution between differentiated goods. The

term πt(πt − 1) in Eq. (25) arises from the quadratic form of the adjustment costs.

Let Qt ≡ πt(πt − 1). The appropriate root for given Q is π ≥ 1/2, so one needs to

impose Q ≥ −1/4 to have a meaningful definition of inflation.

Eq. (26) describes an aggressive monetary policy, where R̃ = 1.0001 corresponds to

the ZLB on the nominal interest rate.11 The forward looking monetary policy rule (26)

is defined as aggressive since, while in “normal” times (πt ≥ π̃) it follows a standard

forward-looking Taylor rule, it preventively cuts the nominal interest rate to the ZLB

each time inflation drops below a given threshold π̃. The reaction coefficients in the

interest rate rule are set to φπ = 2 and φy = 0.5, which are in line with empirical

estimates. This parametrisation ensures local determinacy of the targeted steady

state (π∗, c∗) under RE. However, as emphasised by Benhabib et al. (2002) “active”

Taylor rules imply the existence of a second low-inflation steady state (πL, cL), which

is locally indeterminate under RE.

11R̃ > 1 so that the corresponding interest rate R̃− 1 is small but positive at the ZLB.
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Fiscal policy is specified as

gt = ḡ , (27)

where ḡ is fixed. Evans et al. (2008) set π∗ = 1.05 which implies a net output steady

state value of c∗ = 0.7454. Under the aggressive monetary policy in Eq. (26), the

low-inflation steady state is given by (πL, cL) = (0.99, 0.7428). The two equilibria

of the model are depicted in Fig. 3. Evans et al. (2008) consider a fiscal switching

rule that can prevent liquidity traps and deflationary spirals. The fiscal switching

rule prescribes an increase in public expenditures gt each time monetary policy fails

to achieve πt > π̃. In model (24)–(25), given expectations πet+1 and cet+1, any level

of inflation πt can be achieved by setting gt sufficiently high. The idea behind the

monetary-fiscal policy mix is the following. If the inflation target is not achieved

under a standard Taylor rule, monetary policy is first relaxed in order to stimulate

the economy. If the ZLB constraints the effectiveness of monetary policy, aggressive

fiscal policy is then activated. As shown by Evans et al. (2008), setting πL < π̃ < π∗

ensures the uniqueness of the targeted steady state. The unique equilibrium of the

system under combined monetary (26) and fiscal policy (27) is illustrated in Fig. 3

(right plot).

E-stability and equilibrium selection

The phase diagram of the dynamics under adaptive learning is given in Fig. 4. The

solid black and the dashed black curves depict respectively the stable and unstable

manifold of the low-inflation steady state saddle point (πL, cL). The E-stability analy-

sis shows that, although the targeted steady state is locally stable under learning, the

saddle property of the low-inflation steady state creates a region in the phase space

in which inflation and output decline over time. In particular, the stable manifold

of the low inflation steady state divides the phase space in two regions: the stable

region above the manifold, characterised by convergence to the targeted steady state

(π∗, c∗), and the unstable region below the manifold characterised by deflationary dy-

namics. This analysis shows that adverse expectational shocks may cause liquidity

traps taking the form of deflationary spirals. Large pessimistic shocks may in fact

push expectations into the unstable region, below the stable manifold of the low in-
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flation steady state, leading to a self-reinforcing process in which inflation and output

decline over time. On the other hand, when the aggressive monetary policy is aug-

mented with the fiscal switching rule described in Eq. (27), the targeted steady state

is globally stable under learning.
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Figure 4: Learning dynamics under aggressive monetary policy and constant fiscal

policy. Under adaptive learning the target steady state is locally stable, while the

ZLB steady state is an unstable saddle point. Initial states below the stable manifold

of the ZLB steady state fall into a liquidity trap or deflationary spiral under adaptive

learning.

Evans et al. (2008) thus show that an aggressive monetary policy rule alone can not

recover the economy from a liquidity trap. Instead, an aggressive fiscal policy switch-

ing rule in combination with an aggressive monetary policy that guarantees a lower

bound on inflation, can recover the economy from a liquidity trap. Hommes, Massaro

& Salle (2019) design a lab experiment to empirically testing these predictions of the

learning model in describing the occurrence of liquidity traps and monetary and fiscal

policies to recover the economy (see Section 3.2).

Benhabib et al. (2014) study fiscal and monetary policies in this NK model with

a ZLB under infinite horizon learning. Unstable deflationary spirals occur after large

expectational shocks. For large expectational shocks that push the interest rate rule

to the ZLB a temporary fiscal stimulus or, in some cases, a policy of fiscal austerity can

recover the economy from a deflationary trap when the policy is tailored in magnitude
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and duration. A fiscal stimulus “switching rule”, which automatically kicks in without

discretionary fine-tuning, can be equally effective.

2.1.6 Internal rationality

Adam & Marcet (2011) introduce a rather sophisticated notion of bounded rational-

ity called internal rationality. Agents are internally rational, that is, they maximize

discounted expected utility under uncertainty over an infinite horizon given dynami-

cally consistent subjective beliefs about the future. But agents may not be externally

rational, that is, they may not know the true stochastic process for payoff relevant

variables beyond their control. Adam & Marcet (2011) focus on near-rationality in

the sense that the subjective beliefs of agents are not exactly equal to the objective

density of external variables, but will be close to the beliefs under RE by giving agents

a prior distribution centered around the correct RE. They show then that even though

this is potentially a small deviation from RE beliefs (when the variance of the prior

is small), the outcomes of the learning model can be quite different.

Internal rationality may be viewed as a (sophisticated) microfoundation of adap-

tive learning. Adam & Marcet (2011) demonstrate how ordinary least squares –the

most widely assumed learning rule in the adaptive learning literature– arises as the

optimal way to update conditional expectations from a complete and dynamically

consistent set of probability beliefs within a specific model. They also stress the

point that microfoundations of the model are informative about which beliefs matter

for the equilibrium outcomes in models of learning. In the general setting hetero-

geneous agents and market incompleteness are included to ensure that there is a

distinction between the agent’s own decision problem, which is perfectly known, and

market behavior, which is assumed to be known only imperfectly.

Adam & Marcet (2011) focus on an asset pricing model with infinitely lived risk-

neutral investors, heterogeneous agents and incomplete markets. It is remarkable that

under internal rationality the competitive equilibrium price of this infinite horizon

asset pricing model is not the discounted sum of expected future dividends, but

rather reduces to the myopic one-period ahead asset pricing model where the asset

price equals the discounted sum of next period’s subjective belief of total stock payoff,
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i.e. (cf. Eq. (23) in Adam & Marcet (2011))

Pt = δEPt (Pt+1 + Yt+1). (28)

This gives rise to a self-referential model of learning about prices that leads to mo-

mentum and mean-reversion behaviour in asset prices. It is remarkable that this

microfounded derivation of the asset pricing model with learning reduces to exactly

the same pricing equation as in the boundedly rational mean-variance behavioral asset

pricing models that have been introduced earlier12.

Adam et al. (2016) estimate an asset pricing model with internally rational agents

using quarterly U.S. price-to-dividend ratios 1927:2 to 2012:2. Their learning model

replicates a number of asset pricing stylized facts such as high volatility in PD ra-

tios, high persistence in PD ratios, excess volatility in returns and excess return

predictability at longer horizons (e.g. 5 years). They stress that agents are nearly

rational. The perceived distribution of price behaviour, although different from the

true distribution, is nevertheless close to it and the discrepancies are hard to detect.

Adam et al. (2017) show that the subjective beliefs are also consistent with survey

data on expected capital gains.

Whether or not learning matters has important policy implication, as the desir-

ability of policy responding to asset price fluctuations will depend to a large extent

on whether asset price fluctuations are fundamentally justified.

2.1.7 Anticipated utility approach

Modeling bounded rationality in an infinite horizon dynamic optimization setting is

challenging13. In an infinite horizon dynamic optimization setting a departure from

rational expectations requires an assumption whether agents take into account that

beliefs are updated over time. To do so requires that agents anticipate their updating

12For example, Eq. (28) coincides with the behavioral asset pricing model with heterogeneous

beliefs (Brock & Hommes (1998), Eq. 2.7), discussed in Subsection 2.2.2 of this survey, as well

as with the myopic mean-variance asset pricing model with adaptive learning of Branch & Evans

(2011a) discussed in Subsection 2.1.2.
13A finite horizon approach is perfectly feasible in overlapping generations and life cycle models.

Bullard & Duffy (2001),vor example, study learning equilibria and excess volatility in a life cycle

economy with captial accumulation.
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of parameters under adaptive learning or their switching between rules in a het-

erogeneous expectations setting over an infinite time horizon. Such strong cognitive

capabilities seem highly unlikely in the real economy. The behavioral assumption that

beliefs are coming from a completed learning process and are perceived to be fixed

is called the anticipated utility approach and forms the benchmark of the adaptive

learning literature. Branch & McGough (2018) survey behavioral implementations

of the anticipated utility approach. A first model is shadow price learning (Evans

& McGough 2018), where agents do not know the value function and the transition

dynamics, but instead make linear forecasts of the shadow price and the state. The

shadow price approach provides behavioral rules consistent with two-period intertem-

poral optimization, but does not require full sophistication required for agents to solve

the complete dynamic programming problem. Interestingly, the shadow price learn-

ing approach may sometimes converge to the fully optimal and rational solution, but

may also lead to rich learning dynamics. An alternative approach is Euler equation

learning (Honkapohja et al. 2013), where agents make decisions based on their per-

ceived Euler equation derived from intertemporal optimization, that is, agents make

choices by equating expected marginal benefits with expected marginal costs.

The shadow price and the Euler equation approaches are based on one-step-ahead

forecasts. Branch et al. (2012) develop a N-step ahead Euler equation learning ap-

proach, where agents forecast their terminal asset position to solve their N-period

consumption-savings problem14. Letting the planning horizon N go to infinity (and

imposing the transversality condition) leads to the infinite horizon learning approach,

recently surveyed in Eusepi & Preston (2017). In the infinity horizon learning ap-

proach agents are optimizing anticipated utility maximizers. It is interesting to note

that these bounded rationality approaches to adaptive learning ultimately yield very

similar asset pricing and macro dynamics as the internal rationality approach dis-

cussed before.

14See also Woodford (2018) for a recent analysis of monetary policy when planning horizons are

finite.
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2.2 Heterogeneous expectations

In the last two decades a large behavioral literature on heterogeneous agents mod-

els (HAMs) with boundedly rational agents having heterogeneous expectations has

developed; see e.g. the extensive survey in Hommes (2006) and, more recently, the

survey in Dieci & He (2018). The main learning mechanism here is a form of evolu-

tionary selection among different forecasting models with agents gradually switching

to better performing rules (Brock & Hommes (1997))15. This approach has been in-

spired by more complex genetic algorithm (GA) simulation models, but focuses on

more stylized, partly analytically tractable models. These switching models generate

endogenous boom and bust cycles mimicking stylized facts from real macro-financial

data, such as bubbles and crashes, high persistence, clustered volatility and fat tails.

The HAM literature has also been inspired by the noise trader literature in fi-

nance, pioneered by DeLong et al. (1990a,b), who introduced models where one type

of agents has rational expectations, while another type, the noise traders, have non-

rational expectations. In the model of DeLong et al. (1990b) noise traders have a

misperception of their expectation about next period’s price of a risky asset. They

show that noise traders can survive in the market and earn a higher expected return

than rational traders. DeLong et al. (1990a) consider a noise trader model with pos-

itive feedback traders and show that, in the presence of positive feedback traders,

rational speculation can be destabilizing. These examples go against the Friedman

hypothesis that non-rational traders will be driven out of the market, because they

loose money against rational traders. Instead, these examples show that in a hetero-

geneous world non-rational traders can survive competition with rational agents.

A lucid early critique on the representative agent approach in macroeconomics is

given in Kirman’s paper “Whom or what does the representative individual represent?”

As an alternative, Kirman (1992) stressed the importance of agents’ interactions for

the emerging aggregate behaviour. Kirman (1993) proposed a stochastic model of

recruitment through local interactions, based on Follmer (1974) and more recently

extended in Follmer et al. (2005). This ‘ant-model’ is motivated from biology describ-

15There is also a related literature on learning in dynamic games, e.g. reinforcement learning

(Erev and Roth, 1998) and experiences weighted attraction (EWA) learning (Camerer & Ho (1999).
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ing how local interactions of ants may lead to an asymmetric distribution over two

identical food sources. Kirman (1991) applied the ‘ant-model’ to financial markets,

where investors are either optimistic or pessimistic and form their opinion through

local interactions. This leads to herding and bubble and crash dynamics in a financial

market model with fundamentalists and chartists.

2.2.1 Costly rational versus free rule of thumb expectations

In an influential paper, Brock & Hommes (1997) introduced a simple cobweb model

with costly rational versus free naive expectations. A novel feature compared to

the noise trader literature is an endogenous switching mechanism between strategies

based upon their relative performance as measured by utility, profits or forecasting

performance. Agents switch between cheap, but destabilizing naive expectations with

prices moving away from steady state equilibrium, and costly stabilizing rational

expectations with prices converging back to (a neighbourhood of) the steady state

equilibrium. This leads to highly irregular, chaotic price fluctuations, with the market

switching back and forth between close to fundamental stable price fluctuations and

unstable price fluctuations with high volatility.

It is useful to discus this example in some detail. Producers can either buy the

rational expectations price forecast pe1,t = pt, at positive information gathering costs

C, or freely obtain the simple naive forecast pe2,t = pt−1. In a cobweb economy with

rational versus naive expectations, the market equilibrium price is determined by

demand and aggregate supply of both groups, i.e.

D(pt) = n1tS(pt) + n2tS(pt−1), (29)

where n1t and n2t represent the fractions of producers holding rational respectively

naive expectations. Notice that rational agents have perfect foresight and therefore

perfect knowledge about the market equilibrium equation (29). Hence, rational agents

not only have exact knowledge about prices and their own beliefs, but in a heteroge-

neous world they must also have perfect knowledge about expectations or beliefs of

all other agents. For linear demand and supply market clearing in this 2-type cobweb

economy gives

a− dpt = n1tcpt + n2tcpt−1. (30)
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Fractions of rational and naive producers are endogenously updated over time accord-

ing to evolutionary fitness. Agents tend to switch to strategies that have performed

better in the recent past. The fractions of rational and naive producers are given by

a discrete choice or multi-nomial logit model (Brock 1993, Blume & Easley 1993)

nht =
eβUh,t−1

Zt−1
, (31)

where Zt−1 =
∑
eβUh,t−1 is a normalization factor so that the fractions add up to 1 and

β is the intensity of choice parameter, inversely related to the noise level, measuring

how quickly agents switch to better performing strategies. There are two extreme

cases: (i) β = 0: random choice, all fractions have equal weight, and (ii) β = ∞:

the ‘neoclassical limit’ all agents switch immediately to the best strategy according

to realized fitness. The discrete choice model (31) thus reflects the idea that agents

switch to better performing strategies. The intensity of choice measures how fast

agents switch to these better performing strategies.

The discrete choice probabilities (31) are obtained from a random utility model

(Anderson et al. (1988); Manski & McFadden (1981)) of the general form

Uht = πht + Sht + Pht + εiht, (32)

where πht is private utility (e.g. utility, profits, wealth, forecasting performance, etc.);

Sht is social utility (e.g. utility from social interactions, herding effects, mean opinion

index, etc.), Pht represents sensitivity to policy variables (e.g. policy shocks or policy

announcements, etc.) and εiht is idiosyncratic noise. When the noise term has an

extreme value distribution and the number of agents tends to infinity, the probability

of selecting strategy h tends to the multi-nomial logit probabilities (31).

Brock & Hommes (1997) have stressed that the performance measure should con-

sist of observable quantities. The general form of (32) includes social interaction

effects as emphasized by Brock & Durlauf (2001a,b)16. In the general representation

of utility (32), we have also included a term for policy effects to stress the potential to

16Brock & Durlauf (2001a,b) have written extensive surveys on social interaction models in eco-

nomics. A key feature of these models is that the social interaction effects lead to multiple steady

states. Their approach leads to analytically tractable models that can be used in estimating social

interaction effects in real data.
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take forward looking behaviour into account of how strategies respond to (observable)

policy announcements.

2.2.2 A behavioral asset pricing model

A large literature on behavioral fundamentalists-chartists asset pricing models in

finance has developed, pioneered by early contributions by Zeeman (1974) and Day

& Huang (1990), empirically supported by survey data studies of Frankel & Froot

(1986, 1987b,a). At the Santa Fe Institute an artificial agent-based stock market

model has been develeoped in (Arthur et al. (1997), LeBaron et al. (1999)). Brock &

Hommes (1998) developed a simple, more tractable version of this type of model. In

their behavioral asset pricing model with heterogeneous beliefs, agents switch between

fundamentalists versus chartists strategies based upon relative profitability (cf. also

Lux (1995)). An important motivation for heterogeneous agents is the observed high

trading volume in real markets, which is at odds with no trade theorems in the

standard representative rational agent models. HAMs mimic many stylized facts

observed in real financial data, e.g., excess volatility, boom bust cycles, fat tails,

clustered volatility, high trading volume correlated with volatility, etc. (see e.g. the

survey in LeBaron (2006)17).

Here we discuss a stylized version of a behavioral asset pricing model with hetero-

geneous beliefs and the estimation of a 2-type model on stock market S&P500 data.

A detailed derivation may be found in Brock & Hommes (1998) and Hommes (2013).

Investors can choose between a risk free asset paying a fixed return r and a risky

asset (say a stock) paying stochastic dividends. Denote yt as the dividend payoff,

pt as the asset price and zh,t as the number of shares bought by investor i. Agents

are assumed to be myopic mean-variance maximizers. Let Eht and Vht denote the

“beliefs” or forecasts of trader type h about conditional expectation and conditional

variance. The mean-variance demand zht of type h is

zht =
Eht[pt+1 + yt+1 − (1 + r)pt]

aVht[pt+1 + yt+1 − (1 + r)pt]
=
Eht[pt+1 + yt+1 − (1 + r)pt]

aσ2
, (33)

17See also Adam et al. (2015) for a recent HAM with extrapolative beliefs that replicates the joint

behavior of stock prices, trading volume and investors’ expectations. They also study in how far a

transaction tax may prevent stock price booms.
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where a is the risk aversion and, for simplicity, the conditional variance Vht = σ2 is

assumed to be equal and constant for all types. In the case of zero supply of outside

shares the market clearing price is given by

pt =
1

1 + r

H∑
h=1

nhtEht[pt+1 + yt+1], (34)

where nht denotes the time-varying fraction of trader type h and Eht[pt+1 + yt+1]

denotes the beliefs about the future price and the future dividend by investor type

h18. Recall that the rational, fundamental price of the risky asset is the discounted

sum of expected future dividends. Assume for the moment that the dividend pro-

cess is IID, with mean ȳ, then the fundamental value p∗ = ȳ/r is constant. Brock

& Hommes (1998) assume that all agents have correct beliefs about the exogenous

dividend process, but heterogeneous beliefs about endogenous prices. Agents can

compute the fundamental price based on dividends, but nevertheless believe, e.g. be-

cause of strategic uncertainty or idiosyncratic reasons, that price may deviate from

its fundamental value. A convenient feature of these assumptions is that the model

can be reformulated in terms of the deviation xt = pt − p∗t from the fundamental

benchmark as

xt =
1

R

H∑
h=1

nhtEhtxt+1. (35)

The fractions of type h are given by the discrete choice model (31), as before, with

the fitness measure equal to realized profits in period t, that is,

πht = (pt + yt −Rpt−1)
Eh,t−1[pt + yt −Rpt−1]

aσ2
= (xt −Rxt−1 + εt)

Eh,t−1[xt −Rxt−1]
aσ2

,

(36)

with yt = ȳ + εt and εt is IID noise. Due to its simplicity the Brock-Hommes (1998)

model can be handled (partly) analytically and it has been shown that the market

becomes unstable when performance based switching (driven by short run profitabil-

ity) is sufficiently fast (i.e. when the intensity of choice is high). The behavioral

model exhibits irregular bubble and crash dynamics with the market switching be-

tween unstable phases where trend-following strategies dominate and stable phases

18Notice that in the homogeneous case, H = 1, and discount factor δ = 1/(1 + r) this mean-

variance asset pricing equation is exactly the same as the internal rationality pricing equation (28)

of (Adam & Marcet 2011) in Subsection 2.1.6).
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Figure 5: Bubble and crash dynamics in the behavioral asset pricing model with

heterogeneous beliefs. (a) bubbles and crashes in deviations from the fundamen-

tal benchmark, (b) noisy bubble and crash dynamics, (c-d) strange attractors with

chaotic dynamics in the phase space (xt, xt−1).

where fundamentalists dominate (see Figure 5. This is a counter example to the Fried-

man hypothesis, as fundamentalists, who believe in the rational fundamental price,

are unable to drive out chartists from the market. Hence, when strategy switching

behaviour is driven by (short run) profitability chartists are able to survive in the

market. More generally, this type of simple heterogeneous agent asset pricing model

is able to generate stylized facts of asset prices, such as bubbles and crashes, fat tails

and clustered volatility (Lux & Marchesi (1999); see also the survey in Lux (2009)).

More hedging instruments may destabilize markets

Under the assumption of rational expectations futures markets or hedging instruments

are usually stabilizing and welfare enhancing. Very little work has been done to study

the role of futures and hedging instruments under bounded rationality. Brock et al.

(2009) extended the behavioral asset pricing model to include hedging instruments in

the form of Arrow securities. There are S states of the world arising with commonly

known probabilities. There are n Arrow securities paying 1 if the corresponding state

arises and 0 otherwise. For a sufficiently large number of Arrow securities, n = S−1,
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Figure 6: Left Panel: Bifurcation diagram and critical transitions w.r.t. the intensity

of choice β and the number of Arrow securities (the dots along the curves). As the

number of Arrow securities increases, the system approaches the tipping point SN2

along the non-fundamental steady state and then jumps to the fundamental steady

state, which however already has become unstable after a Hopf bifurcation. In a

boundedly rational world more Arrow securities thus destabilize the system. Right

Panel: Average welfare decreases as a function of the intensity of choice parameter

and the number of Arrow securities.

the market is complete; for n < S − 1 the market is incomplete. Agents are myopic

mean-variance maximizers in this multi-asset world and have correct expectations on

all stochastic dividends. Moreover, agents hold a common fundamental risk percep-

tion based on the variance-covariance matrix Vn of the dividend payoffs of the risky

asset and the n Arrow securities. Brock et al. (2009) show that increasing the number

of Arrow securities decreases the perceived fundamental risk and therefore boundedly

rational agents take more leveraged positions, thus destabilizing the market, increas-

ing price volatility and decreasing average welfare. Figure 6 illustrates that adding

more Arrow securities destabilizes the market and decreases average welfare. These

destabilizing effects are relevant to markets exposed to speculative trading and pop-

ulated by boundedly rational agents.

2.2.3 Empirical validation of behavioral asset pricing models

A large literature on empirical testing of behavioral heterogeneous agents models has

developed, recently surveyed by Franke & Westerhoff (2017) and Lux & Zwinkels
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(2018). Here we discuss the estimation of a 2-type model in Hommes & Veld (2017)

and Boswijk et al. (2007); see also Lof (2015) and Chiarella et al. (2014) for similar

models. In the of behavioral asset pricing model first a benchmark fundamental needs

to be adopted. Empirically the dividend process is not IID, but the dividend data

are well described by a geometric random walk with drift:

log Yt+1 = µ+ log Yt + νt+1, νt+1 ∼ IID(0, σ2
ν). (37)

The behavioral model then can be reformulated in price-to-cash flows. Investors have

correct beliefs about dividends and estimate the constant growth rate g ≡ eµ+
1
2
σ2
ν

by averaging over log(Yt+1

Yt
). Agents thus have model-consistent beliefs about the

exogenous dividend process: Ei,t[Yt+1] = (1 + g)Yt. The RE fundamental price given

by the discounted sum of expected future dividends, known as the Gordon model, is

then given by

P ∗t =
1 + g

r − g
Yt. (38)

Hence, under RE the price-to-dividend ratio is constant and given by

P ∗t
Yt

=
1 + g

r − g
≡ δ∗. (39)

Fig. 7 illustrates the S&P500 stock market index, the fundamental value P ∗t , the

price-to-dividend ratio δt ≡ Pt/Yt and the fundamental price-to-dividend ratio δ∗t
19.

The S&P500 index clearly exhibits excess volatility, with much more volatility in

asset prices than in the underlying fundamentals, a point already emphasized in the

seminal paper of Shiller (1981).

Hommes & Veld (2017) estimated the 2-type model using quarterly data 1950Q1-

2016Q4. In deviations from the fundamental value xt ≡ δt − δ∗ , the 2-type model

can be rewritten as:

xt =
1

R∗
(n1,tE1,t[xt+1] + n2,tE2,t[xt+1]), R∗ ≡ 1 + r

1 + g
. (40)

19Boswijk et al. (2007) and Hommes & Veld (2017) use the dynamic Gordon model with time

variation in the interest rate and the growth rate of dividends. This dynamic approach is more

flexible and allows for time variation in the fundamental PD ratio δ∗t . As can be seen in Figure 7

the time variation in the fundamental PD ratio of the dynamic Gordon model is relatively small.

Notice that the dynamic Gordon model presupposes a fixed risk premium.
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Figure 7: Top panel: Time series of S&P500 and its fundamental value P ∗
t ; Second panel: price-to-

dividend ratio δt and its fundamental δ∗t ; Third panel: deviation of the price-to-dividend ratio from
its fundamental benchmark; Fourth panel: estimated fraction n1,t of fundamentalists, and Fifth
panel: the corresponding time varying market sentiment φt in (48)
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The simplest form of heterogeneity occurs when belief types are linear in the last

observation:

Eh,t[xt+1] = φhxt−1. (41)

These two types capture the only two possibilities in agents’ beliefs: fundamentalists

believe that the price will mean-revert back to its fundamental value (0 ≤ φ1 < 1)

and chartists believe that the price (in the short run) will move further away from

the fundamental value (φ2 > 1).

The fractions of the two types are updated with a multinomial logit model as in

Brock and Hommes (1997), with intensity of choice β:

nh,t+1 =
eβUh,t∑H
j=1 e

βUj,t
. (42)

The performance measure Uh,t is a weighted average of past profits πh,t and past

fitness Uh,t−1, with memory parameter ω:

Uh,t = (1− ω)πh,t + ωUh,t−1, (43)

with profits, up to a constant factor, given by

πh,t = zh,t−1Rt = (φhxt−2 −R∗xt−1)(xt −R∗xt−1), (44)

where R∗ = (1 + r)/(1 + g). The econometric form of the endogenous strategy

switching model is an AR(1)- model with a time-varying coefficient:

R∗xt = n1,tφ1xt−1 + (1− n1,t)φ2xt−1 + εt R∗ =
1 + r

1 + g
, (45)

where εt is an i.i.d. error term. Combining equations (42), (43) and (44), fractions

depend nonlinearly on past realisations:

n1,t =(1 + exp[β(φ1 − φ2)
t−4∑
j=0

[ωi(1− ω)xt−3−j(xt−1−j −R∗xt−2−j)]])−1, (46)

n2,t =1− n1,t. (47)

The estimated parameter values in Hommes & Veld (2017) are:

• φ1 = 0.948: type 1 therefore are fundamentalists, expecting mean reversion of

the price towards its fundamental value by 5.2% per quarter;
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• φ2 = 1.018: type 2 are trend extrapolators, expecting the price deviation from

fundamental to increase by 1.8% per quarter;

• β ≈ 3.17120

• ω = 0.824: implying almost 20% weight is given to the most recent profit

observation and about 80% to past profitability.

Define the market sentiment as

φt =
ntφ1 + (1− nt)φ2

R∗
(48)

Figure 7 (bottom panels) show time series of estimated fractions of fundamental-

ists and the market sentiment. The fraction of fundamentalists varies considerably

but gradually (due to memory) over time, with values between 25% and 90% until

the 1990s, and more extreme values ranging from close to 0 to almost 100% after the

dot com bubble. The switching model offers an intuitive explanation of the dot com

bubble as being triggered by economic fundamentals (good news about a new internet

technology) subsequently strongly amplified by trend-following behavior. Estimates

of the market sentiment φt vary between 0.96 and 1 until the 1990s, showing near-

unit root behavior. During the dot com bubble the market sentiment φt exceeds 1 for

several quarters and therefore the market is temporarily in an explosive bubble state.

During the financial crisis the market is mainly dominated by fundamentalists indi-

cating that the financial crisis has been reenforced by fundamentalists who expected

a correction of asset prices back to fundamentals.

In this behavioral asset pricing model with heterogeneous beliefs, agents switch

between a mean-reversion and a trend-following strategy based upon realized prof-

itability. Strategy switching driven by profitability leads to an almost self-fulfilling

equilibrium with bubbles and crashes triggered by shocks (“news”) to economic fun-

damentals amplified by endogenous switching between trend-following and fundamen-

talist’s strategies.

20Estimating the β-parameter is hard, because of the highly nonlinear switching mechanism, and

yields non-significant results due to the relatively small sample size. At the same time the coefficients

φ1 and φ2 are significantly different from each other and therefore β is non-zero. See Hommes &

Veld (2017) for bootstrap analyses and an extensive discussion.
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Figure 8: Housing prices in the US (left panels), Japan (middle panels) and the

Netherlands (right panels). Top panels: Relative house price deviations Xt from

housing rent fundamentals; Middle panels: estimated time-varying fractions of

agents of type 1, i.e. fundamental mean-reverting agents (middle panels) and Bottom

panels estimated market sentiment as the time-varying AR(1) coefficient in Eq. (48).

All countries show long and persistent temporary bubbles.

Empirical validation for other data sets

There is by now a large empirical literature estimating this type of heterogeneous

agents models using various data sets, including stock prices, exchange rates, housing

prices and macro data (e.g. inflation); see e.g Franke & Westerhoff (2017) and Lux

& Zwinkels (2018) for an up-to-date surveys. A common finding is that bubbles are

triggered by shocks to economic fundamentals (e.g. the dot com bubble is triggered

by a new internet technology) and strongly amplified by switching to (almost) self-

fulfilling trend-following or chartists strategies. These trend-following strategies are

profitable as long as the majority believes in them.

Heuristics switching models have also been applied to the housing market. The-

oretical models for house price dynamics with heterogeneous expectations have been

considered, for instance by Dieci and Westerhoff (2012, 2013). Geanakoplos et al.

(2012) develop an agent-based model to explain the housing boom and crash, 1997-

2009 in the Washington DC area. Baptista et al. (2016) develop an agent-based
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model (ABM) of the UK housing market to study the impact of macro-prudential

policies on key housing market indicators. Adam et al. (2011) consider a housing

market model with Bayesian learning of an internally rational” representative agent;

Ascari et al. (2014) extend this model to the case of heterogeneous expectations with

fundamentalists versus chartists. Burnside et al. (2011) consider an epidemiological

housing market model where agents disagree about the fundamental value of housing

and infect each other.

Kouwenberg and Zwinkels (2014) estimated a HAM model specifically for the US

housing market using quarterly data from 1960 until 2012. Ambrose et al. (2013)

examined a long time series of house price data of Amsterdam from 1650 to 2005,

and found that substantial deviations from fundamentals persisted for decades and

are corrected mainly through price adjustments and to a lesser extent through rent

adjustments. Based on the same dataset, Eichholtz et al. (2013) found that there

is evidence for switching in expectation formation between fundamental and trend

following beliefs.

Bolt et al. (2019) estimate a 2-type model –with fundamentalists versus trend-

followers– to housing prices in deviations from a benchmark fundamental given by

housing rents for eight different countries (US, UK, NE, JP, ESP, SW, SWE and BE).

Figure 8 illustrates some of the results for the US, Japan and the Netherlands. For all

countries they find long lasting and persistent explosive bubbles, with bubbles lasting

sometimes more than a decade.

2.3 Behavioral New Keynesian Models

Behavioral asset pricing models originated more than two decades ago, as discussed

in subsection 2.2.2. Behavioral macro models are of more recent date. For example,

Gabaix (2017, 2018) recently introduced behavioral New Keynesian macro models,

where full information infinite horizon optimization is replaced by sparse dynamic op-

timization, with agents ignoring or putting less weight on information in the distant

future. Gabaix mainly focusses on models where, given these informational restric-

tions, agents’ behavior remains fully rational. This approach is similar in spirit to

the rational inattention literature, surveyed in Sims (2010), where agents also partly
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ignore information or give less weight to some information but otherwise remain fully

rational. The aggregate equations from Gabaix’ behavioral NK model are:

xt = MEtxt+1 +
1

σ
(Etπt+1 − it) + ut (IS curve) (49)

πt = δM fEtπt+1 + κxt + vt (Phillips curve) (50)

it = Max{πT + φππt + φxxt, 0} (Taylor rule) (51)

where xt is the output gap, πt inflation and it is the (contemporaneous) nominal

interest rate rule. Compared to the NK benchmark model the crucial difference lies

in the attention parameters M,M f ∈ [0, 1]. The NK benchmark arises as a special

case for M = M f = 1. In the behavioral NK model agents are boundedly rational

and are not fully forward looking, but less reactive to the future putting less weight on

the far distant future. This is a form of cognitive discounting. Gabaix derives several

policy implications within the behavioral model. For example, in the standard model

indeterminacy and multiplicity of equilibria arises when the Taylor principle does

not hold. In contrast, in the behavioral model, whenever monetary policy is passive

equilibrium is unique, even when the Taylor principle does not apply. The reason is

that boundedly rational agents discount the future more and are thus less responsive

to future events, lowering the complementarity between agents’ actions. This force is

stabilizing and dampens the possibility of multiple equilibria in Gabaix’s behavioral

NK model.

In this survey our focus is on the behavioral New Keynesian model with non-

rational heterogeneous expectations. Even for linearized NK models, non-rational

expectations and learning adds strong nonlinearities to the system giving rise for

complex dynamics. It is interesting to note that, in contrast to Gabaix’s behavioral

model, non-rational expectations and learning introduces backward looking expec-

tations and typically adds more complementarities and positive feedback to the NK

framework making the dynamics of the model generally more unstable and allowing

more easily for multiple equilibria and persistent deviations from the target steady

state.

The heterogeneous expectations framework originates from Brock & Hommes

(1997) with agents switching between different forecasting rules based upon their (re-

cent) past relative performance. The learning mechanism here is thus characterized
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by ‘survival of the fittest’, with agents gradually switching to better performing rules.

Early applications of this heterogeneous expectations framework include Branch &

McGough (2009, 2010) De Grauwe (2011, 2012) and Anufriev et al. (2013).

2.3.1 Heterogeneous expectations

Branch & McGough (2009, 2010) are among the first papers to study New Keyne-

sian models with heterogeneous expectations, applying the framework of Brock &

Hommes (1997) with agents switching between different forecasting rules based upon

their (recent) past relative performance. Branch & McGough (2009, 2010) provide

a micro-foundation for boundedly rational heterogeneous expectations at the agent-

level in the NK framework. They show that under Euler equation learning and a

number of axioms about the individual forecasting rules, the aggregate IS and NKPC

curves have the same functional form as under rational expectations. They consider a

NK model with costly rational (perfect foresight) versus free naive expectations and

show that instability and complicated dynamics may arise even if the model under

rational expectations is determinate with a unique equilibrium path. When agents

are allowed to switch between rules based upon their relative performance, complex

dynamics (cycles and chaos) may arise even if the Taylor principle holds. Anufriev

et al. (2013) consider a simple frictionless NK model with fundamentalists, optimists

and pessimists and show that multiple stable steady states co-exist. They also con-

sider a model with infinitely many different types and study the dynamics with a

large type limit approximation (Brock et al. 2005). A 12-type model is shown to

closely mimic U.S. inflation time series, with large and highly persistent departures

from target inflation. They also show that a more aggressive monetary policy Taylor

rule reduces the number of steady states and can stabilize inflation.

Other early papers in this area are De Grauwe (2011, 2012), who develops a behav-

ioral NK macroeconomic model in which agents have cognitive limitations. Agents

use simple but biased rules (heuristics) to forecast future output and inflation. Al-

though the rules are biased, agents learn from their mistakes in an adaptive way,

switching to better performing strategies, as in Brock & Hommes (1997). The model

produces endogenous waves of optimism and pessimism (”animal spirits”) that are
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generated by the correlation of biased beliefs and match the stylized facts of inflation

and output, such as persistence and fat tails. De Grauwe contrasts the dynamics of

this model with a stylized DSGE-version of the model and studies the implications

for monetary policies. Strict inflation targeting is suboptimal, because it gives more

scope for waves of optimism and pessimism to emerge thereby destabilizing output

and inflation.

Hommes & Lustenhouwer (2019b) analyze this NK model with optimists and

pessimists in detail and also study the role of a zero lower bound on the interest rate.

They show that multiple steady states exist, including a self-reinforcing liquidity trap

steady state where the pessimistic agents dominate. They also consider a model

with infinitely many types, using the concept of large-type-limit and show that self-

fulfilling waves of optimism and pessimism may occur. More aggressive monetary

policy and/or a higher inflation target reduce the number of steady states and make

self-fulfilling animal spirits less likely.

The micro-foundations of heterogeneous expectations in the NK model have been

discussed and studied in several papers. Branch & McGough (2009, 2010) used a

one-step ahead Euler equation approach to derive the aggregate IS and NKPC under

heterogeneous expectations, after imposing restrictive assumptions about the individ-

ual forecasting rules. Massaro (2013) uses an infinite horizon optimization framework

and derives aggregate IS and NKPC under heterogeneous expectations, with the ho-

mogeneous rational agent benchmark nested as a a special case. Mauersberger (2017)

develops a micro-founded NK model where agents form forecasts of household rel-

evant variables as opposed to economy-wide aggregates and test this model in the

laboratory.

Kurz et al. (2013) explore a NK model with diverse beliefs and show that the

aggregate IS and NKPC depend on an aggregate state variable named ”mean mar-

ket state of belief”. Diverse beliefs alter the problem faced by a central bank since

the source of fluctuations is not only exogenous shocks but also market expectations.

They show that due to diverse beliefs the effects of policy instruments are not mono-

tonic and the trade-off between inflation and output volatility is complex. Monetary

policy can counter the effects of market belief by aggressive anti-inflation policy but

at the cost of increased volatility of financial markets and individual consumption.
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Hommes & Lustenhouwer (2019a) simplify the aggregate equations of Kurz et al.

(2013), using a property of the discrete choice model for strategy switching of Brock

& Hommes (1997). Under this model it is implicitly assumed that the probability to

follow a particular heuristic next period is the same across agents, i.e., independent of

the heuristic they followed in the past. This reflects the fact that agents are not inher-

ently different, but face the same trade-off between heterogeneous forecasting rules.

They assume agents know (have learned) that all agents have the same probability

to follow a particular heuristic in the future, and that they know that consumption

decisions only differ between households in so far as their expectations are different.

In that case households expectations about their own future consumption coincide

with their expectations about the future consumption of any other agent. Agents

therefore realize they should base their current period consumption decision on ex-

pectations about future aggregate consumption and, therefore, Kurz’s mean market

state of belief reduces to 0. Under these assumptions aggregate equations of the

NK model with switching among heterogeneous expectations rules are equivalent to

replacing conditional expectations by average expectations.

2.3.2 Individual and social learning

Another, closely related approach to learning with heterogeneous forecasting rules

is called individual or social learning and uses genetic algorithm learning based on

evolutionary selection, mutation and crossover. The evolutionary approaches may be

viewed as a more descriptive form of actual learning behaviour in complex market

economies. The notion of individual evolutionary learning (IEL) was introduced in

Arifovic & Ledyard (2011), building on the work of Arifovic (1994), as a way of mod-

eling heterogeneous strategies in large strategy spaces with a continuum of decision

choices (as opposed to reinforcement learning (Erev & Roth 1998) and experience-

weighted attraction learning (EWA, Camerer & Ho (1999)) in game theoretic settings,

where the strategy space is finite). Individual learning refers to agents evolving their

own set of successful strategies, as opposed to a social learning process where the

population of strategies evolves and each agent is represented by a single strategy.
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Arifovic et al. (2010) apply IEL in an agent-based dynamic extension of the Kyd-

land & Prescott (1977) model and study the role of cheap talk announcements by

the policy maker. Private agents can choose between two strategies: believe, that

is, act as if the policy announcement was true; or not believe and compute the best

possible forecast of the policy maker’s next action. In each period word of mouth

information exchange allows a fraction of agents to compare their last-period payoffs

with the ones obtained by agents who followed the other strategy. Each agent then

adopts the strategy that provided the highest payoff and uses it until a new compar-

ison motivates it to switch strategies again. The proportion of believers thus may

change over time and can be interpreted as a measure of the policy maker’s credibil-

ity. Simulations show that the policy maker is able to learn how to reach an outcome

that is Pareto-superior compared to the one that would be attained without adequate

cheap talk. This outcome is characterized by a succession of trust building phases,

where the announcement and the true inflation are chosen in order to increase the

proportion of believers; and trust exploitation phases, where the policy maker uses

the existence of a large fraction of believers to achieve for itself high payoffs at the

cost of a decrease of the fraction of believers.

Arifovic et al. (2013) analyse the effects of social learning in a New Keynesian

monetary policy context. Social learning may be viewed as a more descriptive and

realistic form of actual learning behaviour in complex market economies. In this

NK framework the Taylor Principle governs uniqueness and expectational stability

of rational expectations equilibrium (REE) under adaptive learning. Surprisingly,

they find that the Taylor Principle is not necessary for convergence to REE minimum

state variable (MSV) equilibrium under social learning. Under social learning for all

policy parameters the system seems to converge to the REE. Sunspot equilibria also

exist in the indeterminate region. Under social learning agents cannot coordinate on

a sunspot equilibrium in general form specification, however, they can coordinate on

common factor specifications. It remains unclear how general these stability results

under social learning are and whether they are for example robust w.r.t. some of

the underlying assumptions, such as the correct specification of the perceived law of

motion as the MSV (no misspecification), the mutation rate is assumed to decrease

over time (favoring the REE forecast) and there is no zero lower bound (ZLB).
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Hommes et al. (2017) study a GA model in the New Keynesian framework with

an inflation targeting interest rate rule (with a ZLB), where the GA optimizes a sim-

ple first-order forecasting heuristic as in Heemeijer et al. (2009). This means that

the PLM is misspecified and in particular takes a trend-following coefficient into ac-

count. The stability of GA learning coincides with the Taylor principle; when the

Taylor principle is not satisfied, the NK model is unstable under GA learning and

may yield explosive inflationary or deflationary spirals and persistent fluctuations

in inflation and output. When the Taylor principle holds GA learning is more sta-

ble, although some endogenous fluctuations and oscillatory behavior may arise. The

GA-simulations fit the different types of observed behavior –monotonic convergence,

oscillatory behavior and deflationary spirals (when the Taylor principle does not hold)

in the NK laboratory experiments of Assenza, Heemeijer, Hommes & Massaro (2014)

(see Subsection 3.2).

Arifovic et al. (2018) study social learning in the NK model with a ZLB. There

are three REE: the normal target steady state, the always binding ZLB steady state

and an occasionally binding ZLB steady state following a Markov process. Agents’

PLM is a correctly specified rule capturing the three REE steady states. Mutation and

crossover probabilities are assumed to be constant (10%) over time. It is also assumed

that the current realizations of the stochastic process for the shocks to the natural

rate can be observed. The ZLB steady state is unstable under adaptive learning,

but interestingly it is stable under social learning, where agents learn the optimal

coefficients of the PLM. Agents can learn to have pessimistic sentiments about the

central bank’s ability to generate price growth, giving rise to a stochastically stable

envirnoment characterized by deflation and stagnation.

2.3.3 Two types switching model and forward guidance

Heterogeneous expectations provide a natural framework to study the role of the

ZLB and the credibility of the central bank to prevent or recover the economy from

liquidity traps. Hommes & Lustenhouwer (2019a) introduce endogenous credibility of

the central bank in a NK framework with heterogeneous expectations.

There are two types of agents, credibility believers and naive expectations. The
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first forecasting heuristic can be described as ”trust the central bank”. Followers of

this heuristic are called fundamentalists or credibility believers, and expect future

inflation and output gap to be equal to the targets of the central bank. The frac-

tion of fundamentalists can be interpreted as the credibility of the central bank. In

contrast with rational expectations models, this model therefore involves endogenous

credibility. The fundamentalists compete with naive expectations, which uses the last

observation as a best guess for future realizations of inflation and output. Notice

that the naive heuristic coincides with rational expectations when inflation or output

follows a random walk. If inflation or output follows a near unit root process, the

naive forecast is therefore nearly rational. Naive agents furthermore add persistence

in inflation and output gap to the model in a very simple and intuitive manner, with-

out the need to assume heavily serially correlated shocks. There is empirical evidence

matching the type of heterogeneity in the 2-type model, both in survey data and lab

experimental data, as will be further discussed in subsections 2.3.4 and 3.2.

The model is given by a New Keynesian Phillips curve describing inflation πt, an

IS curve describing output gap xt, and a policy rule for the nominal interest rate it

with a ZLB:

xt = Ẽtxt+1 +
1

σ
(Ẽtπt+1 − it) + ut (52)

πt = δẼtπt+1 + κxt + vt (53)

it = Max{πT + φ1(Ẽtπt+1 − πT ) + φ2(Ẽtxt+1 − xT ), 0}, (54)

where Ẽt denotes aggregate expectations of all agents in the economy. Expectations

are formed using the two simple heuristics, fundamentalists (type 1) and naive ex-

pectations (type 2), as

fundamentalists: E1txt+1 = xT and E1tπt+1 = πT

naive: E2txt+1 = xt−1 and E2tπt+1 = πt−1
(55)

Agents switch between these rules and the fractions n1t and n2t of the two types

are given by the discrete choice probabilities (31), with fitness based on the squared

prediction errors. Aggregate expectations about inflation and output are then given

by

Ẽtπt+1 = nπ1tπ
T + nπ2tπt−1, (56)
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Ẽtxt+1 = nx1tx
T + nx2txt−1. (57)

The fraction of fundamentalists is then the endogenous credibility of the CB and

depends on how well the CB achieved its targets.

Hommes & Lustenhouwer (2019a) derive policy implications for an inflation tar-

geting central bank, who’s credibility is endogenous and depends on its past abil-

ity to achieve its targets. Interestingly, the region of allowed policy parameters is

strictly larger under heterogeneous expectations than under rational expectations.

Furthermore, with theoretically optimal monetary policy (with coefficients minimiz-

ing a quadratic loss function), global stability of the fundamental steady state can

be achieved, implying that the system always converges to the targets of the central

bank. This result however no longer holds when the zero lower bound (ZLB) on

the nominal interest rate is accounted for. Self-fulfilling deflationary spirals can then

occur, even under optimal policy. The occurrence of these liquidity traps crucially

depends on the credibility of the central bank. Deflationary spirals can be prevented

with a high inflation target, aggressive monetary easing (i.e. cutting the interest rate

to 0 when inflation falls below a threshold), or a more aggressive response to inflation

(a higher coefficient in the Taylor rule). All these deviations from optimal policy

have their costs, and may e.g. lead to higher output volatility, so a well balanced

combination may be the best way to go.

Forward guidance

Goy et al. (2018) use the two-type switching model to study the macroeconomic

effects of central bank forward guidance when central bank credibility is endogenous.

In particular, they take a stylized New Keynesian model with an occasionally binding

ZLB constraint on nominal interest rates and heterogeneous and boundedly rational

households. The central bank uses a bivariate VAR model to forecast inflation and

output gap. But their VAR model is misspecified, because it does not take into

account the time-variation in the distribution of aggregate expectations. In this

framework, they introduce forward guidance by allowing the central bank to publish

its own forecasts (Delphic guidance) and to commit to a future path of the nominal

interest rate (Odyssean guidance). Both Delphic and Odyssean forward guidance
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increase the likelihood of recovery from a liquidity trap. While Odyssean guidance

alone can increase ex post macroeconomic volatility and thus reduce welfare, it still

appears to be more powerful.

To study forward guidance in a bounded rationality framework, Goy et al. (2018)

use N -step ahead Euler equation learning and heterogeneous expectations, so that

future interest rate expectations matter. The NK model with N-step ahead Euler

equation learning can be summarized as

xt = Ẽtxt+N −
1

σ
Ẽt

N−1∑
j=0

(
it+j − πt+j+1 − r̄

)
+ ut, (58)

πt = δN Ẽtπt+N + Ẽt

N−1∑
j=0

δjκxt+j + vt, (59)

where Ẽt denotes the heterogeneous expectations operator to be specified below. The

IS curve (58) and Philips curve (59) pin down output xt and inflation πt, given a

nominal interest rate it and N-step ahead forecasts of the interest rate, inflation and

output gap. δ is the discount factor, the term r̄ is the steady state real interest rate,

given by r̄ = 1
δ
− 1, and ut and vt represent exogenous shocks. The model is closed

using a contemporaneous Taylor-type rule with a ZLB:

impt = max{0, r̄ + π̄ + φ(πe,cbt|t − π̄)}, (60)

where πe,cbt|t denotes the central bank’s real-time inflation projection, made at the

beginning of period t. For the unconventional policy, we equip the central bank with

two additional policy tools:

• Delphic guidance: to publish the CB forecasts πe,cbt+j|t, i
e,cb
t+j|t and xe,cbt+j|t for j =

1, . . . , qD, or

• Odyssean guidance: commit to set interest rates it+j = 0,∀j = 1, . . . , qO.

There are two types of agents, credibility believers versus naive expectations. Let

zt = xt, πt (i.e. output gap or inflation) then expectations are give by

Ẽ1,tzt+j =

z
e,cb
t+j|t, ∀j = 1, . . . , qD

z̄, ∀j = qD + 1, . . . , N

(61)
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and of naive expectations

Ẽ2,tzt+j = zt−1, ∀j = 1, . . . , N (62)

Notice that under forward guidance the credibility believers trust the central bank

and use their forecast. The credibility of the central bank however depends on the

fraction of credibility believers, which varies endogenously over time. Agents switch

between credibility believers and naive expectation based on the relative forecasting

performance, with fractions given by the discrete choice model (31).

It is assumed that households know the policy rule of the central bank and form

expectations about the nominal interest rate using their own inflation expectations:

Ẽ1,tit+j =


ie,cbt+j|t = max{0, r̄ + π̄ + φ(πe,cbt+j|t − π̄)}, ∀j = 1, . . . , qD

0, ∀j = 1, . . . , qO

ī, ∀j = qk + 1, . . . , N

(63)

where Odyssean guidance is dominant in case of both, and

Ẽ2,tit+j = max{0, r̄ + π̄ + φ(πt−1 − π̄)}, ∀j = 1, . . . , N (64)

Finally, the central bank forms expectations by adaptive learning of a bivariate

VAR(1) model

ye,cbt = A0 + A1yt−1 ≡ A′wt−1 (PLM)

where ye,cbt ≡ [xe,cbt|t , π
e,cb
t|t ]′ and wt−1 ≡ [1, xt−1, πt−1]

′. If the fractions of the two

agent types were constant, the CB would have a correctly specified PLM. Since these

fractions are time-varying, the CB uses a misspecified model and we have a Restricted

Perception Equilibrium (RPE) (Branch (2006); see Subsection 2.1.3).

Goy et al. (2018) show that the model has two steady states, the target steady

state, which is stable under learning, and the ZLB steady state which is a saddle

(see Figure 9). Without FG all initial states below the stable manifold of the ZLB

steady state fall into a liquidity trap and exhibit a deflationary spiral. FG however

enlarges the recovery region of the economy, as illustrated in Figure 2.3.3. How much

FG enlarges the recovery region of the economy depends critically on the credibility

of the CB as measured by the fraction of credibility believers. When the fraction of
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(a) Scenario I: all naive in t and t+ 1 (b) Scenario II: 50% naive in t and t+ 1

Figure 9: The effectiveness of FG depends crucially on the credibility of the CB.

The figure shows the basin of attraction of the target steady state (right black dot

at (π∗, x∗) = (π̄, x̄)). For scenario I (left), we assumed all households to be naive in

periods t and t + 1, while for Scenario II (right), the fractions are equal. The (left)

black dot at (π∗, x∗) = (−r̄, −(1−δ)
κ

r̄) indicates the ZLB saddle point. The black line

with crosses is the ZLB condition, to the left of which initial conditions are such that

the ZLB binds in period t. The solid red line is the stable manifold corresponding to

the ZLB saddle point in the case without forward guidance. The region above this

line can be interpreted as the immediate recovery region. Under forward guidance,

this line becomes flatter and the blue-dashed line results. Forward guidance thus has

an effect on the immediate recovery region. Assuming that the intensity of choice

β = ∞, households switch from naive expectations to credibility believers in period

t+ 2 for all initial conditions above the blue-dotted (forward guidance) and red-dash-

dotted (no forward guidance) line, respectively, therefore inducing convergence back

to the target steady state. Forward guidance successfully increases this region for

which households become credibility believers in period t+ 2 (indicated by the gray-

shaded area in the right plot), if the credibility of central bank was high enough in

the previous periods.
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credibility believers is small, FG is ineffective. On the other hand, when the fraction of

credibility believers is large, FG has a large effect. This resolves the FG puzzle under

rational expectations (Del Negro et al. (2012)). In our model the effectiveness of FG

depends critically on the credibility of the CB. Extensive Monte Carlo simulations

show that without FG the probability of deflationary spirals is about 28.8% and with

FG about 14.5% (Delphic FG) , 10.8% (Odyssean FG) and 12.1% (both) .

2.3.4 Empirical validation of two type switching model

Both surveys of consumers and professional forecasters and laboratory experiments

with human subjects show that there is considerable heterogeneity in inflation fore-

casts consistent with the 2-type model discussed above.

The case study of the Volcker disinflation by Mankiw et al. (2003) nicely illustrates

the presence of two types of heuristics in survey data. In Figure 10 (Mankiw et al.

2003, p. 46) the evolution of inflation expectations as measured by the Michigan

Survey from 1979 up to and including 1982 is plotted. They show that at the start

of 1979 expectations were centered around a high inflation value. Over the next

eight quarters (during which Paul Volcker was appointed chairmen of the Board

of Governors of the Federal Reserve Board) the distribution of expectations clearly

becomes bimodal, with a fraction of agents still expecting the same high values of

inflation and another fraction expecting lower inflation. In terms of our model we

can interpret this as follows. Before Volcker was appointed the FED had very little

credibility and most agents expected inflation to remain at the high values that it had

been in the recent past (they used the naive heuristic). In the following quarters the

FED gained more credibility and an increasing fraction of agents started to believe

that Volcker would be able to drive down inflation towards its target level (more

agents started to follow the fundamental/credibility heuristic). Furthermore, when

in 1982 actual inflation started to decline, the mass on high inflation expectations

slowly started to move towards lower inflation. We can interpret this as backward

looking, naive agents believing that lower observed inflation would also mean lower

inflation in the future. Towards the end of the sample in 1982 both heuristics thus

predict lower inflation, consistent with the distribution of the survey data.
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Figure 10: Bimodal distribution in Michigan Survey data on inflation expectations

from 1979 to 1982 (Mankiw et al. (2003)).

Branch (2004, 2007) fit a heuristic switching model with, amongst others, a naive

heuristic and a fundamentalistic VAR heuristic to data from Michigan Survey of

Consumer Attitudes an Behavior. Both these papers find clear evidence of switching

between heuristics based on past performance. Branch (2004) furthermore finds that

both our heuristics are present in the survey data, and Branch (2007) shows that the

heuristic switching model better fits the survey data than a static sticky information

model21.

Pfajfar & Žakelj (2014, 2016) and Assenza, Heemeijer, Hommes & Massaro (2014)

show that in their laboratory experiments in the NK framework, expectations of

subjects can quite accurately (both qualitatively and quantitatively) be described as

switching between simple heterogeneous forecasting heuristics based on their relative

past performance; see Section 3.2 for further details.

Cornea et al. (2019) estimate a New Keynesian Phillips curve assuming expec-

tations are formed by a heuristic switching model with fundamentalists and naive

agents. Fundamentalists here make use of the forward looking relation between in-

flation and marginal cost and use a VAR model to make inflation forecasts. Cornea

21Lux (2009) estimated the parameters of a dynamic opinion formation process with social inter-

actions based on survey data on business expectations (sentiment index data). Madeira and Zafar

(2014) use the Michigan Survey of Consumers data to estimate a learning model of inflation expec-

tations, allowing for heterogeneous use of both private information and lifetime inflation experience.
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Figure 11: Actual vs. predicted inflation

et al. (2019) find that their model fits the data well and that the endogenous mecha-

nism of switching between the two heuristics based on past performance is supported

by the data.

The NKPC with inflation driven by marginal costs and fundamentalists versus

naive expectations is given by:

πt = δ(nf,tE
f
t πt+1 + (1− nf,t)En

t πt+1) + γmct + ξt , (65)

where the fundamental and naive forecasts are given by

Ef
t πt+1 = γe′1(I − δA)−1AZt (66)

En
t πt+1 = πt−1 (67)

Fundamentalists estimate a VAR model and their fraction is given by

nf,t =
1

1 + exp

(
β

(
FEft−1−FEnt−1

FEft−1+FE
n
t−1

)) (68)

FEi
t−1 =

K∑
k=1

|Ei
t−k−1πt−k − πt−k|, with i = f, n (69)

Figure 11 shows that the 1-period ahead forecast of the heuristics switching model

closely matches US inflation. Figure 12 shows the evolution of the fraction of fun-

damentalists nf,t, the distance of actual inflation from the fundamental, the forecast

errors of the naive heuristic and a scatter plot of the fraction of fundamentalists

against the relative forecast error of the naive rule. It is clear from this figure that
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Figure 12: Top panel: Time series of the fraction of fundamentalists nf,t; Second

panel: Distance between actual and fundamental inflation; Third panel: Distance

between inflation and naive forecast; Bottom: Scatter plot nf,t vs relative forecast

error naive rule

the fraction of fundamentalists varies considerably over time with periods in which

it is close to 0.5 and other phases in which it is close to either one of the extremes

0 or 1. For example, immediately after the oil crisis of 1973, the proportion of fun-

damentalists drops almost to 0 and the naive forecasting rule dominates. Soon after

the difference between inflation and fundamental value reaches its peak in 1974:Q4,

the estimated weight of the forward-looking component shoots back up to about 0.6.

During the second oil crisis, inflation was far above the fundamental, causing more

agents to adopt a simple backward-looking rule to forecast inflation. Our findings sug-

gest that, in reaction to large shocks pushing inflation away from the fundamental,

a large share of agents adopt random walk beliefs causing self-fulfilling high inflation

persistence. This result is in line with the analysis of Branch & Evans (2016) showing

that innovations to inflation can lead agents adaptively learning in the economy to

temporarily believe that inflation follows a random walk. The two type switching

model can also explain a liquidity trap with highly persistent lowf inflation, as shown

in Hommes & Lustenhouwer (2019a) (see Subsection 2.3.3).

Cornea et al. (2019) also estimate the model using survey data of professional
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Figure 13: SPF forecasts vs. HSM expectations and estimated structural breaks with

fractions of fundamentalists for inflation and SPF. The right plot shows that the

professional forecasters switch slower than the behavioral HSM, which fits inflation

data better.

forecasters. Figure 13 shows the SPF forecasts together with the heuristics switching

expectations estimated from the model. Interestingly the behavioral HSM switching

model forecasts better match the high peaks of inflation than do the professional

forecasters. Cornea et al. (2019) also estimated structural breaks and Figure 13 (right

plot) shows that these structural breaks match well with the endogenous switching

between fundamentalists and naive expectations for inflation and SPF.

3 Experimental Macroeconomics

In the previous section several behavioral models of learning have been discussed.

Which learning model is the most relevant? A concern with learning theory is that,

“anything goes”, that is, for any equilibrium one can design a suitable theory or

learning algorithm that makes that equilibrium stable under learning. As suggested

by Lucas (1986) (see the earlier quote in the introduction) laboratory experiments can

provide empirical evidence about the collective behaviour and coordination process

of a population of adaptive learning agents. Laboratory experiments thus provide a

complementary tool to test the empirical relevance of different theories of learning.

Macroeconomists have long been skeptical about the relevance of lab experiments

for macro. Nevertheless, aggregate market behavior has been studied in the lab since

the early days of experimental economics. Smith (1962), for example, showed the
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stability of equilibrium in double auction laboratory markets. At the other extreme,

the seminal contribution of Smith et al. (1988) and many follow-up papers have

shown the emergence and prevalence of bubbles and crashes in experimental asset

markets; see e.g. the survey by Noussair and Tucker (2013).

Following (Duffy 2016, p.4) a macroeconomic experiment can be defined as ”one

that tests the predictions of a macroeconomic model or its assumptions”. Experi-

mental macroeconmics thus provides complementary tools to falsify or test macro

models in a controlled environment. This seems particularly relevant for behavioral

macroeconomics, because lab experiments can provide empirical guidance for which

individual decision rules are most relevant in behavioral macro modeling. A rapidly

increasing interest in experimental macroeconomics is witnessed, for example, in the

extensive Handbook survey chapters of Duffy (2016), Arifovic & Duffy (2018) and

Mauersberger & Nagel (2018).

The most important characteristic of a macro experiment is that it is a group

experiment, where individual decisions affect aggregate outcomes, which then feed

back into individual behavior, etc. In a controlled macro experiment one can there-

fore simultaneously test individual (micro) decision rules, their interactions and the

emergent aggregate (macro) behavior they co-create. An important issue is the size

of the group, which, for a macro experiment is often taken to be between 5 and 10

to distinguish it from game theoretic experiments of group size 2 or 3. With group

size larger than 3 individual strategic behaviour already becomes very complex. See

for example the collection of papers in Duffy (2014) and the discussions about macro

experiments therein.

In this section we discuss broadly two types of macro experiments. First, learning-

to-forecast experiments (LtFEs) focusing on how individuals form expectations and

how these expectations aggregate. LtFEs provide a laboratory test of the expectations

hypothesis in a given macro environment. The second type of experiments are policy

experiments studying the effectiveness of different policy scenarios in macroeconomic

environments. Here we will focus on monetary and fiscal policies.
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3.1 Learning-to-Forecast Experiments

Learning-to-forecast (LtF) experiments were pioneered by Marimon & Sunder (1993,

1994, 1995) and Marimon et al. (1993). Their design is tailor made to study indi-

vidual expectations and learning in standard macroeconomic frameworks. In LtF

experiments subjects’ only task is to forecast future variables, while all other agents’

actions (consumption, production, investment, trading, etc.) are computerized typi-

cally following rational assumptions from an underlying benchmark macro model or

theory. LtFs are thus analogous to most of the learning literature in that agents

are only boundedly rational in terms of forecasting, not optimizing22. LtF experi-

ments may be viewed as an empirical test of coordination of expectations within a

given modeling framework. We will also briefly discuss differences with the learning-

to-optimize experiments, where subjects directly engage in quantity decisions (e.g.

consumption, production, trade, etc.)23. Hommes (2011), (Hommes 2013, Chapter 8)

and Assenza, Bao, Hommes & Massaro (2014) provide earlier surveys on Learning-

to-Forecast Experiments (LtFEs).

Learning-to-forecast experiments provide insights into the following questions:

• How do individuals form expectations and learn and adapt their behavior?

• What is the aggregate outcome or emergent macro behavior of individual inter-

actions and learning?

• Will coordination occur or will heterogeneity persist?

• Will adaptive behavior enforce convergence to REE or can non-rational equi-

libria arise at the macro level?

3.1.1 Asset Pricing Experiments

In the asset pricing LtFEs in Hommes et al. (2005) there are two assets, a risk

free asset paying a fixed rate of return r and a risky asset, with price pt, paying an

22An exception is Evans & McGough (2018), where agents must also learn to optimize.
23Bernasconi and Kirchkamp (2000) combine the learning-to-forecast and learning-to-optimize

designs in an OG experiment; see also Arifovic et al. (2019) who study learning-to-forecast and

learning-to-optimize experiments in a complex OG environment with infinitely many equilibria.
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uncertain dividend yt. The asset market is populated by six large pension funds and

a small fraction of fundamentalist robot traders. Six subjects are forecast advisers

to each of the pension funds. Subjects’ only task is to forecast the price pt+1 of the

risky asset for 50 periods and, based on this forecast, the pension fund then computes

how much to invest in the risky asset according to a standard mean-variance demand

function. The fundamentalist robot trader always predict the fundamental price pf

and trades based upon this prediction. The realized asset price in the experiment is

derived by market clearing and given by:

pt =
1

1 + r

(
(1− nt)p̄et+1 + nt p

f + ȳ + εt

)
, (70)

where p̄et+1 = (
∑6

h=1 p
e
h,t+1)/6 is the average two-period ahead price forecast, pf = ȳ/r

is the fundamental price, and εt are small shocks. Subjects do not know the underlying

law of motion (70), but they do know the mean-dividend ȳ and the interest rate r, so

they could use these to compute the fundamental price and use it in their forecast. The

fraction nt in (70) is the share of computerized fundamental robot traders, increasing

as the price moves away from the fundamental benchmark according to

nt = 1− exp
(
− 1

200
|pt−1 − pf |

)
. (71)

The fundamental trader thus acts as a “far from equilibrium” stabilizing force in

the market, adding negative feedback when the asset price becomes overvalued. The

negative feedback becomes stronger the more price moves away from fundamental.

The overall expectations feedback system (70) has positive feedback, but the positive

feedback becomes less strong (i.e. stronger mean-reverting) when price moves away

from fundamental value.

Fig. 14 shows time series of prices, individual predictions and forecasting errors

in three different groups with a robot trader. A striking feature of aggregate price

behavior is that three different qualitative patterns emerge. The price in group 5

converges slowly and almost monotonically to the fundamental price level pf = 60.

In group 6 persistent oscillations are observed during the entire experiment, while in

group 7 prices fluctuate but the amplitude is decreasing.

A second striking result is that in all groups participants were able to coordinate

their forecasts. The forecasts, as shown in the lower parts of the panels, are dispersed
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Figure 14: Asset pricing experiments (Hommes et al. 2005) realized market prices (upper part
each panel), six individual predictions (middle part each panel) and individual errors (bottom part
of each panel). Three asset markets with robot traders (upper + bottom left) and one asset market
without robot traders (bottom right). Prices do not converge to the RE fundamental benchmark 60,
but rather fluctuate. In the market without fundamental robot trader (bottom right, as in Hommes
et al. (2008)) a long-lasting bubble arises. Individual expectations coordinate on almost self-fulfilling
equilibria.

in the first periods but then, within 3-5 periods, move close to each other. The coordi-

nation of individual forecasts has been achieved in the absence of any communication

between subjects, other than through the realized market price, and without any

knowledge of past and present predictions of other participants.

The fourth group in Fig. 14 shows a time series of prices, in a market without

fundamental traders (Hommes et al. 2008). In the absence of a far from equilibrium

stabilizing force due to negative feedback from the fundamental robot traders, a long-

lasting asset price bubble occurs with asset prices rising above 900, i.e. more than 15

times the fundamental price, before reaching an exogenously imposed upper-bound

of 1000 and a subsequent market crash. Similar large and long lasting bubbles have

been observed in larger groups of 20-32 (Bao et al. 2019) and even for groups up to

100 (Hommes et al. (2018); see Fig. 15). Coordination on bubbles is thus robust

against group size24.

24Recent work in Kopányi-Peuker & Weber (2018) and Hennequin (2019) shows that bubbles are

also robust with respect to experience as bubbles repeatedly appear when subjects gain experience

in repeated markets.
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Figure 15: Left panel: Large bubbles in groups of 23-32 (Bao et al. 2019). Right panel:

coordination of individual expectations on a large bubble in a group of 100 subjects by

coupling two laboratories in Amsterdam and Valencia each with 50 subjects (Hommes

et al. 2018).

These asset market laboratory experiments exhibit a strong degree of coordination

on price fluctuations. Markets do not converge to the unique perfectly self-fulfilling

RE fundamental price of 60, but rather fluctuate persistently and exhibit expectations

driven bubbles and crashes. Subjects therefore do not coordinate on the unique

RE equilibrium, but rather coordinate on an almost self-fulfilling equilibrium with

temporary bubbles, where forecasting errors are relatively small.

3.1.2 Coordination failures in positive feedback systems

In his classical paper introducing rational expectations Muth already noted that a

crucial feature for aggregation of individual expectation is whether the deviations of

individual expectations from the rational forecast are correlated or not. To quote

Muth (1961, p.321, emphasis added):

“Allowing for cross-sectional differences in expectations is a simple matter, because

their aggregate affect is negligible as long as the deviation from the rational forecast

for an individual firm is not strongly correlated with those of the others. Modifications

are necessary only if the correlation of the errors is large and depends systematically

on other explanatory variables”.

Laboratory experiments are well suited to study correlation of individual expecta-

tions in a controlled environment. It turns out that the type of expectations feedback,
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positive or negative, is crucial. In the case of positive (negative) feedback, an increase

(decrease) of the average forecast, causes the realized market price to rise (fall). Pos-

itive and negative feedback are closely related to strategic complementarity and sub-

stitutability (Haltiwanger & Waldman (1985); Fehr & Tyran (2001, 2005, 2008)25).

Under negative feedback, when the average forecast goes up, realized price goes down,

so it is better to go against the majority (strategic substitutability). Under positive

feedback, in contrast, when average forecast goes up, the realized price goes up, so

it is better to go with the majority (strategic complementarity). Positive feedback

seems particularly relevant in speculative asset markets. If many agents expect the

price of an asset to rise they will start buying the asset, aggregate demand will in-

crease and so, by the law of supply and demand, the asset price will increase. High

price expectations then become self-fulfilling leading to high realized asset prices. In

markets where the role of speculative demand is less important, e.g. in markets for

non-storable commodities, negative feedback may play a more prominent role. For

example in a supply-driven commodity market, if many producers expect future prices

to be high they will increase production which, according to the law of supply and

demand, will lead to a lower realized market price.

Heemeijer et al. (2009) investigate how the expectations feedback structure af-

fects individual forecasting behaviour and aggregate market outcomes by considering

market environments that only differ in the sign of the expectations feedback, but

are equivalent along all other dimensions. The realized price is a linear map of the

average of the individual price forecasts pei,t of six subjects. The (unknown) price

25Fehr & Tyran (2001, 2005, 2008) study the role of money illusion and show that differences in

the strategic environments (complementarity versus substitutability) has an impact on individual

rationality and aggregate outcomes. Fehr and Tyran study the adjustment of nominal prices after

an anticipated nominal shock in a price setting game with positive (complements) and negative

(substitutes) reaction curves, and find much faster convergence in the case of substitutes. They

argue that differences in the stickiness of price expectations are key for the understanding of these

differences in aggregate outcomes.
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generating rules in the negative and positive feedback systems were respectively:26

pt = 60− 20

21
[(

6∑
i=1

1

6
pei,t)− 60] + εt, negative feedback (72)

pt = 60 +
20

21
[(

6∑
i=1

1

6
pei,t)− 60] + εt, positive feedback (73)

where εt is an exogenous random shock to the pricing rule. The only difference

between (72) and (73) is the sign of the slope of the linear map, 20/21 ≈ +0.95 resp.

−20/21 ≈ −0.9527. Heemeijer et al. (2009) consider positive and negative feedback

systems with small IID shocks εt ∼ N(0, 0.25). Negative feedback markets are rather

stable and converge quickly to equilibrium, while positive feedback markets are rather

unstable and fluctuate around equilibrium, as illustrated in Figure 16.

Here we focus on the experiments of Bao et al. (2012), with large permanent

shocks to the fundamental price level. More precisely, these shocks have been chosen

such that, both in the negative and positive feedback treatments, the fundamental

equilibrium price p∗t changes over time according to:

p∗t = 56, 0 ≤ t ≤ 21,

p∗t = 41, 22 ≤ t ≤ 43,

p∗t = 62, 44 ≤ t ≤ 65.

(74)

The purpose of these experiments was to investigate how the type of expectations

26This LtFE may be viewed as a repeated guessing games as in Nagel (1995), where subjects

predict a number between 0 and 100 and the winner is she who’s guess is closest to 2/3 of the

average. This is a repeated Keynes’ beauty contest, where one has to guess the average opinion of

other subjects. The Nash equilibrium of the guessing game is 0, but in the laboratory experiment

first- and second order rationality (where the subject guesses 2/3 · 50 respectively (2/3)2 · 50) are

most common. The key difference here is that subjects do not know the best response function,

but only have qualitative information about the market. Such limited knowledge seems particularly

relevant in macroeconomic systems. Sutan and Willinger (2009) investigate a new version of the

beauty contest games (BCG) in which players action are strategic substitutes (negative feedback)

versus strategic compliments (positive feedback) and find that chosen numbers are closer to rational

play in the case of strategic substitutes. See Mauersberger & Nagel (2018) for an extensive overview

of experimental coordination games and their importance for macroeconomics.
27In both treatments, the absolute value of the slopes is 0.95, implying in both cases that the

feedback system is stable under naive expectations.
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Figure 16: Laboratory experiments with negative feedback (left panels) and positive feedback
(right panels). Upper panels show negative feedback map, with RE steady state 60 clearly visible,
and positive feedback map where the unique RE equilibrium is 60, but every other point is almost
an equilibrium. Other panels show realized market prices (middle panels), six individual predictions
(bottom panels) and individual errors (small bottom panels). In the negative expectations feedback
market (left panels) the realized price quickly converges to the RE benchmark 60. In positive
feedback markets a coordination failure arises and individuals coordinate on the ”wrong” price
forecast and as a result the realized market price persistently deviates from the RE benchmark 60.

feedback may affect the speed of learning of a new steady state equilibrium price,

after a relatively large unanticipated shock to the economy.

Figure 17 shows for positive and negative feedback the average price behavior (top

panels), realized prices in all groups (middle panels) and an example of individual

forecasts in a positive as well as a negative feedback group (bottom panels). Aggregate

behaviors under positive and negative feedback are strikingly different. Negative

feedback markets tend to be rather stable, with price converging quickly to the new

(unknown) equilibrium level after each unanticipated large shock. In contrast, under

positive feedback prices are sluggish, converging only slowly into the direction of the

fundamental value and subsequently overshooting it by large amounts.

Figure 18 reveals some other striking features of aggregate price behavior and

individual forecasts. The left panel shows the time variation of the median distance

to the RE benchmark price over all (eight) groups in both treatments. For the

negative feedback treatment, after each large shock the distance spikes, but converges

quickly back (within 5-6 periods) to almost 0. In the positive feedback treatment after

each shock the distance to the RE benchmark shows a similar spike, but falls back
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Figure 17: Positive feedback (left panels) and negative feedback (right panels) ex-

periments with large shocks. Top panels: The average realized price averaged over

all eight groups; Middle panels: the market prices for eight different groups; Bottom

panels: predictions of six individuals in group P8 (left) and group N8 (right) plot-

ted together with fundamental price (dotted lines).The positive feedback markets are

characterized by persistent coordination failures.
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Figure 18: Positive/Negative feedback markets with large shocks. These plots illus-

trate price discovery (left panel) and coordination of individual expectations (right

panel). The left panel shows the median absolute distance to RE fundamental price,

while the right panel shows the median standard deviation of individual predictions.

In positive feedback markets coordination is quick, but on the “wrong”, i.e. non-RE,

price.

only slowly and does not converge to 0. The right panel shows how the degree of

heterogeneity, that is, the median standard deviation of individual forecasts, changes

over time. For the positive feedback treatment after each large shock heterogeneity

decreases very quickly and converges to (almost) 0 within 3-4 periods. Under positive

feedback, individuals thus coordinate expectations quickly, but they all coordinate on

the “wrong”, i.e., a non-RE price. In the negative feedback treatment heterogeneity is

more persistent, for about 10 periods after each large shock. Persistent heterogeneity

stabilizes price fluctuations and after convergence of the price to its RE fundamental

individual expectations coordinate on the correct RE price.

One may summarize these results in saying that in the positive feedback treatment

individuals quickly coordinate on a common prediction, but that coordination on the

“wrong” non-fundamental price occurs. As a result price behavior is very different

from the perfect, homogeneous rational expectations equilibrium price. On the other

hand, in the negative feedback treatment coordination is much slower, heterogeneity

is more persistent, but price convergence is quick.

Stated differently, positive feedback systems are characterized by quick and persis-

tent coordination failures , while negative feedback markets are characterized by slow
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coordination, more persistent heterogeneity and quick price discovery. Notice also

that under positive feedback, coordination on a non-RE-fundamental price is almost

self-fulfilling, with small individual forecasting errors. The positive feedback market

is thus characterized by coordination on almost self-fulfilling equilibria with prices

very different from the perfectly rational self-fulfilling equilibrium28. Similar results

have been obtained in laboratory experiments in other market settings, including a

New Keynesian macro framework (Adam, 2007; Pfajfar and Zakelj, 2009; Assenza et

al., 2012) and in a Lucas asset pricing model (Asparouhova et al., 2013).

3.1.3 Heuristics switching model

The fact that qualitatively different aggregate outcomes arise suggests that heteroge-

neous expectations must play a key role to explain these experimental data. Anufriev

& Hommes (2012b), extending the model of Brock ad Hommes (1997), fitted a be-

havioral heuristics switching model (HSM) to explain individual forecasting as well

as aggregate price behavior.

Agents choose from a number of simple forecasting heuristics. The forecasting

heuristics are similar to those obtained from estimating linear models on individual

forecasting experimental data. Evolutionary selection or performance based reinforce-

ment learning based upon relative performance disciplines the individual choice of

heuristics. Hence, the impact of each of the rules is evolving over time and agents

tend to switch to more successful rules. The four forecasting heuristics are:

ADA pe1,t+1 = 0.65 pt−1 + 0.35 pe1,t (75)

WTR pe2,t+1 = pt−1 + 0.4 (pt−1 − pt−2) (76)

STR pe3,t+1 = pt−1 + 1.3 (pt−1 − pt−2) (77)

LAA pe4,t+1 =
pavt−1 + pt−1

2
+ (pt−1 − pt−2), (78)

were pavt−1 =
∑t−1

j=0 pj is the sample average of past prices. Adaptive expectations

(ADA) predicts that the price is a weighted average of the last observed price pt−1 and

28Wagener (2013) uses the same experimental data and shows weak individual rationality (i.e.

unbiased forecast errors without autocorrelations) for both the negative and positive feedback treat-

ments, but strong rationality (i.e. prices converge to the homogeneous REE price) only under

negative feedback.
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the last price forecast pet . The trend-following rules extrapolate the last price change,

either with a weak (WTR) or with a strong (STR) trend parameter. The fourth rule

is an anchor and adjustment rule (Tversky & Kahneman (1974)), extrapolating a

price change from a more flexible anchor.

These four rules have been chosen in line with the estimated linear rules for in-

dividual forecasts and correspond to the different types of behavior observed in the

experiment. Adaptive expectations leads to monotonic convergence to the funda-

mental price. The weak trend rule also leads to convergence, possibly after some

overshooting and/or oscillatory behavior. The strong trend rule leads to instability

and a large asset price bubble. Finally, the anchor and adjustment rule leads to os-

cillatory behavior. While the strong trend rule can not predict a price reversal, as it

always predicts a price trend to continue, the anchor and adjustment rule predicts a

price reversal when the price moves away too far from the fundamental equilibrium

price due to its more flexible anchor that gives 50% weight to the average price pavt−1,

which may be seen as a proxy for the fundamental equilibrium level.

The fractions of the four forecasting heuristics are time-varying and evolve ac-

cording to a discrete choice model with asynchronous updating:

ni,t = δ ni,t−1 + (1− δ) exp(β Ui,t−1)∑4
i=1 exp(β Ui,t−1)

. (79)

The fitness or performance measure of forecasting heuristic i is based upon quadratic

forecasting errors, consistent with the earnings in the experiments:

Ui,t−1 = −
(
pt−1 − pei,t−1

)2
+ η Ui,t−2 , (80)

where η ∈ [0, 1] measures the strength of the agents’ memory. In the special case

δ = 0, (79) reduces to the the discrete choice model with synchronous updating; δ

represents inertia in switching as subjects change strategies only occasionally. The

parameter β ≥ 0 represents the intensity of choice measuring how sensitive individuals

are to differences in strategy performance29.

Fig. 19 compares the experimental data with the one-step ahead predictions made

by the HSM. The one-step ahead simulations use exactly the same information avail-

able to participants in the experiments. The one-period ahead forecasts easily follow

29In the simulations below the parameters are fixed at the benchmark values β = 0.4, η = 0.7, δ =

0.9, as in Anufriev & Hommes (2012b).
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Figure 19: Simulated prices in laboratory experiments in different groups (red) with corresponding
one-step ahead predictions of the heuristics switching model (blue), predictions and forecasting
errors (inner frames) of four heuristics and time series of fractions of each of the four heuristics
adaptive expectations (ADA, purple), weak trend followers (WTR, black), strong trend followers
(STR, blue) and anchoring adjustment heuristic (LAA, red). Two top panels correspond to three
groups with robot traders; bottom panels correspond to group without robot trader and large bubble
(left panels) and negative (middle) and positive (bottom, right) feedback groups. In the negative
feedback market the adaptive expectations (ADA) rule dominates and enforces quick convergence to
the RE fundamental price 60. In the positive expectations feedback market, the strong (STR) and
the weak (WTR) trend following rules perform well and reinforce price oscillations. In all positive
feedback groups individual expectations coordinate on a non-RE almost self-fulfilling equilibrium.
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the different patterns in aggregate price behavior in all groups. The second and bot-

tom panels show the corresponding fractions of the four heuristics for each group. In

different groups different heuristics are dominating the market, after starting off from

an equal distribution.

In the monotonically converging group, the impact of the different rules stays

more or less equal, although the impact of adaptive expectations gradually increases

and slightly dominates the other rules in the last 25 periods. In the oscillatory group

the LAA rule dominates the market from the start and its impact increases to about

90% towards the end of the experiment. For the group with the dampened oscilla-

tions, one step ahead forecast produces a rich evolutionary selection dynamics, with

three different phases where the STR, the LAA and the ADA heuristics subsequently

dominate. The STR dominates during the initial phase of a strong trend in prices,

but starts declining after it misses the first turning point of the trend. The LAA does

a better job in predicting the trend reversal, because of its more slowly time varying

anchor and its impact starts increasing. The LAA takes the lead in the second phase

of the experiment, with oscillating prices, and its share increases to almost 90% after

35 periods. But the oscillations slowly dampen and therefore, after period 35, the

impact of adaptive expectations, which has been the worst performing rule until that

point, starts increasing and adaptive expectations dominates the group in the last 9

periods. In the asset market without a fundamental trader subjects coordinate on the

strong trend-following strategy, thus explaining the large bubble in the experiment.

The HSM also matches aggregate price behavior in both the negative and positive

feedback experiments very well (see the two bottom right panels in Fig. 19). The time

series of the fractions of the different forecasting heuristics provide an intuitive expla-

nation of how individual learning leads to different aggregate price behavior. In the

negative feedback treatment, the adaptive expectations strategy performs best and

within 20 periods it captures more than 90% of the market, thus enforcing convergence

towards the RE fundamental equilibrium price. In contrast, in the positive feedback

treatment the strong and weak trend-following rules dominate the market, amplifying

price fluctuations. The difference in aggregate behavior is thus explained by the fact

that trend following rules are successful in a positive feedback environment reinforcing

price oscillations and persistent deviations from the fundamental equilibrium bench-

73



mark price, while the trend-following rules are driven out by adaptive expectations in

the case of negative feedback (Anufriev & Hommes 2012a). Self-confirming coordina-

tion on trend-following rules in a positive expectations feedback environment has an

aggregate effect with realized market prices deviating significantly and persistently

from the RE benchmark.

3.1.4 Simple heuristics that make us smart

The HSM provides an intuitive explanation of the laboratory LtF experiments. But an

important question remains unanswered: where exactly do the forecasting heuristics

with these coefficients come from? Anufriev et al. (2019) develop a model where agents

use a genetic algorithm to optimize the parameters of an anchor and adjustment

heuristic. The two parameter forecasting heuristic is given by

pei,h,t = αi,h,tpt−1 + (1− αi,h,t)pei,t−1 + βi,h,t(pt−1 − pt−2). (81)

α ∈ [0, 1] represents the anchor, determining how much weight is given to the last

observed price versus the last forecast, while β represents the trend extrapolation

parameter. Each agent i has a set of H = 20 heuristics, which are updated over

time by a genetic algorithm through reproduction, mutation and election, with rules

being selected with a probability proportional to its relative performance. Anufriev

et al. (2019) show that this GA-model outperforms the HSM and adaptive learn-

ing benchmarks in explaining and forecasting different laboratory experimental data

sets. What makes the GA model work particularly well is the use of an appropriate

forecasting heuristic, that takes the trend-extrapolation in positive feedback systems

into account. The anchor and adjustment heuristic makes the GA learning ‘smart’

in the sense that it fits well with the observed behavior of human subjects in the

experiments, cf. Gigerenzer & Todd (1999).

Figure 20 illustrates which heuristics were learned by the GA agents in the lab

experiment of Bao et al. (2012). The figure shows the median and the mean (with

95% and 90% CI) for 1000 runs in a Monte Carlo simulation of the price weight α

and the trend extrapolation coefficient β, which were selected by the six GA agents.

A first observation is that large heterogeneity of individual rules persists, consistent

with the estimated rules in Bao et al. (2012). Secondly, there are clear differences
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Figure 20: Bao et al. (2012): Emerging heuristics in 65-period ahead MC simulation

(1000 runs). The price weight α (upper panels) and the trend extrapolation coefficient

β (lower panels) of the chosen heuristic are shown. Red thick line is the median, black

dot-dashed line is the mean, blue dotted and purple dashed lines show the 95% and

90% confidence intervals, respectively, for the GA learning simulations.

between the two treatments. Under positive feedback the median GA agent quickly

converges towards an approximate rule

pei,t+1 ≈ 0.95pt + 0.05pei,t + 0.9(pt − pt−1). (82)

This median rule is close to a pure trend-following rule (i.e., with anchor pt). The

95% CI for the trend extrapolation coefficient β becomes significantly positive towards

the end of the experiment. Hence, in the positive feedback environment with large

shocks, GA agents learn to become strong trend followers.

These results show how agents learn a parsimonious two-parameter forecasting

heuristic that makes them smart and fits well with human behaviour in laboratory

experiments. Hommes et al. (2017) apply this GA-model to the NK environment
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with similar results.

3.1.5 Learning to Optimize

Learning-to-forecast (LtF) experiments are analogous to most of the adaptive learn-

ing literature in that agents are only boundedly rational in terms of forecasting, but

are fully rational in terms of optimizing. In LtF experiments these optimization de-

cisions are computerized. Experiments that directly solicit consumption, production,

investment, etc. decisions are called learning-to-optimize (LtO) experiments in the

literature (Marimon et al. (1993)). In such learning-to-optimize experiments there are

(at least) two degrees of freedom, namely forecasting and quantity decisions. There

are a few papers studying whether the results of learning-to-forecast experiments are

robust w.r.t. a learning-to-optimize design. Bao et al. (2013) compare LtF and LtO

experiments under negative feedback in a cobweb model framework and conclude

that the coordination and convergence to the stable REE arising in the LtF design is

robust in the LtO experiments, but the convergence speed under LtO is slower than

under LtF.

Bao et al. (2017) compare LtF and LtO in positive feedback asset markets. Under

positive feedback, LtO does not lead to convergence to the REE, but leads to large

and persistent fluctuations around the fundamental benchmark, with large repeated

bubbles of similar magnitude (as measured by price-to-fundamental rations) as the

dot com stock market or the U.S. housing bubble. These bubbles become even larger

under LtO than under LtF, suggesting that learning-to-optimize is even harder than

learning-to-forecast. These expermental results suggests that we need more behav-

ioral models that not only replace rational expectations by learning, but also replace

optimization by simple and more plausible decision heuristics; see Section 2.1.7 on

the anticipated utility approach and the recent survey Branch & McGough (2018).

This remains an important area for future work.

3.2 Policy experiments in the NK framework

This subsection discusses macro policy experiments. Cornand & Heinemann (2014)

give a recent survey on experiments on monetary policy and central banking. Our
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main focus here are experiments where the interactions between individual expecta-

tions and different policy rules plays an important role. A central question then is

how different policies may affect the coordination process in standard macroeconomic

settings. Learning-to-forecast experiments allow us to reproduce a stylized artificial

macroeconomy working along the lines of standard macro models used by academic

and policy institutions, with the important difference that no a priori assumptions

are made regarding expectations, but instead expectations are directly elicited from

incentivized human subjects.

In an early LtFE with an expectational Phillips curve, Arifovic & Sargent (2003)

use an environment to study the time consistency problem of Kydland & Prescott

(1977). One subject acts as policy maker, setting inflation up to a random error

term, while a group of 3, 4, or 5 subjects forecasts the inflation rate. The experimen-

tal results show heterogeneity of expectations across subjects and estimation of an

adaptive expectations rule indicates that most subjects formed their forecast by heav-

ily overweighting the recent past. From the monetary policy perspective, Arifovic and

Sargent’s findings show that in 9 out of 12 experimental economies the policy maker

pushes inflation near the Ramsey value for many periods. Moreover, backsliding, i.e.,

inflation drifting back toward the Nash value, occurs in 4 out 12 economies.

Adam (2007) implements a sticky price environment where inflation and output

depend on expected inflation. The results show cyclical patterns of inflation around

its steady state. Adam finds that in most of the experimental sessions, the average

forecast of subjects is well described by a simple AR(1) model consistent with a

restricted perception equilibrium.

A number of laboratory experiments have studied the stabilizing effects of Taylor

type interest rate rule within a New Keynesian framework, for example, Pfajfar &

Žakelj (2014, 2016), Kryvtsov & Petersen (2013) and Assenza, Heemeijer, Hommes

& Massaro (2014). These laboratory experiments provide empirical support to the

Taylor principle, that a more aggressive interest rate rule can stabilize inflation and

output. All these experiments are similar in spirit, but have important differences in

the experimental designs.

Pfajfar & Žakelj (2014) focus on expectation formation in a NK environment.

They find that for 30–45% of subjects it is not possible to reject rationality. More-
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over, 20-25% of subjects forecasting strategies are well described by adaptive learning

algorithms. The authors also find evidence for simple heuristics. Roughly 25-35% of

subjects can be described by trend extrapolation rules and an additional 10-15% by

adaptive expectations or by a sticky information type of model. Pfajfar and Zakelj

(2014) also find evidence for switching between forecasting models.

Kryvtsov & Petersen (2013) provide subjects with full information about an ex-

ogenous shock process. This setup allows estimating forecasts as a function of the

observed shock history, which is then used to quantify the contribution of expecta-

tions to macroeconomic stabilization via counterfactual analysis. They show that a

model with a weak form of adaptive expectations, attributing a significant weight on

t − 1 realizations of inflation and the output gap, fits best both the magnitude and

the timing of aggregate fluctuations observed in the experiment

In the NKPC framework Assenza, Heemeijer, Hommes & Massaro (2014) show

that simple first-order forecasting heuristics describe individual forecasting behav-

ior well. A behavioral heuristics switching model, with agents switching between

adaptive, trend-following and anchor and adjustment rules based upon relative per-

formance provides a good description of individual and aggregate behavior. Using

the HSM Assenza et al. (2014) provide a behavioral explanation of why the Taylor

principle works. A more aggressive Taylor interest rate rule adds negative feedback to

the macro system, thus weakening the positive feedback and making coordination on

destabilizing trend-following behaviour less likely, thus dampening inflation and out-

put fluctuations. More aggressive monetary policy thus influences the coordination

and self-organization of the NK macro system in favor of more stabilizing forecasting

heuristics such as adaptive expectations. Hommes, Massaro & Weber (2019) study

the stabilizing effect of a Taylor rule that targets both inflation and the output gap

and show that output stabilization can lead to less volatility in inflation. These results

are in line with a behavioral heuristics switching model.

Survey data on expectations have received much attention in recent years; see the

extensive overview of Coibion et al. (2018). Cornand & Hubert (2019) discuss the

external validity of expectations inflation forecasts in the lab. They conclude that

overall inflation forecast data from lab experiments and surveys share common fea-

tures: lagged inflation positively affects the determination of inflation expectations
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forecast errors are comparably large and autocorrelated, and forecast errors and fore-

cast revisions are predictable from past information, suggesting the presence of some

form of bounded rationality or information imperfections.

The ZLB and recovery from liquidity traps

Two recent experimental papers Arifovic & Petersen (2015) and Hommes, Massaro

& Salle (2019) focus on the effectiveness of monetary and fiscal policies in the New

Keynesian framework with a zero-lower bound (ZLB) on the interest rate. In both

experiments liquidity traps with inflation and output jointly falling arise in the labo-

ratory, either triggered by shocks to fundamentals as in Arifovic & Petersen (2015), or

purely expectations driven as in Hommes, Massaro & Salle (2019). A fiscal switching

rule can recover the economy from the liquidity trap, although recovery may be very

slow.

The design in Hommes, Massaro & Salle (2019) is based on the non-linear New

Keynesian model with multiple RE equilibria, a target steady state and a ZLB saddle

steady state (Evans et al. (2008), see Subsection 2.1.5). Recall from Fig. 4 that for

initial states below the stable manifold of the ZLB steady state the economy under

adaptive learning falls into a liquidity trap in the form of a deflationary spiral. The

purpose of the lab experiment is to test whether such deflationary spirals occur in

the lab and whether monetary and/or fiscal policy can recover the economy, when

expectations are formed by subjects in the lab. They design four (2x2) treatments,

with two different policies and two different expectations treatments. The policies are

(M) an aggressive monetary policy only, that cuts the interest rate if inflation falls

below a threshold of 1.6%, and (F) a fiscal switching rule such that, when inflation falls

below its threshold even with a ZLB, government spending is increased until inflation

reaches the threshold again. The two expectations treatments are: (P) a pessimistic

expectations treatment (such that the midpoint of the interval of expectations lies in

the unstable region) , and (S) an optimistic expectations treatment (with the midpoint

of expectations in the stable region) followed by a number of negative expectational

shocks (in periods 8, 9 and 10). Figure 21 shows the results of the four treatments:

• in the MP treatment, 5 out of 7 economies fall into a deflationary spiral;
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Figure 21: Overview of experimental results of the 4 treatments, 7 groups each, in Hommes,

Massaro & Salle (2019). Left panels: realised inflation. Right panels: realised net output.

Dashed lines depict targeted equilibrium levels. Shaded areas indicate expectational bad news

shocks.
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Figure 22: Inflation-output dynamics in the 7 laboratory groups in the MP (top panels) and

the MS (bottom panels) treatments in Hommes, Massaro & Salle (2019). The black curve is the

stable manifold of the ZLB saddle steady state L and marks the boundary between the stable region

converging to the target steady state T and the unstable inflationary spirals. The dots refer to the

initial average expectations of each group. The predictions of the theory of adaptive learning exactly

coincide with the group behaviour in the lab.
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• in the MS treatment, after the expectations shocks 4 out of 7 economies fall

into a deflationary spiral;

• in the FP treatment, the fiscal switching rule keeps all 7 economies stable,

converging to the target;

• in the FS treatment, despite the expectational shocks all 7 economies recover

and converge to target.

Figure 22 illustrates the behaviour of the MP and MS treatments in the inflation-

output phase space. In the MP treatment the position of the initial average expecta-

tions exactly determine the outcome: only the 5 economies whose initial expectations

are in the unstable region, below the stable manifold of the ZLB saddle steady state,

fall into liquidity traps. For the MS treatment the behaviour is similar: only the

4 economies for which, after the bad expectational shocks, the state moves into the

unstable region, below the stable saddle path of the ZLB, fall into deflationary spi-

rals. These laboratory outcomes are strikingly similar to what the theory of adaptive

learning predicts. Notice that the lab outcomes are very different from what RE

predicts, namely that the system will jump to the target steady state or to the ZLB.

In this standard nonliear NK macro framework the lab experiments are more in line

with adaptive learning.

Laboratory experiments should become a complimentary testing bed for new poli-

cies. After all, one may raise the question that if a policy does not work in a simple

laboratory macro environment, why would it work in reality? Testing the effectiveness

of policies in the lab thus seems a necessary step to validate policies. The effectiveness

of unconventional macroeconomic policies have recently been studied in laboratory ex-

periments. The results on the effect of forward guidance on economic stability in New

Keynesian learning-to-forecast experiments are mixed. Cornand & M’Baye (2018a,b)

find that communication of the central bank’s inflation target can reduce the volatil-

ity of the economy in normal times, while Arifovic & Petersen (2015) find that it does

not provide a stabilizing anchor in crisis times or in a liquidity trap. Mokhtarzadeh &

Petersen (2016) find that providing the economy with the central bank’s projections

for inflation and the output gap stabilizes the economy, while Kryvtsov & Petersen
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(2013) find that providing the expected future interest rate path diminishes the ef-

fectiveness of monetary policy in stabilizing the economy. Ahrens et al. (2017) show

that the central bank can significantly manage market expectations through forward

guidance and that this management strongly supports monetary policy in stabilizing

the economy and reducing forecast errors. Moreover, strategically optimistic forward

guidance drastically reduces the probability of a deflationary spiral after strong neg-

ative shocks to the economy. However, pessimistic forward guidance announcements

after negative shocks can instead initiate coordination on a deflationary spiral. Al-

though the credibility of the central banks forecasts depends on both the central

banks forecasts errors and on credibility in earlier periods, they do not find evidence

that a central bank with a better forecasting track record is better able to mitigate

recessions than a central bank with less credible past forecasts.

Penalver et al. (2018) report the results of a repeated laboratory experiment in

which a central bank buys bonds for cash in a quantitative easing (QE) operation

in an otherwise standard asset market setting. The experiment is designed so that

bonds have a constant fundamental value which is not affected by QE under rational

expectations. By repeating the same experience three times, they investigate whether

participants learn that prices should not rise above the fundamental price in the

presence of QE. Some groups do learn the fundamental price but most do not, instead

learning to believe that QE boosts bond prices. In future work, more laboratory

policy experiments are needed to investigate the robustness of these results and these

complimentary laboratory methodology should become part of the standard tools for

policy analysis.

4 Discussion and Future Outlook

Modern macroeconomics is built on elegant and rigorous axiomatic micro-foundations

and rational expectations. But are these assumptions empirically relevant? Labora-

tory macro-experiments show that coordination of a collection of adaptive agents

is better described by a behavioral learning process than by rational expectations

equilibrium. In particular, macro systems with strong positive feedback (i.e. near

unit root systems) typically exhibit coordination failures in the lab. A collection
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of individuals does not coordinate on the perfect rational equilibrium, even when it

is unique, but rather coordinates on almost self-fulfilling equilibria characterized by

correlated trend-following behaviour and booms and bust price fluctuations around

the rational fundamental benchmark. This behaviour has been observed in many lab

experiments, within different environments including asset markets and New Keyne-

sian macro frameworks and such aggregate behaviour is robust for larger group sizes

up to 100 subjects. What are the policy implications of these empirically and exper-

imentally observed coordination failures?

Before discussing the policy implications of these empirical and experimental results,

it is useful to recall some features of what has become the standard and widely used

model for policy analysis in Central Banks, the RE New Keynesian DSGE model. Es-

timation of DSGE models based on a Bayesian likelihood approach has been pioneered

by Smets & Wouters (2003, 2007). Their model has seven endogeneous macroeco-

nomic variables, incorporates many types of real and nominal frictions and uses seven

structural exogenous shock processes, all autocorrelated AR(1) or ARMA(1,1) pro-

cesses, to match the number of observables. Under these assumptions the model

has a unique, determinate REE saddle-path equilibrium solution. Smets and Wouters

(2003) estimate 19 structural parameters of the model using the DYNARE advanced

computational software, together with 17 parameters for the structural shocks. The

estimated coefficients of the shock AR(1) processes exhibit highly persistent autocor-

relation including three estimated coefficients in the range 0.95− 0.97. Many central

banks and financial institutions use similar estimated DSGE models as an important

input for policy analysis. Yet, coordination on a saddle-path equilibrium seems highly

unlikely and has rarely been observed in laboratory macro experiments30.

30A simple example of a saddle point steady state arises in the ZLB lab experiment in Hommes,

Massaro & Salle (2019), as discussed in subsection 3.2. None of the 28 groups of six subjects were able

to coordinate expectations on the ZLB steady state, nor did any group converge to a neighbourhood

of the ZLB steady state. In a hyperinflation model with two RE steady states Marimon & Sunder

(1993) find coordination on the low inflation determinate REE steady state, which is consistent

with adaptive learning. In a NK experiment Adam (2007) finds coordination on the determinate

REE steady state in some sessions, but coordination on a restricted perception equilibrium in other

sessions. Pfajfar & Žakelj (2014, 2016) and Assenza, Heemeijer, Hommes & Massaro (2014) find
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In order to further discuss rational versus behavioral approaches for policy analy-

sis consider the following thought experiment using the time series of a single observed

macro variable obtained from the aggregate price series in the positive feedback lab-

oratory experiments of Heemeijer et al. (2009) (see Subsection 3.1.2, Figure 16, right

panel). The experimenter knows that the price series has been generated by

pt = p∗ +
1

1 + r
(p̄et − p∗) + εt, (83)

where p∗(= ȳ/r = 60) is the REE fundamental price, r(= 0.05) is the risk free in-

terest rate, p̄et is the average forecast of a group of six individuals and εt is an IID

exogenous stochastic process. A standard REE full information approach would as-

sume that expectations are rational, i.e. coincide with the fundamental steady state

equilibrium p∗, and that prices are driven by exogenous autocorrelated shocks εt, say

by a stochastic AR(1) process. Such a REE model driven by a persistent AR(1)

process would give a very reasonable fit to the observed aggregate time series. How-

ever, from the individual laboratory forecasting data we know that expectations are

very different from homogeneous rational expectations and fundamental price, but

rather subjects coordinated on a simple trend-following rule. The behavioral heuris-

tics switching model, as discussed in subsection 3.1.3, buffeted with small IID shocks

explains both individual forecasting behaviour and observed macro fluctuations in

prices. Both models, the REE model driven by (large) autocorrelated shocks and the

behavioral heterogeneous expectations model driven by small IID shocks, give a good

description of aggregate data. Both models however have very different policy im-

plications about how the macro system might respond to policy parameters, such as

the interest rate r. In the REE model price fluctuations are driven by autocorrelated

exogenous shocks, and the policy implication would be that the interest rate only

affects the equilibrium price level p∗ = ȳ/r, but does not affect the price volatility.

In contrast, in the behavioral model the interest rate affects both the price level and

the price volatility, because an increase of the interest rate leads to stronger mean

reversion of the price process. An increase of the interest rate weakens the positive

in NK experiments that the Taylor principle is not sufficient to enforce coordination on the unique

determinate REE steady state, but almost self-fulfilling fluctuations in output and inflation may

arise when monetary policy satisfies the Taylor principle, but is not aggressive enough.
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feedback of the system (83) and thus makes coordination on trend-following behaviour

less likely and the macro system more stable. This simple example is an illustration

of the fact that behavioral models may have very different policy recommendations

than RE models. The effect upon the steady state price levels is the same, but in

behavioral models policy parameters typically have a strong effect upon the strength

of the mean-reversion of the system. In behavioral models policy often affects the

(in)stability and convergence speed of the model.

How general are these results? Hommes (2013) stresses an important generic

feature of (higher dimensional) near unit root macro systems. Many macro-finance

models, such asset pricing and New Keynesian models, are near-unit root systems.

Since any linear system with a unit root has a continuum (say a line) of steady states,

any near unit root system (i.e. whose Jacobian has an eigenvalue close to +1) has

a continuum of almost self-fulfilling equilibria. What the laboratory macro exper-

iments show is that in such an environment, coordination on the unique perfectly

self-fulfilling rational equilibrium is unlikely and at best only very slow, but coordi-

nation of expectations on almost self-fulfilling equilibria fluctuating around the RE

fundamental benchmark is likely to emerge. Coordination failures similar to those

observed in the simple laboratory experirments are therefore likely to be generic for

near-unit root macro systems. Policy analysis should take these almost self-fulfilling

equilibria into account. This observation may be seen as a widening of the solution to

the Lucas critique. Policy analysis should not only be based on the perfect rational

solution, but take these empirically relevant almost self-fulfilling learning equilibria

into account31. The laboratory macro experiments also suggest an immediate way to

stabilize the economy: policy can stabilize the economy by adding negative feedback

to the system, or equivalently, by weakening the positive feedback.

In recent learning-to-forecast experiments of the housing market Bao & Hommes

(2018) studied the role of negative feedback policies in the housing market. There is

positive feedback from speculation and negative feedback from housing construction.

31This relates to recent work on robust policy design as it explicitly seeks to design policies that

are robust to deviation from rational expectations. Adam & Woodford (2018), for instance, find

that such robustness considerations make it optimal for monetary policy to conditioning on asset

prices (housing prices in their setup).
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Figure 23: Housing prices (top panels) and fractions of the strategies in the heuristics switching

model. When housing price elasticity is weak there is strong positive feedback and coordination of

expectations on trend-following strategies lead to large housing price bubbles. In the intermediate

case, bubbles do not arise, but coordination on the anchor and adjustment rule leads to price oscil-

lations around the fundamental equilibrium. With stronger negative feedback from housing supply

trend-following strategies do not survive competition and coordination on adaptive expectations

stabilizes market prices.

The equilibrium housing price is determined by:

pt =
1

1 + r
(peh,t+1 + y − cpei,t+1) + νt, (84)

where peh,t+1 is the average forecast made by the speculators, pei,t+1 the average forecast

by the constructors, r(= 0.05) is the interest rate, y is the mean housing rent, and

νt ∼ N(0, 1) represents small demand or supply shocks. As can be seen from (84),

the housing price will increase when the average price prediction peh,t+1 made by the

speculators goes up, and decrease when the average price prediction pei,t+1 by the con-

structors goes up. Therefore the housing market exhibits positive expectations feedback

from the speculative investors, and negative expectation feedback from the construc-

tors. The overall feedback strength is determined by the eigenvalue λ = (1−c)/(1+r).

Bao & Hommes (2018) consider three different treatments: strong positive feedback

with low housing supply elasticity (c = 0; eigenvalue λ = 0.95), medium positive

feedback with intermediate supply elasticity (c = 0.1; eigenvalue λ = 0.85) and weak

positive feedback with high supply elasticity (c = 0.25; eigenvalue λ = 0.71). Fig-
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ure 23 shows the simulated housing prices by the HSM model against the experimental

housing prices in the three treatments. The simulated prices fit the experimental data

well. The fractions of the different forecasting heuristics show different patterns in

the three different treatments. A typical market in treatment without housing con-

struction and only speculation is dominated by the strong trend rule, which leads

to large bubbles and unstable price fluctuations. A typical market in the medium

treatment with some housing construction is initially dominated by the strong trend

rule, but after the reversal of the price trend the anchoring and adjustment rule in-

creases its share and becomes dominating in later periods, which leads to persistent

price oscillations. Finally, in the treatment with larger housing supply the market is

firstly dominated by the anchoring and adjustment rule, but after period 30 the adap-

tive rule becomes more popular towards the end of the experiment, which eventually

leads to dampening of the oscillations and convergence to the fundamental price. The

HSM thus provides simple and intuitive explanations of this experiment. The large

housing bubbles are explained by coordination on a strong trend-following rule; the

oscillations in the medium treatment are explained by coordination on an anchor and

adjustment rule, and the stable price behaviour in the last treatment is explained by

coordination on adaptive expectations. Negative feedback policies in the form of more

housing construction thus prevent the strong trend-following strategy to survive and

favor stabilizing adaptive behaviour. Policy changes thus affect the self-organization

and learning process in the market in favor of stabilizing adaptive expectations in line

with the Lucas critique.

Which behavioral models and which form of learning to use then for policy analy-

sis? Parsimonious learning rules and simple forecasting heuristics are natural candi-

dates to start with. The real economy is too complex to fully understand and agents

use simple decision heuristics. This is nicely illustrated by the example of the dog and

the frisby (Haldane (2012)). It does not require a PhD in physics and perfect knowl-

edge of Newton’s law of motion to catch a frisby. A dog can do the job by following

a simple adaptive heuristic –run at a speed so that the angle of gaze to the frisbee

remains roughly constant– and humans are likely to follow a similar heuristic when

catching a frisbee on the beach32. Many simple models of learning have been devel-

32Haldane’s dog and the frisbee example bears some analogy with Friedman’s famous “as if”
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oped in recent years, where agents use simple rules, e.g. an optimal AR(1) rule33, or

choose from a number of simple forecasting heuristics based upon their relative per-

formance. These behavioral models fit well with empirical data and lab experiments.

Future work should focus on parsimonious learning models and include almost self-

fulfilling equilibria in the analysis. An empirical micro-foundation, using laboratory

experiments, survey data and other micro decision data, should play a key role in

developing behavioral agent-based macro models, stylized as well as computationally

more advanced, for more realistic policy analysis in the near future.

hypothesis of a billiard player making his shots as if he knew the complicated mathematical formulas

that would give the optimum directions of travel, could estimate accurately by eye the angles, etc.,

describing the location of the balls, could make lightning calculations from the formulas, and could

then make the balls travel in the direction indicated by the formulas (Friedman 1953). There are some

important differences however. Friedman’s example applies to a one-shot game, where with perfect

knowledge about the mathematical equations the billiard player plays as if he takes an optimal shot.

Haldane’s dog and the frisbee example corresponds to a complex evolving system –the frisbee in the

air– and how a simple adaptive heuristic–keeping the angle of gaze roughly constant– describes the

adaptive behaviour. Importantly, this adaptive heuristic does not assume perfect knowledge of the

underlying laws of motion, but simply adapts to observations of the system.
33Examples in which DSGE models have taken first steps into the research direction proposed here

include Slobodyan & Wouters (2012b,a), who introduce adaptive learning of an AR(2) rule into the

Smets-Wouters DSGE model, and Hommes, Mavromatis, Özden & Zhu (2019), who consider the

NK DSGE model where agents learn an optimal AR(1) forecasting rule for all endogenous variables.

The adaptive learning model provides a better fit to the data with weaker autocorrelations in the

exogenous shocks.
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Hommes, C., Kopányi-Peuker, A. & Sonnemans, J. (2018), Bubbles, crashes and

information contagion in large-group asset markets, CeNDEF Working Paper 18-

05, University of Amsterdam.

Hommes, C. & LeBaron, B., eds (2018), Handbook of Computational Economics,

Volume 4: Heterogeneous Agent Modelilng, Handbooks in Economics Series, North-

Holland, Amsterdam.

Hommes, C. & Lustenhouwer, J. (2019a), ‘Inflation targeting and liquidity traps

under endogenous credibility’, Journal of Monetary Economics forthcoming.

Hommes, C. & Lustenhouwer, J. (2019b), ‘Managing unanchored, heterogeneous ex-

pectations and liquidity traps’, Journal of Economic Dynamics and Control 101, 1–

16.
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