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Abstract

The begin and end dates of cartels are often ambiguous, despite competition au-

thorities stating them with precision. The legally established infringement period(s),

based on documentary evidence, need not coincide with the period(s) of actual cartel

effects. In this paper, we show that misdating cartel effects leads to a (weak) overes-

timation of but-for prices and an underestimation of overcharges. Total overcharges

based on comparing but-for prices to actual prices are a (weak) underestimation of

the true amount overcharged, irrespective of the type and size of the misdating. The

bias in antitrust damage estimation based on predicted cartel prices can have either

sign. We extend the before-during-and-after method with an empirical cartel dating

procedure that uses multiple structural break tests to determine the actual begin and

end date(s) of the effects of collusive agreements. Empirical findings in the European

Sodium Chlorate cartel corroborate our theoretical results.

JEL-codes: C22, C51, L41.

Keywords: Cartel, antitrust damages, dates, structural change, break test, but-for.

1 Introduction

Collusive practices such as price-fixing and market sharing allow firms to exert market

power they would otherwise not have, artificially restrict output and increase prices for
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longer periods of time. Cartels are per se illegal, yet competition authorities around the

world regularly catch and convict some. A company found participating in collusion can

expect penalties that are principally based on the value of its sales affected by the illegal

agreements. In addition, customers that purchased at overcharged prices as a result of

the cartel conspiracy can seek reparation of the antitrust damages they sustained in civil

litigation against any of the cartel members.

To determine the quantum of affected commerce and antitrust damages requires know-

ing with some precision when and how long the cartel was effective. In their prosecutions

of cartel offenses, antitrust agencies specify the begin and end dates of cartel violations

with seeming precision, often to the day. These formal cartel dates are typically based on

documentary evidence of communication, such as minutes of the initiating cartel meeting

or e-mails in which members disassociate themselves from the agreements. They need not

coincide with the point(s) in time at which the anticompetitive effects produced by the

cartel violation began and ended, nor with the actual period(s) of collusion.

Effective and formal cartel dates can differ by the nature of the conspiracy or industry.

Collusive agreements can concern future developments, such as planned price rises, the

steady dismantling of capacity, or postponement of innovation. Cartels often form and

destabilize gradually over time, as members initially join and ultimately defect sequentially.

Periods of high prices can sometimes have been temporarily interrupted by price wars,

punishments or internal tensions from which the collusion regathered. The cartel may

have become ineffective, for example due to the rise of competitive imports, long before

its members ultimately disband. Medium-term supply contracts or unsophisticated buyers

make a cartel’s effects last well after its members parted. In addition, former cartelists may

unilaterally keep post-cartel price above competitive levels after the cartel broke down, in

order to mask their conspiracy.1

The formal cartel dates also need not concur with the actual cartel period(s). As col-

lusive restrictions are punishable by object, agencies are under no obligation to determine

the effects a cartel may have had empirically. The cartel’s formal end is often set at the

date of the raid. Cartel periods are obtained in notifications, guilty pleas and consent

agreements. While defendants would push for shorter infringement periods, leniency appli-

cants would try to stretch the cover of their amnesty. Agencies may seek to establish the

widest possible actual period as a “single and continuous” infringement.2 They will pass

up, however, on weaker founded suspicion of earlier talks or later meetings that might not

1See Harrington (2004).
2The legal classification “single and continuous infringement” is often used by the European Commission

in its cartel decisions for treating the continuum of collective activity from the meeting of minds in a cartel

as one violation. It does not neccessarily mean there were no intermittent periods of competition. See

Joshua (2009).
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withstand challenge on appeal.3 In settlements, the cartel period is subject to negotiation

and may therefore be set shorter than the evidence would permit. In initiating damages

claims, private plaintiffs may need to choose the class period too early in the litigation to

be able to date it sufficiently carefully.

The American Bar Association indeed warns in its manual Proving Antitrust Damages :

“[T]he beginning or end of the effects of the alleged unlawful conduct may

not coincide with the beginning or end of the conduct itself. The effect might

occur later, end earlier, or last longer than the conduct. Experts should rely on

the evidence developed in discovery, market facts, and the analysis of liability

experts when determining the relevant starting and ending dates for calculating

damages.”4

Similarly does the European Commission recognize in its Practical Guide that:

“Some infringements start, or cease, gradually: and often doubt exists regarding

the exact beginning of an infringement and, in particular, the effects it produces.

(...) Econometric analysis of observed data can be a way to identify when the

infringement’s effects started or ceased.”5

In this paper, we study the consequences for antitrust damage estimation of using

cartel dates that are different from the actual begin and end dates of the effects of the

collusion. Obviously, different dates imply different periods and volumes purchased over

which damages can be claimed—possibly more. We show that misdating the period(s)

in which a cartel was effective introduces a bias that leads to a (weak) overestimation of

but-for prices and an underestimation of overcharges. The effect on total damages depends

crucially on whether overcharges are based on predicted or actual cartel prices. When the

effective cartel dates are a priori unknown, the common approach of comparing but-for

prices to predicted values is shown to be unreliable. The use of observed prices, on the

other hand, leads to a (weak) underestimation of cartel damages, irrespective of the type

and size of the misdating error.

3Commission of the European Communities (2013), footnote 38: “It is possible that a competition

authority limits the finding of an infringement to a certain period, while in fact the infringement may have

had a longer duration.” In its infringement decisions, the Commission often determines that the addressees

entered into agreements and concerted practice “... from at least dd-mm-yyyy and until at least dd-mm-

yyyy,” thus leaving possibility for a wider cartel period. In some cases, the Commission explicitly states

suspicion of a longer duration than it was able to prove in the text.
4American Bar Association (2014), page 318.
5European Commission (2013), recital 43.
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To overcome bias in damage estimation due to incorrect cartel dates, we propose an

empirical procedure for determining the effective cartel period(s) in price time-series that is

based on econometric tests for multiple structural change as developed by Bai and Perron

(1998, 2003). The method is applied to the European Sodium Chlorate cartel. While the

cartel became effective shortly after its formal begin date, we find that it was effective long

after the formal cartel end date. The empirical findings corroborate our theoretical results.

The actual total cartel damage is underestimated by more than 25% when using the formal

dates.

Most cartel damage studies disclosed rely on formal cartel dates.6 In the few cases in

which the period of cartel effects were disputed, methods used for arguing the effective

cartel dates vary. White (2001) concludes a shorter effective period of the Lysine Cartel

than alleged by inspection—as well as a higher but-for price. Marshall, Marx and Raiff

(2008) observes that the Vitamins Cartel potentially affected prices beyond the formal

cartel periods and analyzes a number of alternative effective dates. Davis and Garces

(2010) suggests to analyse multiple possible starting and finishing dates, but offers no

methods for doing this. Hüschelrath et al. (2013) models the transition from cartel to

non-cartel regime in the German cement cartel with dummy fractions.

While structural break tests are widely used in economics, published applications in

determining cartel effects are few. Carlton and Leonard (2004) reports on an application

of Bai-Perron tests on a plaintiff’s price-series in an undisclosed case in which the authors

acted for the defense. Having found breaks at all in only a small percentage of runs of

Monte Carlo simulations, the authors conclude no statistically significant effect from the

alleged conspiracy, and assert that the plaintiffs had determined their damages period by

“cherry picking” the time-series for price declines. For the purpose of detecting suspicion of

collusion, Harrington (2008) proposes the Quandt (1960)-Andrews (1993) test for a single

unknown break date. Crede (2015) explores the Bai-Perron tests also as part of an empirical

cartel screen.

This paper is organized as follows. In Section 2 we review common time-series regression

analysis to estimate but-for prices and overcharges. We analyze in detail under which

assumptions unbiased cartel damage estimation occurs. Section 3 sets out how using formal

cartel dates that are different from the effective cartel dates affects the damage estimates.

In Section 4 we describe the empirical cartel dating procedure. Section 5 illustrates the

effects of misdating bias by the European Sodium Chlorate cartel. Section 6 concludes.

The proofs are given in the appendix.

6See Bernheim (2008), Nieberding (2006), and Connor and Bolotova (2006).
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2 Estimating Cartel Damages using Time Series

Statistical inferences on antitrust damages in empirical cartel studies often rely on time-

series analysis, comparing prices over time on the same market, where outside the alleged

cartel period the industry is assumed to have been in its normal form of competition. Figure

1 is an illustration of the estimation of cartel effects in a hypothetical case in the European

Commission’s 2013 Practical Guide on quantifying harm in actions for antitrust damages.7

Figure 1: Cartel price effects in the European Commission’s Practical Guide.
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80. The regression analysis illustrated in this graph is based on the forecasting approach, 

in which a regression is carried out on pre- and post-infringement data to establish in 
an equation the statistical relationship between price and various relevant 
explanatory variables (input costs and other relevant factors). Using this equation and 
the observed values of the relevant explanatory variables, an estimated price can be 
derived that is likely to have prevailed absent the infringement (dotted line). The 
continuous line is the actually observed price. The difference between the continuous 
and the dotted line during the infringement period is the estimated overcharge. The 
dotted line outside the infringement period is also derived from the regression 
equation and can serve, through comparison with the actually observed non-
infringement prices (continuous line), to assess the predictive power of the regression 
model.  

c. Requirements for applying regression analysis  

81. Carrying out a regression analysis requires knowledge of various statistical 
techniques to measure the relationship between variables, to construct an appropriate 
regression equation and to calculate the precision of the parameters in this equation. 
In addition, it is necessary to have a good understanding of the industry concerned, in 
the first place, to formulate the right hypotheses when constructing the regression 
equation and to make the right choice as to the factors that are likely to have 
significantly influenced the variable of interest (and which should therefore be 
included in the analysis). Industry understanding is furthermore necessary to make 
informed choices about which statistical techniques to use in a given situation, for 
instance, to account for unusual observations (outliers) or other specific features in 

                                                 
78 In this case, the regression equation is estimated using data from both the infringement and non-

infringement periods and directly indicates how much the variable of interest changed during the 
infringement period after accounting for the effect of other explanatory variables. 

The solid line (labeled Actual price) is distinctly elevated between the marked start and

end of the infringement effect. The dotted line (Estimated price) is what would have been

prices under competition. Typically these but-for prices are estimated using multivariate

regression models that include the relevant factors affecting product prices. Outside the

cartel period, the estimated prices quite closely track actual prices, lending the underlying

method of estimation credit as a predictor of what would have been transaction prices

during the cartel period, had there not been a cartel. The difference between the cartel

price and estimated but-for price is the price overcharge by the cartel. A claimant’s total

amount overcharged is the sum over all periods in which the cartel was effective, of each

period’s price overcharge multiplied with the total quantity purchased during that period.

For determining but-for prices, the Practical Guide presents two regression approaches.

In the forecasting approach, competitive prices during the cartel periods are estimated

7Commission of the European Communities (2013), page 29.
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only from data outside those periods. The alternative before-during-and-after method also

involves data from during the cartel periods by including a dummy variable in the regression

that quantifies the cartel occurrence as a price shift. The dummy variable approach has the

advantage of using (much) more of the available data, potentially making estimates more

accurate. However, when the cartel also affected other variables, such as capacity, or when

cost pass-through is structurally different under collusion than competition, the price shifts

may not reflect this properly.8 Tainted explanatory variables can be avoided, however, or

corrected to but-for values. Moreover, the dummy variable approach is inherent to cartel

dating using structural break tests.

Many recent cartel studies make use of dynamic regression models to quantify cartel

overcharges.9 It is natural and advantageous to include lagged prices as additional explana-

tory variables. Parametrically modelling short-run dynamics allows for the typical gradual

price adjustments over multiple periods and transition of non-cartel to cartel states. Car-

tel talks often aim at maintaining or increasing prices relative to recent values leading to

serial correlation in prices. Also the lagged price terms contain valuable information on

relevant other, but unobserved price determinants. Moreover, whether lagged prices are

indeed predictors of cartel prices, regression results will reveal.

In this paper, we take the dummy variable approach to a dynamic regression model.

Suppose that price over time develops according to the data generating process (DGP)

pt = α1 + α2Dt + β′xt + γpt−1 + εt, t = 1, . . . , T, (1)

where pt is the product unit price in period t, Dt the cartel dummy variable, xt a set

of explanatory variables, pt−1 the lagged value of price and εt an error term. Collusion

is aimed at increasing prices, i.e. α2 > 0. Typical explanatory variables xt that control

for regular changes in prices include cost factors, and demand and supply shifters. The

regressor pt−1 captures the partial adjustment in prices due to recent changes in the cost

structure and market conditions. We assume 0 < γ < 1, i.e. the dynamic relation is stable.

Note that DGP (1) is a general reduced form equation of the price that encompasses various

specifications with (and without) autoregressive distributed lags.10

The sample period is T = {1, . . . , T}, which can be divided into periods with and

without cartel effects, labeled TC and TN respectively, with T = TC ∪ TN . The presence

8See Nieberding (2006), White et al. (2006), Marshall and Marx (2012) and McCrary and Rubinfeld

(2014).
9See White et al. (2006), Nieberding (2006), Bernheim (2008) and Davis and Garces (2010).

10Including the specifications used in the earlier empirical cartel studies referred to in footnotes 8 and

9. Without loss of generality, we limit ourselves in the text to one lagged value of the dependent variable

regressor only. The vector of explanatory variables xt can include both contemporaneous and lagged

regressors.
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of the cartel effect is quantified by the dummy variable Dt, which is 1 in effective cartel

periods (t ∈ TC) and 0 otherwise (t ∈ TN). Without loss of generality, we consider one

single and continuous period of cartel effects with a known begin date TB and end date TE,

with 1 < TB < TE < T , so that TC = {TB+1, . . . , TE} and TN = {1, . . . , TB, TE+1, . . . , T}
and:

Dt = 0, t ≤ TB

Dt = 1, TB < t ≤ TE

Dt = 0, t > TE




. (2)

The coefficient α2 measures the immediate or short-run response of the price to the collusion

as a price level shift.

The but-for price in period t is the expected price level in t when the cartel dummy in

(1) is switched off (Dt = 0), or

bfpt = α1 + β′xt + γbfpt−1 + εt, t ∈ TC . (3)

Outside effective cartel periods, the but-for price and actual price coincide. Within effective

cartel periods, the actual price minus the but-for price in each period is that period’s

overcharge. Noting that bfpTB = pTB , we can infer from (1) and (3) the per period overcharge

Ot = pt − bfpt =
1− γt−TB

1− γ
α2, t ∈ TC . (4)

Typically, the basis for a cartel damages claim is the total amount overcharged, defined

(before interest) as

CD =

TE∑

t=TB+1

OtQt, (5)

in which Qt is the actual quantity purchased in period t.

We analyze whether population magnitudes such as the but-for price (3), overcharge

(4) and total cartel damages (5) are accurately estimated based on a sample of time-series

observations (pt, x
′
t, Dt), combined with per period quantities purchased Qt, t = 1, . . . , T .

The possible bias in these estimators can be characterized in terms their probability limit,

which is the value around which their distribution is increasingly concentrated as the sample

size increases. In specific situations, the probability limit will coincide with the mean of the

estimators. However, in general this expected value cannot be derived analytically. For its

approximation by the probability limit to be well defined, we will consider the estimation of

averages per period—rather than the total amount, which does not converge as T increases.

In the following, we assume that as the sample size increases, the number of observations

in both the cartel and the non-cartel period increases proportionally, which is customary

in the econometric literature on structural change.11

11See Perron (1989).
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The probability limit of the average overcharge over the cartel period

Ō =
1

TE − TB

TE∑

t=TB+1

Ot, (6)

can be shown to be equal to

plim Ō =
α2

1− γ
. (7)

That is, DGP (1) implies an immediate shift of magnitude α2 in the level of the product

price as a result of the collusive agreement, controlling for usual developments in price

caused by the explanatory variables in xt. Due to the autoregressive short-run dynamics,

this initial effect accumulates by gradual price adjustment over time to the full cartel effect

of size α2/(1− γ) > 0.

The effects of the various explanatory variables on the price in model (1) are estimated

by the standard Ordinary Least Squares (OLS) method. Consistent OLS estimation of the

regression coefficients is feasible under the following assumption.

Assumption 1: DGP (1) satisfies:

E [εt|Dt−j, xt−j, pt−j−1, j = 0, 1, . . .] = 0, Var(εt) = σ2,

and the random variables pt and xt are jointly stationary in deviation from their time-

varying means.

For consistency, it is only required that the contemporaneous error term εt is uncor-

related with current values of Dt and xt. Lagged feedback of price to its determinants is

allowed for.12 The begin of the cartel effect, for example, need not be exogenous but may

be induced by a recent price fall.13 The assumption also implies that E[εt|εt−j] = 0 and

hence Cov(εt, εt−j) = 0 for j > 0.

Once the coefficients of model (1) have been consistently estimated, but-for prices per

period are predicted by their own lagged values, plus current empirical values of the addi-

tional covariates

b̂fpt = α̂1 + β̂′xt + γ̂b̂fpt−1, t ∈ TC . (8)

12Distribution theory is markedly different in the case of cointegration between price and its determinants,

which we here exclude. Unreported findings, both analytical and by Monte Carlo simulation, suggest that

similar conclusions apply also for nonstationary versions of DGP (1).
13Note that while it is important to avoid explanatory variables that are affected by the cartel whenever

possible, as stressed in White et al. (2006) and Marshall and Marx (2012), including them does not invali-

date the consistent estimation of cartel effects and dates. The main complication from having collinearity

between elements in xt and Dt is in the construction of the but-for price for pt, which will then also depend

on but-for price paths of those explanatory variables affected by the cartel.
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In the recursive dynamic simulation, the natural initial but-for price is the product unit

price in the last period of competition before the start of the cartel, i.e. b̂fpTB = pTB .

Obviously, the estimated and actual but-for prices generally vary over time. We obtain

that the but-for price estimator is consistent, however.

Proposition 1: Under Assumption 1,

plim
1

TE − TB

TE∑

t=TB+1

b̂fpt = plim
1

TE − TB

TE∑

t=TB+1

bfpt = E [bfpt] .

Given but-for prices, there are two different practical approaches to the estimation of

overcharges in the literature. One is to compare but-for prices as in (8) to predicted cartel

prices

p̂t = α̂1 + α̂2 + β̂′xt + γ̂p̂t−1, t ∈ TC , (9)

constructed using recursive dynamic simulation with p̂TB = pTB . They are predictions

of the price in case of a cartel (Dt = 1) and compared with those of the counterfactual

competitive regime (Dt = 0).14 The overcharge in period s = 1, . . . , TE − TB during the

cartel is then defined as

Ô1,TB+s = p̂TB+s − b̂fpTB+s

= α̂2 + γ̂
(
p̂TB+s−1 − b̂fpTB+s−1

)

=
1− γ̂s

1− γ̂
α̂2. (10)

The other approach is to compare estimated but-for prices as in (8) to observed prices

pt.
15 This defines the overcharge in period s during the cartel as

Ô2,TB+s = pTB+s − b̂fpTB+s. (11)

A crucial difference between the two overcharge types for further damage assessment

is that Ô1 is based on the constant cartel price effect α2—as is the actual overcharge—in

DGP (1), whereas Ô2 is period-specific.16

14This approach to calculating overcharges is taken, for example, in Nieberding (2006). For static models

it reduces to the approach of Davis and Garces (2010), McCrary and Rubinfeld (2014) and Laitenberger

and Smuda (2015).
15This approach to calculating overcharges is taken, for example, in Finkelstein and Levenbach (1983)

and Harrington (2004). Note that overcharge (11) is also commonly used in the forecasting approach, in

which but-for prices are estimated using data from non-cartel periods only.
16It is not clear which overcharge type is advocated in the Commission’s Practical Guide. While in

various places overcharges are defined, as in Ô2, in comparison to the “price actually paid” (recital 79) and

9



For correctly specified models, for which Assumption 1 holds and OLS estimators are

consistent, there is no difference in expectation for the estimated overcharges. Under con-

sistent estimation of the model parameters we have that

plim
1

TE − TB

TE∑

t=TB+1

ε̂t = 0. (12)

Hence, average estimated overcharges defined as

Oj =
1

TE − TB

TE∑

t=TB+1

Ôjt, j = 1, 2, (13)

converge to the average actual overcharge as defined in (7), as stated in the following

proposition.

Proposition 2: Under Assumption 1,

plimO1 = plimO2 = plimO =
α2

1− γ
.

For either of the two different approaches to estimating overcharges, the total amount

overcharged (5) can be estimated by

ĈDj =

TE∑

t=TB+1

ÔjtQt, j = 1, 2. (14)

In order to analyze the accuracy of these estimators, the relation between quantities and

prices needs to be made explicit. Let the per period quantity purchased, Qt, t = 1, . . . , T ,

be price-dependent and stochastic with

E [Qt] = QC , t ∈ TC ,
E [Qt] = QN , t ∈ TN .

}
(15)

We then make the following assumption.

Assumption 2: Quantities Qt satisfy:

(i) QN ≥ QC; and

(ii) E [Qtεt−j] ≤ 0, t = 1, . . . , T , j ≥ 0.

“the observed prices” (recital 101), the Practical Guide appears also to interpret the before-during-and-

after method as generating a constant overcharge, which is more in line with overcharge definition Ô1—see,

for example, footnote 77.
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Assumption 2 (i) is the natural condition that in periods in which the cartel raised

prices, the average quantity purchased will be less than or equal to the volume purchased

under the lower competitive prices, i.e., that demand is (weakly) downward sloping. As-

sumption 2 (ii) is a high-level assumption. It asks that Qt is either negatively correlated

or uncorrelated with current and past price shocks εt−j, j ≥ 0. This is consistent with a

(weak) negative correlation between price and quantity. Assumption 2 (ii) is satisfied un-

der specific (sufficient) conditions that depend on the structure of demand. It holds (with

equality), for example, when demand is linear and (weakly) downward sloping demand and

xt is strictly exogenous.17 For general (weakly) downward sloping demand, Assumption

2 (ii) requires stronger independence conditions.

We are now ready for the first result on the damages estimators.

Theorem 1: Under Assumptions 1 and 2,

plim
1

T
ĈD1 = plim

1

T
CD,

and

plim
1

T
ĈD2 ≤ plim

1

T
CD,

with strict equality if and only if E [Qtεt−j] = 0.

The use of Ô1t as overcharge estimator returns a consistent damage estimator, irrespec-

tive of the structure of demand, as overcharge definition (10) is independent of quantities

in all its components. Overcharge estimator Ô2t on the other hand does depend on Qt, and

therefore on the period-to-period interaction between price and quantity, through the OLS

estimates of the error term. Only when price and quantity are uncorrelated is ĈD2 a con-

sistent estimator of CD. For regular demand, their correlation will be negative, implying

that ĈD2 underestimates true total overcharges. The overcharge method based on actual

cartel prices therefore is conservative.

3 Misdating Bias

In this section we analyze the consequences of using a classification of cartel begin and end

dates that is different from the actual dates that define the periods TC and TN . When

effective cartel and non-cartel periods are misclassified, the difference between overcharge

calculation based on predicted and actual cartel prices turns out to matter fundamentally

for cartel damage estimates as limit result (12) no longer holds.

17See Appendix A, Assumption 2(ii) under Linear Demand.
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In Section 3.1 we first consider the simplest theoretical case of a constant cartel over-

charge and no further effects on prices. The bias of the overcharge estimator Ô1 is found

to can have either sign, so that over- or underestimation of cartel damages can occur. The

estimator Ô2, however, robustly remains a conservative basis for calculating antitrust dam-

ages when the effective cartel period is misclassified. In Section 3.2 we generalize this result

for the full model specification (1), that includes explanatory variables and autoregressive

dynamics.

3.1 Basic Cartel Overcharge

Consider the simplified DGP

pt = α1 + α2Dt + εt, t = 1, . . . , T, (16)

in which the dummy variable Dt is defined as in (2). Note that this abstraction from

DGP (1) results in a simple before-during-after comparison of average prices. The cartel

overcharge now is a fixed positive margin α2 over the competitive price level α1. We

continue to assume that the regression model (16) is structurally correctly specified, i.e.

E [εt|Dt] = 0 as in Assumption 1.

Suppose now that the cartel dates used in the estimation are misclassified in the sense

that they are different from the effective cartel begin and end dates TB and TE—we will

refer to these dates as the formal cartel dates. That is, the estimated model for pt is

pt = α1 + α2dt + ut, t = 1, . . . , T, (17)

in which the cartel dummy variable dt takes on the following values:

dt = 0, t ≤ Tb

dt = 1, Tb < t ≤ Te

dt = 0, t > Te




, (18)

where Tb is the formal cartel begin date and Te the formal cartel end date. The OLS

estimators of α1 and α2 are:

α̂1 = p̄− α̂2d̄, α̂2 =
sdp
s2
d

, (19)

where p̄ and d̄ are sample means, sdp is the sample covariance, and s2
d the sample variance.

In this basic setting, there are four possible misdating scenarios for the break dates:

Case 1: Tb < TB, Te < TE

Case 2: Tb < TB, Te > TE

Case 3: Tb > TB, Te < TE

Case 4: Tb > TB, Te > TE




. (20)
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In Case 1 the cartel is formally dated to begin and end too early—including a formal

cartel period that entirely preceeds the cartel’s effects. In Case 2 the formal cartel period

encompasses the effective cartel period and includes non-cartel periods too. Case 3 is a

legally too narrowly defined period, and Case 4 is the mirror image of Case 1.

Obviously, if Tb = TB and Te = TE, the OLS estimators are unbiased and consistent,

i.e. plim α̂1 = α1 and plim α̂2 = α2. To analyze the effects of using formal cartel dates

that are different from effective cartel dates, we adapt the approach from Perron (1989)

on neglected structural breaks to the more general framework of mismeasured structural

change. We obtain the following result on the OLS coefficient estimators of model (17)

when the DGP is (16).

Lemma 1: Let Tb 6= TB and/or Te 6= TE. Under Assumption 1:

plim α̂1 = α1, Tb < TB, Te > TE,

plim α̂1 > α1, otherwise,

plim α̂2 < α2, ∀TB, TE, Tb, Te.

Misdating the cartel dummy regressor dt in equation (17) leads to an attenuation bias:

the estimator of the dummy coefficient α2 is biased downward, irrespective of the direction

of the misdating of the effective cartel dates. In addition, misdating implies that the

estimator of the competitive price level α1 is biased upwards, except when the formal cartel

dates (Tb, Te) encompass the effective dates (TB, TE), in which (only) case the estimator is

consistent.

To see why Lemma 1 holds, let p̄C = 1
Te−Tb

∑Te
t=Tb+1 pt be the mean price over the formal

cartel period and p̄N = 1
T−(Te−Tb)

(∑Tb
t=1 pt +

∑T
t=Te+1 pt

)
be the mean price over the formal

non-cartel periods. It is easily verified that the OLS estimators (19) can be expressed as

α̂1 = p̄N , α̂2 = p̄C − p̄N . (21)

Misspecifying the effective cartel dates amounts to falsely labelling part of the competitive

prices as collusive and/or part of the collusive prices as competitive. So including higher

than competitive prices in p̄N results in an upward bias in estimating α1, the competitive

price level, because p̄N overestimates the true mean price in the non-cartel period. Only

when Tb < TB and Te > TB (Case 2), is α̂1 based on non-cartel data only, so that it is

unbiased.

For the same reason, mistakenly including competitive prices in the cartel sample de-

creases the average p̄C . This is the case in all misdating scenarios but Case 3, when the

13



effective cartel period includes the formal cartel period and p̄C equals the true mean cartel

price. As the estimated cartel effect α̂2 is the difference in average price between cartel and

non-cartel periods, it has a downward bias in all misdating cases. The attenuation bias in

α2 is persistent in all cases, as either p̄C or p̄N is affected, or both. When p̄C is correct

(Case 3), p̄N is higher than the true mean non-cartel price, and when p̄N is correct, p̄C is

lower than the true mean cartel price (Case 2). In the other two scenarios p̄N is too low

and p̄N too high.

Lemma 1 implies that estimators of but-for prices and overcharges are biased too. For

this model, actual and estimated but-for prices are defined as bfpt = α1+εt and b̂fpt = α̂1dt+

pt (1− dt) respectively. The mean of the but-for price is simply E [bfpt] = α1. The actual

overcharge amounts to α2Dt, while the estimators are Ô1t = α̂2dt and Ô2t = (pt − α̂1) dt.

The average actual overcharge is therefore O = α2, while average estimated overcharges

are:

O1 = α̂2, (22)

O2 =
1

Te − Tb

Te∑

t=Tb+1

(pt − α̂1) . (23)

We obtain the following result for average estimated but-for prices, and estimated over-

charges.

Proposition 3: Under the conditions of Lemma 1:

(i)

plim
1

Te − Tb

Te∑

t=Tb+1

b̂fpt = E [bfpt] , Tb < TB, Te > TE,

plim
1

Te − Tb

Te∑

t=Tb+1

b̂fpt > E [bfpt] , otherwise.

(ii)

plimO1 < O,

plimO2 < O.

Using cartel dates in the before-during-and-after method that are different from the

effective cartel dates results in estimated but-for prices that are on average higher than the

actual but-for price, except when the formal cartel period encompasses the effective cartel

14



period, in which case they are correct on average. Note that while on average but-for prices

are higher, in individual time periods but-for prices can be lower using formal dates. In

addition, Proposition 3 shows that the average overcharge is strictly underestimated for all

types of misdating.

The effects that misclassifying the effective cartel period has on total damages is twofold,

since the total overcharge is determined by the period overcharge(s), as well as by the

number of periods designated as collusive, with a quantity purchased each. The overcharge

definition used, Ô1t or Ô2t, turns out to matter materially for the consequences of misdating,

as shown in the following result.

Theorem 2: Under the conditions of Lemma 1 and Assumption 2:

(i)

plim
1

T
ĈD1 ≥ plim

1

T
CD, Tb < TB, Te > TE,

plim
1

T
ĈD1 < plim

1

T
CD, Tb > TB, Te < TE,

plim
1

T
ĈD1 R plim

1

T
CD, otherwise.

(ii)

plim
1

T
ĈD2 ≤ plim

1

T
CD, Tb < TB, Te > TE,

plim
1

T
ĈD2 < plim

1

T
CD, otherwise.

The estimator ĈD1 can under- as well as overestimate the actual damage, because the

constant overcharge Ô1t = α̂2, while (weakly) underestimated in all misdating scenarios, is

applied to a sum total of quantities labelled as purchased under the cartel regime that may

be higher or lower than the actual total quantity.

The estimator ĈD2, on the other hand, for all misdating scenarios provides a conserva-

tive estimate, in the sense that the actual total damage during the effective cartel period

(TB, TE) is at least as large as the damage estimated using misclassified dates in the but-for

price estimation. In addition to (weakly) underestimating the actual overcharge, because

the overcharge Ô2t is period-specific, in misdated estimations that lead to higher than actual

but-for prices (i.e. in all cases but Case 2) this overcharge becomes negative in competitive

periods falsely labelled as collusive (i.e. for t ∈ TN , where α2 = 0), thus decreasing the

total damage estimate.
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When the dates are correct, by Theorem 1, ĈD1 is a consistent estimator. Hence all

bias in ĈD1 established in Theorem 2 is due to misdating. For ĈD2 Theorem 1 showed a

downward bias already when price and quantity are negatively correlated. The misdating

bias in ĈD2 is therefore the sum of this bias under correct dating and additional bias due

to misdating. Only in Case 2 is the latter effect zero, so that the downward misdating

bias in ĈD2 is of equal magnitude as the bias established in Theorem 1. In the other three

cases, however, the misdating bias is (in absolute value) strictly larger. The relative size of

the two sources of bias, however, is case-specific, depending on the own-price elasticity of

demand, and the extent of the misdating.

Figure 2 illustrates how the use of estimator Ô2t as a basis for damage calculation is

conservative for Case 1, in which both the begin and end of the cartel are formally dated too

early, but the periods stil overlap. The actual cartel price increase by α2 lasts from TB to

TE. The vertical dashed lines at Tb and Te are the formal cartel dates used in the estimation.

The average actual but-for price is α1, yet by using the misclassified formal cartel dates,

the estimator α̂1 uses price data from prior to Tb and past Te—indicated in Figure 2 with

heavier horizontal lines. The estimate therefore includes observations between Te and TE

that are actually cartel prices, but falsely labelled competitive prices. Inclusion of these

higher prices increases the estimated but-for price b̂fpt above the level of the actual but-for

price.

Figure 2: Theorem 2 illustrated for Case 1.

pt

tTb TeTB TE

A

CB

D

α1

α1 + α2

T

b̂fpt
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For three reasons, therefore, the estimated damage total is smaller than the actual

damage. First, the overcharges are smaller by area C, because the but-for price is over-

estimated. Second, the formal cartel end date Te lies before the effective cartel end date

TE, so that part D is missed. Third, during the period Tb < TB, the overestimation of the

but-for price results in negative overcharges the size of area B, which is subtracted from

the damage estimate area A.

Note that the longer is the non-cartel period misclassified as cartel period, the higher is

the estimated but-for price. In Figure 2, if Tb were further to the left of TB, b̂fpt would be

higher—to see this, note that the mean price over the formal cartel period p̄C decreases,

while (for a fixed sample period), the mean price over the formal non-cartel period p̄N

increases. The conservative damage total ĈD2 would further decrease, as both the positive

damage measured decreases and the area subtracted increases. The effect of this larger

misdating error on ĈD1, however, is ambiguous. While Ô1t is lower, the earlier formal

cartel begin date brings more of the larger competitive volume under the damage period.

These effects trade off, depending among other things on the own-price elasticity of demand.

Case 4 is the mirror image of the analysis above. In Case 3, in which the formal cartel

period falls entirely within the effective period, there are no negative overcharges, yet the

but-for price is grossly overestimated and two periods of actual damages left and right

from the effective cartel dates are not counted. Only when the formal period includes the

effective period, i.e. Tb < TB and Te > TE (Case 2), in which the actual and estimated but-

for prices coincide, will overcharges calculated outside the cartel period be zero on average,

thereby not contributing to the damage estimate, so that ĈD2 is an unbiased estimator of

actual damages. ĈD1, however, may still overestimate the actual damage in Case 2, as p̄C

(and so Ô1t) decreases in the length of the formal cartel period, while at the same time

more purchases are alleged to be affected.

3.2 Full Price Dynamics

Next we consider the general model specification (1). First note that there is no reason to

think that estimator ĈD1 will improve in the extended model, and so we need not examine

it further. To see if ĈD2 remains a robust conservative estimator, consider the estimated

model

pt = α1 + α2dt + βxt + γpt−1 + ut, t = 1, . . . , T, (24)

to which the four misdating scenarios apply through the dummy dt. To simplify the analysis,

we consider the case of a single explanatory variable xt in this section.

We obtain the following results on the OLS coefficient estimators of model (24) when

the DGP is (1).
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Lemma 2: Let Tb 6= TB and/or Te 6= TE. Under Assumption 1:

plim α̂1 < α1,

plim α̂2 < α2,

plim β̂ ≶ β, if mxp−1 ≷ 0,

plim γ̂ > γ,

where mxp−1 = plim 1
T

∑T
t=1 xtpt−1.

The misdating bias now prevails in all cases throughout. The cartel coefficient α2

continues to be underestimated in all misdating scenarios. The intercept α1 now is always

underestimated as well. The autoregressive coefficient γ is overestimated always, whereas

the direction of the bias in the coefficient β of the explanatory variable depends on the sign

of the particular data moment mxp−1 .

With bias in the OLS estimators of all regression coefficients, it is not obvious what the

impact is of misspecified cartel begin and end dates on the estimated but-for prices, cartel

overcharges and total damage. We obtain the following generalization of Proposition 3 for

the average but-for price.

Proposition 4: Under the conditions of Lemma 2:

(i)

plim
1

Te − Tb

Te∑

t=Tb+1

b̂fpt = plim
1

TE − TB

TE∑

t=TB+1

bfpt, Tb < TB, Te > TE,

plim
1

Te − Tb

Te∑

t=Tb+1

b̂fpt > plim
1

TE − TB

TE∑

t=TB+1

bfpt, otherwise.

(ii)

plimO2 < plimO.

Hence, but-for prices remain to be overestimated in all misdating scenarios but with

inclusive formal dates, and the average overcharge is underestimated in all. Moreover,

Theorem 2 generalizes for the preferred overcharge estimator Ô2t as well.
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Theorem 3: Under the conditions of Lemma 2 and Assumption 2:

plim
1

T
ĈD2 ≤ plim

1

T
CD, Tb < TB, Te > TE,

plim
1

T
ĈD2 < plim

1

T
CD, otherwise.

We conclude that when the effective cartel dates are unknown, the preferred approach

to cartel damages estimation is to compare estimated but-for prices to observed prices,

not predicted cartel prices. The estimator ĈD2 applied to the misclassified cartel dates

provides a lower bound for the actual cartel damages, irrespective of the type and size

of the misdating. ĈD2 furthermore is consistent as long as the formal cartel dates used

in the estimation encompass the effective cartel dates. In conclusion, when the effective

cartel dates are unknown, the preferred approach to cartel damages estimation is to use

conservative overcharge estimator Ô2t.

4 Cartel Dating using Multiple Structural Break Tests

The bias from misspecifying effective cartel begin and end dates can be constrained by sup-

plementing the before-during-and-after method with tests for multiple structural change.

Structural break tests seek to establish the break date(s) that best fit the regression to the

data, by trying many different divisions of the time-series, each with different candidate

dates to switch the dummy variables. We use Bai-Perron test procedures for detecting a

priori unknown multiple structural breaks in time series. Inclusion of the relevant deter-

minants of price avoids spurious breaks, as apparent structural breaks in the price time

series can be confounded with omitted variables. Bai and Perron (1998, 2003) suggest to

model any serial correlation parametrically by including lagged regressors.18 While Bai-

Perron tests can also be used to determine possible changes in (some or all) coefficients of

the explanatory variables, in line with the cartel literature we treat the difference between

cartel and non-cartel regimes as price level shifts.

Consider a general version of DGP (1) with up to m different intercepts

pt = δj + β′xt + γpt−1 + εt, t = Tj−1 + 1, . . . , Tj, (25)

for j = 1, . . . ,m + 1 with T0 = 0 and Tm+1 = T . As the intercepts equal δ1, . . . , δm+1, the

model allows for m+ 1 regimes with unknown break dates T1, . . . , Tm.19

18As an alternative approach to treating potential serial correlation in the time series, Bai and Perron

(1998, 2003) suggest to estimate a static model and treat serial correlation non-parametrically by exploiting

HAC covariance matrix estimation.
19Note that in model (1) m = 2, implying δ1 = α1, δ2 = α1 + α2 and δ3 = α1.
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Given a set of candidate break dates T1, . . . , Tm, the least-squares estimates minimize

the residual sum of squares from (25)

ST (T1, . . . , Tm) =
m+1∑

j=1

Tj∑

t=Tj−1+1

(pt − δj − β′xt − γpt−1)
2
. (26)

The effective cartel dates
(
T̂1, . . . , T̂m

)
are found as

(
T̂1, . . . , T̂m

)
= argminT1,...,Tm ST (T1, . . . , Tm) , (27)

where the minimization is over all partitions for which Tj−Tj−1 ≥ h, the trimming param-

eter h being the minimal number of observations between two breaks.

The null hypothesis of no break is tested against the alternative hypothesis of m breaks,

using the standard F -test statistic for goodness of fit of the model with and without the

estimated break dates
(
T̂1, . . . , T̂m

)
, developed in Chow (1960) for known break dates.

This is referred to as the sup F -test: the maximum over all possible Chow F -tests. It has

a non-standard asymptotic distribution, for which asymptotic critical values are provided

in Bai and Perron (1998). Perron (2006) conjectures that most tests for structural change

will have non-monotonic power when the true number of breaks is larger than the number

of breaks imposed in the construction of the test statistic. It is advisable, therefore, to

report outcomes of the sup F -test for a number of different choices of m. As the number

of breaks in the data is not a priori known, use is made of the unweighted and weighted

double maximum tests, labeled UD max and WD max, which are the maxima of a series

of sup F -statistics, to test the null hypothesis of no break versus an unknown number of

breaks—up to some prespecified maximum.

The break dates so found indicate structural changes in the specification, such as would

be caused by a regime switch from competition to collusion, and vice versa. The procedure

thus allows for establishing empirically whether there were effects of the cartel violation

and whether they were continuous, or rather consisted of several collusive episodes with

competitive intermittants. It is important to note that in the dynamic specification, the

breaks in the time series should be interpreted as the dates where the cartel began to

become effective, or started to loose its effectiveness. The transitions from competitive

to collusive prices and back typically are gradual. For various reasons discussed, price

levels may continue to be affected by a cartel long collapsed. The end date of such a

“lingering effect” of a cartel would be when the but-for prices and the actual prices have

fully converged.20

20In a landmark decision in a paper case in 2010, the German Federal Court of Justice allowed to take

“lingering effects” of the cartel into account as a factor augmenting the damage—see German Federal Court

of Justice, 28 June 2011, ORWI, recital 84. See also Hüschelrath et al. (2013).
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A concern about the test procedures is that they rely on asymptotic distribution theory.

Monte Carlo simulation studies on univariate time series models have shown that finite

sample distributions of the various test statistics may deviate substantially from their

asymptotic approximations.21 In particular, size distortions are found to grow (and power

to decrease) when time series become more persistent.22 In principle, the bootstrap can

be used to get a better approximation of the finite sample distribution of the structural

break tests. Diebold and Chen (1996) show that for the univariate first-order autoregressive

model, using a standard nonparametric bootstrap leads to tests with the correct size.

To the best of our knowledge, no such simulation results exist for asymptotic and

bootstrap Bai-Perron tests for multiple regression models with autoregressive short-run

dynamics and additional explanatory variables. We have therefore analyzed in a small

scale Monte Carlo study for our DGP (1) whether the implementation of structural break

tests for detecting and dating cartel effects has enough size control. Results are reported

in Appendix B. The actual size of the statistical tests for structural change is found to be

close to nominal significance levels when the data are moderately persistent. Size distortions

occur, however, when there is high persistence, which could lead to spurious breaks. Yet

the bootstrap can effectively deal with this problem and leads to test procedures with

the correct size. Therefore, in practice the bootstrap version of the break tests should be

favored.

5 Dating the Sodium Chlorate Cartel

In June 2008, the European Commission adopted a cartel infringement decision in Sodium

Chlorate against four groups of chemical producers, imposing fines of 79 million Euro in

total.23 Sodium chlorate is a chemical compound synthesized from the electrolysis of salt

and water. It is applied in the bleaching of pulp to make it suitable for the manufacture

of printing and tissue grade papers that meet the Elemental Chlorine Free (ECF) paper

standard. The cost of sodium chlorate as part of the final chemical pulp prices is about 1%.

Supply agreements typically took the form of a medium-term framework contract (usually

3-5 years), including estimated purchase volumes and a clause for price adjustments based

on specified cost indicators. Price revisions were made throughout the year and common

for the new calendar year.

21See Diebold and Chen (1996), O’Reilly and Whelan (2005), and Bai and Perron (2006).
22Additionally, Bai and Perron (2006) reports Monte Carlo simulation results showing that the use of

nonparametric covariance matrix estimators leads to substantially larger size distortions than modeling

serial correlation parametrically by using dynamic regression models.
23European Commission decision of 11/06/2008 in Case COMP/38.695 – Sodium Chlorate. The decision

was upheld by the European General Court.
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When demand began to stagnate in anticipation of the stricter Totally Chlorine Free

(TCF) paper standard, and (expected) overcapacity put downward pressure on prices in

the first half of the 1990’s, the main sodium chlorate producers in Europe formed a cartel to

implement a strategy of stabilizing the market. The first cartel meeting of which the Com-

mission obtained evidence was on 21–22 September 1994, in Helsinki, in which Akzo/EKA

and Kemira agreed on upward price adjustments for 1995. The cartel expanded in 1995

and 1996, when smaller suppliers joined.

In 1998 some internal tensions are reported to have risen between the cartel members,

after one sodium chlorate producer was suspected to have secretly supplied another’s cus-

tomer. Repeated attempts were made to regain cartel stability, leading to coordinated

price increases in 1997, 1998 and 1999. In March 2003, Akzo/EKA brought the existence

of the cartel to the attention of the European Commission with a successful leniency ap-

plication. The Commission determined in its decision that the infringement had formally

ended February 9th, 2000, when Akzo/EKA had denounced the cartel at a trade association

meeting.

The monthly price per ton of sodium chlorate is analyzed in the sample period January

1993 to December 2005 on the basis of T = 156 volume-weighted average delivered price

observations (pt) from several large customers of the cartel that together exercised almost

half of total European demand for sodium chlorate. Monthly variation in the price series

reflects (contractual) price revisions made throughout the year. The price data do not

exhibit a clear seasonal pattern.

We estimate the dynamic regression model

pt = α1 + α2dt + β1x1t + β2x2t + β3x3t + β4x4t + γ1pt−1 + γ2pt−2 + ut, (28)

in which d is the cartel dummy, x1 is the electricity price, x2 labour costs, x3 Western

European chemical pulp production, and x4 European production capacity for sodium

chlorate.24 Electricity and labour are the major input costs in the production of sodium

chlorate and the main common contract indexation factors, while pulp production and

sodium chlorate production capacity serve as demand and supply shifters respectively. The

short-run dynamics of product prices are modelled by two lagged price regressors pt−1 and

pt−2. Except for the cartel dummy, all variables are measured in logarithms, so that the

regression coefficients are (semi-)elasticities.

Table 1 reports the results of various structural break tests. To avoid possible low

power due to an underspecified number of breaks, we report sup F -test outcomes for

24Sources are respectively: Eurostat, “Electricity - industrial consumers - half-yearly prices”; OECD

System of Unit Labour Cost Indicators; CEPI, European Chemical Pulp Production, 1995Q1 - 2008Q3;

Harriman Chemsult, Chemicals Economics Handbook–SRI Consulting and CMAI.
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m = {1, 2, 3, 4, 5}. We use two different trimming parameters µ = h/T = {0.10, 0, 15}.
Furthermore, the UD max statistic is used to determine the number of breaks. For both

asymptotic and bootstrap critical values, all sup F -tests as well as the UD max test indicate

two, and only two, break points, estimated at January 1995 and February 2002, marking

structural changes in the effectiveness of the cartel.

Table 1: Empirical outcomes from structural break tests in Sodium Chlorate.

homogeneity heterogeneity asymptotic cv bootstrap cv

µ 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15

supF(1) 1.36 1.36 1.29 1.29 9.10 8.58 15.27 14.75

supF(2) 27.34 8.44 29.71 10.07 7.92 7.22 12.67 11.81

supF(3) 22.81 3.54 24.24 3.87 6.84 5.96 11.96 10.15

supF(4) 21.01 4.90 21.82 5.49 6.03 4.99 11.45 8.97

supF(5) 20.16 4.04 19.93 4.10 5.37 3.91 10.94 6.81

UD max 27.34 8.44 29.71 10.07 9.52 8.88 16.01 15.35

#breaks 2 0 2 2

break dates
1995:1

2002:2

1995:1

2002:2

1995:1

2002:2

Note: nominal size is 5%. Bootstrap critical values (cv) are calculated using 1000 replications.25

µ = h/T is the trimming parameter.

Figure 3 displays the actual sodium chlorate prices as the solid line (labelled Y). The

effective cartel dates estimated are indicated with solid vertical lines, while the dashed

vertical lines are the formal cartel begin and end dates—September 1994 and February

2000. Sodium Chlorate is an example of Case 1 misdating. The effective cartel begin

date matches the Commission’s evidence that the initial cartel meetings in September 1994

aimed to raise prices as of the following year: prices increase steeply from the beginning

of the year 1995, to peak in 1998. Even though prices subsequently declined in the second

half of 1998—in fact with electricity prices, the main cost component in the production

of sodium chlorate—they stabilized with the reported resolve of internal stability issues.

The effects of the cartel on prices subsequently persisted until the beginning of 2002, when

sodium chlorate price fell rapidly, almost two years after the formal end date February 9th,

2000. By the time the existence of the cartel was notified to the European Commission, in

March 2003, prices had returned to a more stable competitive trend.
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Figure 3: Cartel price effects in Sodium Chlorate.
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Note: Y is actual price; BFP (BFPO) is but-for price using effective (formal) cartel dates.

We estimate the dynamic model (28) with OLS for two date specifications of the cartel

dummy. Using the formal dates, i.e. September 1994 – February 2000, we obtain:

p̂t = 0.783
(0.358)

+0.013
(0.003)

dt+0.007
(0.011)

x1t+0.023
(0.016)

x2t−0.005
(0.019)

x3t−0.054
(0.059)

x4t+0.596
(0.077)

pt−1 +0.299
(0.074)

pt−2. (29)

While using the effective cartel dates, i.e. January 1995 – February 2002, we find:

p̂t = 2.033
(0.369)

+0.029
(0.004)

Dt+0.056
(0.011)

x1t+0.031
(0.013)

x2t+0.002
(0.017)

x3t−0.145
(0.053)

x4t+0.455
(0.074)

pt−1+0.300
(0.067)

pt−2. (30)

Using the formal cartel dates returns coefficients of the explanatory variables that are

all insignificant, whereas the specification does contain the primary cost factors known to

determine price in the sodium chlorate industry. Applying the effective cartel dates instead,

coefficients all have the expected sign. Capacity is the most important determinant of price,

followed by electricity costs.

The empirical model has strong combined explanatory power, with a large F statistic

(827.70) on the overall significance of the regression. For both specifications, the estimated

short-run dynamics are adequate, i.e. additional lags of the regressors are not significant.

Furthermore, Breusch-Godfrey Lagrange Multiplier misspecification tests do not indicate

significant residual autocorrelation, which indicates that all observed autocorrelation in

the price has been modelled parametrically by the estimated dynamic specification. The
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predictive power of the estimated dynamic model is superior to the static specification.

Various sensitivity checks indicate that the estimation results are robust to changes in

functional form and sample period.

Comparing the estimates in (29) and (30), their relative magnitude corroborates the

results of Lemma 2. The short-run cartel effect α̂2 is more than twice as large using the

effective cartel dates rather than the formal cartel dates (2.9% versus 1.3%). The sum

of the autoregressive coefficients is also higher under the formal cartel date specification,

while the estimated intercept α̂1 is lower.

Using the effective cartel dates specification, but-for prices are constructed by recursive

dynamic simulation as

b̂fpt = 2.033 + 0.455 b̂fpt−1 + 0.300 b̂fpt−2 + 0.056x1t + 0.031x2t + 0.002x3t − 0.145x4t,

from January 1995 onwards. The observed prices in November and December 1994 are

used as initial values of the period-by-period but-for simulation, i.e. b̂fp1994:11 = p1994:11

and b̂fp1994:12 = p1994:12. In Figure 3, these are plotted as the dotted line (labelled BFP).

While indeed the cartel started to loose its effectiveness in raising price in February 2002,

the but-for and the actual price series are fully converged only from February 2003, which

identifies the end date of the cartel effect. This lingering effect is consistent with contracts

and negotiations common in the industry, as well as the late leniency application.

Similarly, but-for prices using the formal cartel dates are simulated as the dash-dotted

line (labelled BFPO). On average, the but-for prices estimated on the basis of the formal

dates are 0.95% higher than the but-for prices corresponding to the effective dates, which

corroborates Proposition 3(i)—notwithstanding the fact that the formal dates but-for prices

are lower than the effective dates but-for prices during the period 1996–1997.

The overcharge estimates are also in conformity with the theoretical predictions. Using

the effective dates, we find that the average Ô1 and Ô2 overcharges are almost equal,

corroborating Proposition 2. Moreover, using the formal cartel dates, the average Ô1 and

Ô2 overcharges are respectively 9.33% and 8.02% lower than their counterparts using the

effective dates, which is in line with Proposition 3(ii). The downward bias in overcharge

estimation is more or less equal for Ô1 and Ô2, which is consistent with the finding that

under the conditions of Proposition 3 in Case 1, plimO1 = plimO2.

Total damage estimates ĈD1 and ĈD2 are almost identical under the effective dates.

From Theorem 1, this indicates that sodium chlorate demand has a very low own-price

elasticity. Indeed does estimation of a dynamic regression of sodium chlorate quantities

on prices show an insignificant price effect. This is consistent with demand for sodium

chlorate use in bleaching being driven by mainly by pulp and paper production and prices,

the availability of only imperfect and more expensive substitutes, and the cost for sodium
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chlorate being a negligible cost factor in chemical pulp production.

The damage estimates ĈD1 and ĈD2 are respectively 28.32% and 28.57% lower using

the formal rather than the effective cartel dates, which is consistent with Theorem 3. These

significant differences clearly illustrate the anomalous effects of misspecifying cartel begin

and end dates: it results in downward bias that can be large in comparison to proper

dating. The bias is due to both lower overcharges and a shorter damage period. The

downward bias in damage estimation is equal for ĈD1 and ĈD2, which again is consistent

with price-insensitive demand in Case 1, for which plim 1
T
ĈD1 = plim 1

T
ĈD2.

6 Concluding Remarks

We have shown that proper cartel dating is crucial for obtaining accurate estimates of cartel

damages. Using misclassified cartel begin and end dates leads to a (weak) overestimation

of but-for prices and an underestimation of overcharges. When overcharges are defined as

the difference between actual prices and but-for prices, the resulting damage estimator is

conservative in the sense that it always leads to a (weak) underestimation of the true dam-

age. While a longer formal cartel period subsumes more volume under the damage claim,

but-for prices are (weakly) overestimated, so that volumes purchased in falsely alleged car-

tel period parts are premultiplied by non-positive overcharges. Instead, using the difference

between predicted cartel prices and but-for prices, both over- and underestimation of cartel

damages can occur.

The misdating bias can be avoided with econometric tests for structural change. Even

with proper empirical cartel dating though, when the effective cartel dates are unknown

the preferred approach to cartel damages estimation is to compare estimated but-for prices

to observed prices. The approach is conservative when the effective cartel dates are exactly

estimated, and remains so for an error margin. It is more robust against misdating than

comparisons with predicted cartel prices, which recent reports appear to favor. The em-

pirical findings in Sodium Chlorate corroborate our theoretical results. Using the formal

cartel dates estimates damages more than 25% lower.

Under tort law, the injured party is entitled to compensation from the wrongdoer for

harm that is caused by—and typically follows—the tortious act. Damages resulting from

collusion outside the formal cartel period should therefore in principle be permitted as part

of an antitrust claim. Together with qualitative evidence of the cartel’s modus operandi,

cartel dating can help corroborate or falsify the collusion as the legally recognizable cause

of the harm. Plaintiffs in an antitrust damages action should apply dating also to avoid

the risk of leaving part of their actual cartel damages unclaimed. Defendants can use the

techniques to show an alleged cartel was ineffective, when it was. Agencies may want to
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consider estimating effective cartel dates for the purpose of setting deterring fines. They

otherwise do good to specify the widest possible formal cartel period the evidence permits,

so as to reduce the risk of misdating bias for litigants when cartel dating is not an option.

In line with the cartel literature, and suiting Sodium Chlorate, we have developed theory

and tests for cartel price level shifts. The empirical cartel dating procedure can be extended

to determine breaks in explanatory variables between collusive and competitive regimes too,

and thus answer to the criticism that cost-elasticities may be structurally higher in com-

petition than collusion. Ignoring such parameter breaks where they are present could lead

to underestimation of the cost coefficients. However, the considered break test procedure

does not offer a strategy for discriminating between different parameter breaks, which may

occur also at different dates. We leave this for future research.
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Appendix A: Proofs

Proof of Proposition 1. Following the standard asymptotic analysis of structural breaks

(Perron, 1989), we assume that TB = λBT and TE = λET with the break fractions λB and

λE fixed numbers for all values of T .

We have for the average estimated but-for price

plim
1

TE − TB

TE∑

t=TB+1

b̂fpt = plim
1

TE − TB

TE∑

t=TB+1

bfpt + plim
1

TE − TB

TE∑

t=TB+1

(
b̂fpt − bfpt

)
.

We will analyze the limiting behavior of the second right-hand side term in more detail.

Noting that

b̂fpTB = bfpTB = pTB ,

in period TB + 1 we have for the estimated and effective but-for prices:

b̂fpTB+1 = γ̂pTB + β̂′xTB+1 + α̂1,

bfpTB+1 = γpTB + β′xTB+1 + α1 + εTB+1.

Therefore, we can write for the prediction error

vTB+1 = b̂fpTB+1 − bfpTB+1

= (γ̂ − γ)pTB + (β̂ − β)′xTB+1 + α̂1 − α1 − εTB+1

= −εTB+1 +OP (T−1/2),

because estimation errors are OP (T−1/2) under Assumption 1 due to standard asymptotic

theory. In period TB + 2 we have for the difference in estimated and effective but-for prices

b̂fpTB+2 − bfpTB+2 = γ̂b̂fpTB+1 − γbfpTB+1 + (β̂ − β)′xTB+2 + α̂1 − α1 − εTB+2

= γ̂vTB+1 + (γ̂ − γ) bfpTB+1 + (β̂ − β)′xTB+2 + α̂1 − α1 − εTB+2

= γ̂vTB+1 + vTB+2,

where for the prediction error vTB+2 we have

vTB+2 = −εTB+2 +OP (T−1/2).

In general, we have for s = 1, 2, . . . , TE − TB

b̂fpTB+s − bfpTB+s = γ̂s−1vTB+1 + γ̂s−2vTB+2 + . . .+ γ̂vTB+s−1 + vTB+s

=
s−1∑

j=0

γjvTB+s−j +OP (T−1/2)

= −
s−1∑

j=0

γjεTB+s−j +OP (T−1/2),
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where the second line follows from γ̂ = γ +OP (T−1/2). Therefore,

plim
1

TE − TB

TE∑

t=TB+1

(
b̂fpt − bfpt

)
= − plim

1

TE − TB

TE∑

t=TB+1

s−1∑

j=0

γjεTB+s−j = 0,

by the Law of Large Numbers (LLN) for asymptotically stationary linear processes, using

E[εt] = 0 and E[εtεs] = σ2 for t = s, and 0 otherwise. This completes the proof because,

due to stationarity (Assumption 1) we have

plim
1

TE − TB

TE∑

t=TB+1

bfpt = E [bfpt] .

�

Proof of Proposition 2. Noting that bfpTB = pTB we have for the overcharge

OTB+s = (pTB+s − bfpTB+s) =
1− γs

1− γ
α2,

for s = 1, 2, . . . , TE − TB. Therefore, we have for the average effective overcharge

plim Ō = plim
1

TE − TB

TE∑

t=TB+1

(pt − bfpt)

= lim
1

TE − TB

TE−TB∑

s=1

1− γs

1− γ
α2

=
α2

1− γ
.

Using Ô1t we have for the average estimated overcharge

plimO1 = plim
1

TE − TB

TE−TB∑

s=1

1− γ̂s

1− γ̂
α̂2

= plim
α̂2

1− γ̂

(
1− plim

1

TE − TB

TE−TB∑

s=1

γ̂s

)

=
α2

1− γ
.

Using Ô2t we have for the average estimated overcharge

plimO2 = plim
1

TE − TB

TE∑

t=TB+1

(
pt − b̂fpt

)

= plim
1

TE − TB

TE∑

t=TB+1

(pt − bfpt)− plim
1

TE − TB

TE∑

t=TB+1

(
b̂fpt − bfpt

)

= plim Ō,

which follows directly from Proposition 1 and completes the proof. �
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Assumption 2(ii) under Linear Demand. Suppose model (1) and Assumption 1 hold.

Consider the stylized linear demand function

Qt = a+ bpt + εt,

where a > 0 and εt is an error term with E[εt|pt] = 0. Then Assumption 2 (ii) holds when

demand is downward sloping (b ≤ 0) and xt is strictly exogenous, i.e. E[xtεs] = 0 for all

s, t = 1, . . . , T .

From model (1),

pt =
α1

1− γ
+ α2

∞∑

i=0

γiDt−i + β

∞∑

i=0

γixt−i +
∞∑

i=0

γiεt−i,

so that

Qt = a+
bα1

1− γ
+ bα2

∞∑

i=0

γiDt−i + bβ

∞∑

i=0

γixt−i + b

∞∑

i=0

γiεt−i + εt.

Under Assumption 1 and strict exogeneity of xt,

E [Qtεt−j] = E

[(
bβ

∞∑

i=0

γixt−i + b
∞∑

i=0

γiεt−i + εt

)
εt−j

]

= bγjE[ε2
t−j]

≤ 0,

for b ≤ 0, with equality if and only if b = 0, as 0 < γ < 1. �

Proof of Theorem 1. For the effective damage, we have

plim
1

T
CD = plim

1

T

TE∑

t=TB+1

(pt − bfpt)Qt

= plim
1

T

TE−TB∑

s=1

1− γs

1− γ
α2QTB+s

=
α2

1− γ

(
TE − TB

T
plim

1

TE − TB

TE−TB∑

s=1

QTB+s −
1

T

TE−TB∑

s=1

γsQTB+s

)

=
α2

1− γ
(λE − λB)QC . (31)

The final result follows from (15), together with the fact that
∑TE−TB

s=1 γsQTB+s = OP (1).

Using Ô1t we have for the average estimated damage

plim
1

T
ĈD1 = plim

1

TE − TB

TE−TB∑

s=1

1− γ̂s

1− γ̂
α̂2QTB+s

=
α2

1− γ
(λE − λB)QC ,
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which follows directly (31) and consistency of γ̂. Using Ô2t we have for the average estimated

damage

plim
1

T
ĈD2 = plim

1

T

TE∑

t=TB+1

(
pt − b̂fpt

)
Qt

= plim
1

T

TE∑

t=TB+1

(pt − bfpt)Qt + plim
1

T

TE∑

t=TB+1

(
bfpt − b̂fpt

)
Qt

= plim
1

T
CD − plim

1

T

TE−TB∑

s=1

(
b̂fpTB+s − bfpTB+s

)
QTB+s.

We will analyze the limiting behavior of the second term in more detail under Assumption

2. Proposition 1 implies that

(
b̂fpTB+s − bfpTB+s

)
QTB+s = −

s−1∑

j=0

γjεTB+s−jQTB+s +OP (T−1/2).

Assumption 2 implies that

−
s−1∑

j=0

E
[
γjεTB+s−jQTB+s

]
≥ 0,

with equality if and only if Assumption 2 (ii) holds with equality. Applying a LLN we find

plim
1

T

TE−TB∑

s=1

(
b̂fpTB+s − bfpTB+s

)
QTB+s ≥ 0,

again with equality if and only if Assumption 2 (ii) holds with equality; this completes the

proof. �

Proof of Lemma 1. We define Tb = λbT and Te = λeT with the break fractions λb

and λe fixed numbers for all values of T . Regarding the various components of the OLS

estimators we have:

d̄ =
1

T

Tb∑

t=1

dt +
1

T

Te∑

t=Tb+1

dt +
1

T

T∑

t=Te+1

dt = λe − λb,

s2
d = d̄

(
1− d̄

)
= (λe − λb) (1− λe + λb) ,

p̄ =
1

T

TB∑

t=1

pt +
1

T

TE∑

t=TB+1

pt +
1

T

T∑

t=TE+1

pt

= (λB + 1− λE)α1 + (λE − λB) (α1 + α2) +
1

T

T∑

t=1

εt,

sdp =
1

T

T∑

t=1

dtpt − d̄p̄.
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We have four misdating scenarios specified in (20). For Tb < TB, Te < TE we have

1

T

T∑

t=1

dtpt =
1

T

Tb∑

t=1

dtpt +
1

T

TB∑

t=Tb+1

dtpt +
1

T

Te∑

t=TB+1

dtpt +
1

T

TE∑

t=Te+1

dtpt +
1

T

T∑

t=TE+1

dtpt

= (λB − λb)α1 + (λe − λB) (α1 + α2) +
1

T

T∑

t=1

dtεt,

provided that TB ≤ Te; if Te < TB, then this simplifies to

1

T

T∑

t=1

dtpt = (λe − λb)α1 +
1

T

T∑

t=1

dtεt.

Anologously, for Tb < TB, Te > TE we find

1

T

T∑

t=1

dtpt = (λB − λb + λe − λE)α1 + (λE − λB) (α1 + α2) +
1

T

T∑

t=1

dtεt,

whereas for Tb > TB, Te < TE, we have

1

T

T∑

t=1

dtpt = (λe − λb) (α1 + α2) +
1

T

T∑

t=1

dtεt.

Finally, for Tb > TB, Te > TE we have (provided that TE ≥ Tb)

1

T

T∑

t=1

dtpt = (λE − λb) (α1 + α2) + (λe − λE)α1 +
1

T

T∑

t=1

dtεt;

if Tb > TE, this again simplifies to

1

T

T∑

t=1

dtpt = (λe − λb)α1 +
1

T

T∑

t=1

dtεt.

Taking probability limits we have:

plim
1

T

T∑

t=1

εt = 0, plim
1

T

T∑

t=1

dtεt = 0,

and

plim p̄ = α1 + (λE − λB)α2.

Regarding sdp we have that

plim sdp = plim
1

T

T∑

t=1

dtpt − plim d̄ plim p̄,
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and we find, using the notation x+ = max{x, 0},

Tb < TB, Te < TE : plim sdp =
(
(λe − λB)+ − (λe − λb) (λE − λB)

)
α2,

Tb < TB, Te > TE : plim sdp = (1− λe + λb) (λE − λB)α2,

Tb > TB, Te < TE : plim sdp = (λe − λb) (1− λE + λB)α2,

Tb > TB, Te > TE : plim sdp =
(
(λE − λb)+ − (λe − λb) (λE − λB)

)
α2.

Collecting terms we find for α2:

Tb < TB, Te < TE : plim α̂2 = α2

(
(λe − λB)+ − (λe − λb) (λE − λB)

(λe − λb) (1− λe + λb)

)
,

Tb < TB, Te > TE : plim α̂2 = α2

(
λE − λB
λe − λb

)
,

Tb > TB, Te < TE : plim α̂2 = α2

(
1− λE + λB
1− λe + λb

)
,

Tb > TB, Te > TE : plim α̂2 = α2

(
(λE − λb)+ − (λe − λb) (λE − λB)

(λe − λb) (1− λe + λb)

)
.

It is easy to see that for the cases Tb < TB, Te > TE and Tb > TB, Te < TE we have that

plim α̂2 < α2. For the remaining cases, define:

a = (λe − λB)+, b = λe − λb, c = λE − λB, d = (λE − λb)+.

For the case Tb < TB, Te < TE, the attenuation bias AB = plim α̂2/α2 becomes

AB =
a− bc
b(1− b)

.

We have 0 < b < 1, hence b(1− b) > 0. Furthermore, because 0 ≤ a < c < 1 we have that

AB =
a− bc
b(1− b)

<
a− ba
b(1− b)

=
a

b
< 1.

In a similar way one can show for the last case Tb > TB, Te > TE that AB < 1, hence

plim α̂2 < α2.

Regarding α1 we have

plim α̂1 = plim p̄− plim α̂2 plim d̄

= α1 + α2 (λE − λB)− (λe − λb) plim α̂2.

For Case 1 we can write

plim α̂1 = α1 + α2

(
c− a− bc

b(1− b)
b

)

> α1,

35



because c > a. For Case 2 we simply have

plim α̂1 = α1 + α2 (λE − λB)− α2

(
λE − λB
λe − λb

)
(λe − λb)

= α1,

hence OLS is consistent for α1. For Case 3 we have c > b and

plim α̂1 = α1 + α2
c− b
1− b

> α1,

while for Case 4 we have d < c and

plim α̂1 = α1 + α2

(
c− d− bc

b(1− b)
b

)

> α1,

which completes the proof. �

Proof of Proposition 3.

(i) This follows straightforwardly from Lemma 1 and the definition of bfpt for the sim-

plified DGP (16).

(ii) From Lemma 1 we know that 0 < plim α̂2 < α2 always from which the result for O1

follows. Noting that

t ∈ TC : E [pt] = α1 + α2

t ∈ TN : E [pt] = α1,

it is easily seen that:

Tb < TB, Te < TE : plim
1

Te − Tb

Te∑

t=Tb+1

pt = α1 +
(λe − λB)+

λe − λb
α2,

Tb < TB, Te > TE : plim
1

Te − Tb

Te∑

t=Tb+1

pt = α1 +
λE − λB
λe − λb

α2,

Tb > TB, Te < TE : plim
1

Te − Tb

Te∑

t=Tb+1

pt = α1 + α2,

Tb > TB, Te > TE : plim
1

Te − Tb

Te∑

t=Tb+1

pt = α1 +
(λE − λb)+

λe − λb
α2.
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From Lemma 1 we know that plim α̂1 ≥ α1 and only when Tb < TB, Te > TE we have

that plim α̂1 = α1. Collecting terms we then conclude that

plimO2 = plim
1

Te − Tb

Te∑

t=Tb+1

pt − plim α̂1

< α2.

This completes the proof. �

Proof of Theorem 2. We have for the effective damage

plim
1

T
CD = plim

1

T

TE∑

t=TB+1

α2Qt

= α2 (λE − λB) plim
1

TE − TB

TE∑

t=TB+1

Qt

= α2 (λE − λB)QC .

We consider the four cases separately.

Case 1: Tb < TB, Te < TE. We have

plim
1

T
ĈD1 = plim

1

T

Te∑

t=Tb+1

α̂2Qt

= plim α̂2 plim
1

T

Te∑

t=Tb+1

Qt

= α2

(
(λe − λB)+ − (λe − λb) (λE − λB)

(λe − λb) (1− λe + λb)

)

×
(
(λe − λb)QN + (λe − λB)+ (QC −QN)

)
.

Comparing ĈD1 with CD, when QN 6= QC no systematic pattern emerges, i.e.

plim
1

T
ĈD1 R plim

1

T
CD.

When QN = QC , however, some algebra shows that

plim
1

T
ĈD1 = plim

1

T
CD − α2

(λE − λB)− (λe − λB)+

1− λe + λb
QC

< plim
1

T
CD.
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Regarding ĈD2 we have

plim
1

T
ĈD2 = plim

1

T

Te∑

t=Tb+1

(pt − α̂1)Qt

= plim
1

T

Te∑

t=Tb+1

ptQt − plim α̂1 plim
1

T

Te∑

t=Tb+1

Qt.

Assuming that TB ≤ Te, Assumption 2 implies

plim
1

T

Te∑

t=Tb+1

ptQt = (λB − λb) plim
1

TB − Tb

TB∑

t=Tb+1

ptQt

+ (λe − λB)
1

Te − TB

Te∑

t=TB+1

ptQt

≤ (λB − λb) plim
1

TB − Tb

TB∑

t=Tb+1

pt plim
1

TB − Tb

TB∑

t=Tb+1

Qt

+ (λe − λB)
1

Te − TB

Te∑

t=TB+1

pt
1

Te − TB

Te∑

t=TB+1

Qt

= (λB − λb)α1QN + (λe − λB)(α1 + α2)QC .

Similarly, plimT−1
∑Te

t=Tb+1Qt = (λe − λb)QN + (λe − λB)QC , so that

plim
1

T
ĈD2 ≤ (λB − λb) (α1 − plim α̂1)QN + (λe − λB) (α1 + α2 − plim α̂1)QC

< (λE − λB)α2QC ,

where the final inequality follows from plim α̂1 > α1 and λe < λE. In the special case

Te < TB, the result simplifies to

plim
1

T
ĈD2 ≤ (λe − λb) (α1 − plim α̂1)QN

< (λE − λB)α2QC ,

simply because the probability limit of T−1ĈD2 is negative in this case (and (λE − λB)α2QC

is positive).

Case 2: Tb < TB, Te > TE. We have

plim
1

T
ĈD1 = plim α̂2 plim

1

T

Te∑

t=Tb+1

Qt

= plim α̂2 ((λe − λb)QN + (λE − λB) (QC −QN))

≥ α2 (λE − λB)QC ,
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because QN ≥ QC and where we substituted plim α̂2 = α2(λE − λB)/(λe − λb); and,

analogously to the proof for Case 1,

plim
1

T
ĈD2 ≤ (λB − λb + λe − λE) (α1 − plim α̂1)QN + (λE − λB) (α1 + α2 − plim α̂1)QC

= α2 (λE − λB)QC ,

because plim α̂1 = α1.

Case 3: Tb > TB, Te < TE. We have

plim
1

T
ĈD1 = plim α̂2 plim

1

T

Te∑

t=Tb+1

Qt

= plim α̂2 (λe − λb)QC

< α2 (λE − λB)QC ,

because plim α̂2 < α2 and λe − λb < λE − λB; and

plim
1

T
ĈD2 ≤ (λe − λb) (α1 + α2 − plim α̂1)QC

< α2 (λE − λB)QC ,

because plim α̂1 > α1 and λe − λb < λE − λB.

Case 4: Tb > TB, Te > TE. We have

plim
1

T
ĈD1 = α2

(
(λE − λb)+ − (λe − λb) (λE − λB)

(λe − λb) (1− λe + λb)

)

×
(
(λe − λb)QN + (λE − λb)+ (QC −QN)

)
.

Comparing ĈD1 with CD, when QN 6= QC no systematic pattern emerges, i.e.

plim
1

T
ĈD1 R plim

1

T
CD.

When QN = QC , however, some algebra shows that

α2QC

(
(λE − λb)+ − (λE − λB)

(1− λe + λb)

)

plim
1

T
ĈD1 = plim

1

T
CD − α2

(λE − λB)− (λE − λb)+

1− λe + λb
QC

< plim
1

T
CD.

Regarding ĈD2 we have (provided that TE ≥ Tb)

plim
1

T
ĈD2 ≤ (λE − λb) (α1 + α2 − plim α̂1)QC + (λe − λE) (α1 − plim α̂1)QN

< (λE − λB)α2QC ,
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for because plim α̂1 > α1 and λb > λB. For the special case TE < Tb, the probability limit

reduces to

(λe − λb) (α1 − plim α̂1)QN < 0 < (λE − λB)α2QC .

This completes the proof. �

Proof of Lemma 2. It is helpful for further calculations on the OLS inconsistency to

invoke the result that without loss of generalization we can assume that xt has mean zero,

hence

mx = plim
1

T

T∑

t=1

xt = 0.

Moreover, we can redefine the cartel dummy variable such that actually the measurement

error vt = dt−Dt has mean zero. The reason is that we have a constant term in the model,

so all variables can be taken in deviation from their sample average, affecting only the

definition and interpretation of the intercept. We redefine Dt and dt as dummy variables

in deviation from their sample mean:

Dt = −TE − TB
T

= λB − λE, t ≤ TB,

Dt =
T − TE + TB

T
= 1− λE + λB, TB < t ≤ TE,

Dt = −TE − TB
T

= λB − λE, t > TE,

and:

dt = −Te − Tb
T

= λb − λe, t ≤ Tb,

dt =
T − Te + Tb

T
= 1− λe + λb, Tb < t ≤ Te,

dt = −Te − Tb
T

= λb − λe, t > Te.

The result is that, irrespective of whether we date Tb and Te too early or too late, the

average measurement error is zero, i.e.

1

T

T∑

t=1

vt = 0.

If we let D0
t and d0

t denote the original 0−1 dummy variables, such that Dt = D0
t−(λE−λB)

and dt = d0
t − (λe − λb), then

pt = α1 + α2D
0
t + β′xt + γpt−1 + εt

= α + α2Dt + β′xt + γpt−1 + εt,
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so that the new intercept becomes

α = α1 + (λE − λB)α2.

Analogously, the estimated model becomes

p̂t = α̂1 + α̂2d
0
t + β̂′xt + γ̂pt−1

= α̂ + α̂2dt + β̂′xt + γ̂pt−1,

with

α̂ = α̂1 + (λe − λb) α̂2.

Stacking the observations (t = 1, . . . , T ), we write the regression model to be estimated

as

y = Zθ + u,

where y = (p1, . . . , pT )′ and u = (u1, . . . , uT )′. Furthermore, Z = (z1, . . . , zT )′ with zt =

(pt−1, xt, 1, dt)
′ and θ = (γ, β, α, α2)′. The OLS estimator of the full parameter vector θ is

equal to

θ̂ = (Z ′Z)−1Z ′y.

Taking the probability limit we have

plim θ̂ = θ +

(
plim

1

T
Z ′Z

)−1

plim
1

T
Z ′u

= θ + Σ−1
ZZΣZu. (32)

The vector Σ−1
ZZΣZu is the OLS inconsistency.

Regarding ΣZu in (32) we have:

mxu = plim
1

T

T∑

t=1

xtut = 0,

mu = plim
1

T

T∑

t=1

ut = 0,

where ut = εt − α2vt. Also we have

E [dtut] = −α2E [dtvt] 6= 0,

hence mdu 6= 0. Also there is a non-zero correlation between pt−1 and ut. Exploiting the

stationarity assumption by repeated substitution we can write

pt = β
∞∑

s=0

γsxt−s +
α

1− γ
+ α2

∞∑

s=0

γsDt−s +
∞∑

s=0

γsεt−s,
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so we have (exploiting the fact that εt has no autocorrelation, and zero correlation with

lagged xt−s−1 by Assumption 1) that

E [pt−1ut] = −α2
2E

[
vt

∞∑

s=0

γsDt−1−s

]

= −α2
2

(
vtDt−1 + γvtDt−2 + γ2vtDt−3 + . . .

)

6= 0,

so mp−1u 6= 0. Under the assumptions, we have now:

ΣZZ =




mpp mxp−1 mp mdp−1

mxp−1 mxx 0 0

mp 0 1 0

mdp−1 0 0 mdd



, ΣZu =




mp−1u

0

0

mdu



.

After some algebra we find for the inconsistency

Σ−1
ZZΣZu =

1

det (ΣZZ)




mxx

(
mddmp−1u −mdumdp−1

)

−mxp−1

(
mddmp−1u −mdumdp−1

)

−mpmxx

(
mddmp−1u −mdumdp−1

)

−mdp−1mxxmp−1u −mdu(σ
2
xp−1
− σ2

xσ
2
p)



, (33)

where det (ΣZZ) > 0 and we define σ2
p = mpp − m2

p. Furthermore, because we assume

mx = 0, we have mxx = σ2
x and mxp−1 = σxp−1 .

We now have to evaluate all separate terms in (33). We always have

mdd = plim
1

T

∑
d2
t

= (1− λe + λb) (λe − λb) .
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Furthermore, to evaluate mp−1u we note that

mp−1u = plim
1

T

T∑

t=1

pt−1ut

= −α2
2 plim

1

T

T∑

t=1

(
vtDt−1 + γvtDt−2 + γ2vtDt−3 + . . .

)

= −α2
2 plim

1

T

T∑

t=1

∞∑

s=0

γsvtDt−1−s

= −α2
2 plim

1

T

T∑

t=1

∞∑

s=0

γsvt (Dt +Dt−1−s −Dt)

= − α2
2

1− γ
plim

1

T

T∑

t=1

vtDt + α2
2 plim

1

T

T∑

t=1

∞∑

s=0

γsvt (Dt −Dt−1−s)

= − α2
2

1− γ
plim

1

T

T∑

t=1

vtDt.

The final equality holds because vt (Dt −Dt−1−s) ∝ s+1
T

, because Dt −Dt−1−s has nonzero

values in (two times) s+1
T

observations only. Therefore,

∞∑

s=0

γsvt (Dt −Dt−1−s) ∝
∞∑

s=0

γs
s+ 1

T

=
1

T

∞∑

s=0

(s+ 1) γs

=
1

T (1− γ)2 ,

which is of order O(T−1) only.

For the same reason we have

mdp−1 = plim
1

T
α2

T∑

t=1

∞∑

s=0

γsdtDt−1−s

= α2 plim
1

T

T∑

t=1

∞∑

s=0

γsdt (Dt − (Dt −Dt−1−s))

=
α2

1− γ
plim

1

T

T∑

t=1

dtDt.

The precise magnitude of the separate terms will depend on the type of break misdating.

We will provide detailed derivations for Cases 1 and 2 only. In Case 1 (Tb < TB < Te < TE)
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we have for the measurement error:

vt =





λb − λe − λB + λE, t ≤ Tb,

1− λe + λb − λB + λE, Tb < t ≤ TB,

λb − λe − λB + λE, TB < t ≤ Te,

λb − λe − 1− λB + λE, Te < t ≤ TE,

λb − λe − λB + λE, t > TE.

We then have

mdu = − α2 plim
1

T

T∑

t=1

dtvt

= − α2 [λb (λb − λe) (λb − λe − λB + λE)

+ (λB − λb) (1− λe + λb) (1− λe + λb − λB + λE)

+ (λe − λB) (1− λe + λb) (−λe + λb − λB + λE)

+ (λE − λe) (λb − λe) (−1− λe + λb − λB + λE)

+ (1− λE) (λb − λe) (λb − λe − λB + λE)]

= − α2 [(λB − λb) (1− λe + λb) + (λe − λb) (λE − λe)] .

Furthermore, we have that

1

T

T∑

t=1

dtDt = λb (λb − λe) (λB − λE)

+ (λB − λb) (1− λe + λb) (λB − λE)

+ (λe − λB) (1− λe + λb) (1− λE + λB)

+ (λE − λe) (λb − λe) (1− λE + λB)

+ (1− λE) (λb − λe) (λB − λE)

= λe − λB + (λe − λb) (λB − λE) ,

hence we find that

mdp−1 =
α2

1− γ
(λe − λB + (λe − λb) (λB − λE)) .

Together with

1

T

T∑

t=1

D2
t = (1− λE + λB) (λE − λB) ,

we find

1

T

T∑

t=1

vtDt =
1

T

T∑

t=1

dtDt −
1

T

T∑

t=1

D2
t ,

= λe − λB + (1− λE + λB + λe − λb) (λB − λE) ,
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and we therefore have

mp−1u = − α2
2

1− γ
[λe − λB + (1− λE + λB + λe − λb) (λB − λE)] .

Inspecting signs, we obviously have mdd > 0. Furthermore, assuming the cartel effect

α2 > 0 and given Tb < TB < Te < TE we find that mdu < 0 and mdp−1 > 0 because

λe − λB + (λe − λb) (λB − λE) < λE − λB + (λe − λb) (λB − λE)

= (λE − λB) (1 + λb − λe)

> 0.

Also we find mp−1u > 0 because

(λE − λB) (1− λE + λB + λe − λb)− (λe − λB)

> (λE − λB) (1− λE + λB + λe − λB)− (λe − λB)

= (1− λE + λB) (λE − λe)

>0,

where the second line follows from the fact that λB > λb. Collecting terms we therefore

find for Case 1 that

mddmp−1u −mdumdp−1 > 0.

Hence, we can write for the direction of the first three elements in the OLS inconsistency

(33):

plim γ̂ > γ,

plim β̂ ≶ β, if mxp−1 ≷ 0,

plim α̂ < α,

where the last inequality holds as prices are positive, hence mp−1 > 0. Finally, the last

element in the inconsistency is

plim (α̂2 − α2) =
−mdp−1mxxmp−1u −mdu(σ

2
xp−1
− σ2

xσ
2
p)

det (ΣZZ)

= −σ2
x

mdp−1mp−1u −mduσ
2
p(1− ρ2

xp−1
)

det (ΣZZ)

< 0,

because mdp−1 > 0, mp−1u > 0 and mdu < 0.
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We find exactly the same qualitative results for the Cases 2, 3 and 4. Because Case 2

will turn out to be most important we briefly state the results for this case. In Case 2, i.e.

Tb < TB, Te > TE, we have for the measurement error:

vt =





λb − λe − λB + λE, t ≤ Tb,

1− λe + λb − λB + λE, Tb < t ≤ TB,

λb − λe − λB + λE, TB < t ≤ TE,

1− λe + λb − λB + λE, TE < t ≤ Te,

λb − λe − λB + λE, t > Te.

We then have

mdu = −α2 (1− λe + λb) (λB − λE + λe − λb) ,

mdp−1 =
α2

1− γ
(λE − λB) (1− λe + λb) ,

mp−1u = − α2
2

1− γ
(λE − λB) (λb − λe + λE − λB) .

Inspecting signs, we find that mdu < 0 as

(1− λe + λb) (λB − λE + λe − λb) = (1− (λe − λb)) (λe − λb − (λE − λB))

> 0,

because in Case 2 λe − λb > λE − λB. Furthermore, it is obvious that mdp−1 > 0 and

mp−1u > 0. Collecting terms we therefore find the same qualitative results compared with

Case 1.

For the original intercept α1, we obtain the following. Defining

c =
mddmp−1u −mdumdp−1

det (ΣZZ)
,

we can write

plim

(
α̂

1− γ̂
− α

1− γ

)
=

plim (α̂− α) + α
1−γ plim (γ̂ − γ)

1− γ − plim (γ̂ − γ)

=
−mpmxxc+ α

1−γmxxc

1− γ −mxxc

=

(
mxxc

1− γ −mxxc

)(
α

1− γ
−mp

)

= 0.

It can also be shown that:

(λE − λB)
α2

1− γ
− (λe − λb) plim

α̂2

1− γ̂
=

{
0, Tb < TB, Te > TE,

> 0, otherwise.
(34)
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Therefore, given that plim γ̂ > γ it is easily seen that for Case 2

plim α̂1 = plim α̂− (λe − λb) plim α̂2

= α1
plim (1− γ̂)

1− γ
< α1.

Numerical simulations confirm that it holds for the other cases also. �

Proof of Proposition 4.

(i) Recall that

t ≤ Tb : b̂fpt = pt,

t > Tb : b̂fpt = γ̂b̂fpt−1 + β̂xt + α̂1,

and

bfpt = γbfpt−1 + βxt + α1 + εt,

where in terms of the parameter vector θ = (γ, β, α, α1)′, we have α̂1 = α̂−(λe−λb)α̂2

and α1 = α− (λE − λB)α2. We have for the average estimated but-for price

plim
1

Te − Tb

Te∑

t=Tb+1

b̂fpt = plim
1

Te − Tb

Te∑

t=Tb+1

bfpt + plim
1

Te − Tb

Te∑

t=Tb+1

(
b̂fpt − bfpt

)

= plim
1

TE − TB

TE∑

t=TB+1

bfpt + plim
1

Te − Tb

Te∑

t=Tb+1

(
b̂fpt − bfpt

)
.

We will analyze the limiting behavior of the second term in more detail. In period

Tb + 1 we can write for the prediction error

vTb+1 = b̂fpTb+1 − bfpTb+1

= (γ̂ − γ) bfpTb + γ̂ (pTb − bfpTb) + (β̂ − β)xTb+1 + α̂− α− εTb+1.

Note that standard asymptotic theory for method of moments estimators gives the

following large sample distribution of the OLS estimator

√
T
(
θ̂ − θ − θ∗

)
d−→ N (0, V ),

where θ∗ = Σ−1
ZZΣZu is the inconsistency. Therefore, we can write θ̂ − θ = θ∗ +

OP (T−1/2). The implied inconsistency in α1 is

α∗1 = α∗ − (λe − λb)α∗2 + (λE − λB − (λe − λb))α2.
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Also note that we have:

bfpTb =

{
pTb , Tb ≤ TB,

< pTb , Tb > TB,

so that

γ̂ (pTb − bfpTb) =

{
0, Tb ≤ TB,

(γ + γ∗) (pTb − bfpTb) +OP (T−1/2), Tb > TB.

Therefore we can write:

vTb+1 =

{
γ∗bfpTb + β∗xTb+1 + α∗1 − εTb+1 +OP (T−1/2), Tb ≤ TB,

γ∗bfpTb + β∗xTb+1 + α∗1 − εTb+1 +OP (1) Tb > TB.

In period Tb + 2 we have for the difference in estimated and true but-for prices

b̂fpTb+2 − bfpTb+2 = γ̂b̂fpTb+1 − γbfpTb+1 + (β̂ − β)xTb+2 + α̂1 − α1 − εTb+2

= γ̂vTb+1 + (γ̂ − γ) bfpTb+1 + (β̂ − β)xTb+2 + α̂1 − α1 − εTb+2

= γ̂vTb+1 + vTb+2.

Regarding the prediction error vTb+2 we find

vTb+2 = γ∗bfpTb+1 + β∗xTb+2 + α∗1 − εTb+2 +OP (T−1/2),

irrespective of the precise timing of Tb and TB. In general we find

b̂fpTb+s − bfpTb+s = γ̂s−1vTb+1 + γ̂s−2vTb+2 + . . .+ γ̂vTb+s−1 + vTb+s

=
s−1∑

j=0

γ̂jvTb+s−j

=
s−1∑

j=0

(γ + γ∗)j vTb+s−j +OP (T−1/2),

where

vTb+s−j = γ∗bfpTb+s−j−1 + β∗xTb+s−j + α∗1 − εTb+s−j +OP (T−1/2), j = 0, . . . , s− 2.

By repeated substitution we can write

bfpt =
α1

1− γ
+ β

∞∑

i=0

γixt−i +
∞∑

i=0

γiεt−i,

hence

E [bfpt] =
α1

1− γ
,
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because E [xt] = 0 and E [εt] = 0. Defining

c =
mddmp−1u −mdumdp−1

det (ΣZZ)
,

we can write

plim

(
α̂

1− γ̂
− α

1− γ

)
=

plim (α̂− α) + α plim (γ̂ − γ) /(1− γ)

1− γ − plim (γ̂ − γ)

=
−mpmxxc+mxxcα/(1− γ)

1− γ −mxxc

= 0,

because mp = α/(1− γ).

Using γ∗ = mxxc and α∗ = −mpmxxc once more we get

E [vTb+s−j] = E [γ∗bfpTb+s−j−1 + β∗xTb+s−j + α∗1 − εTb+s−j] +O(T−1)

= mxxc

(
α

1− γ
− (λE − λB)

α2

1− γ

)
−mpmxxc

− ((λe − λb) plim α̂2 − (λE − λB)α2) +O(T−1)

= − plim (γ̂ − γ) (λE − λB)
α2

1− γ
− (λe − λb) plim α̂2

+ (λE − λB)α2 +O(T−1)

= (λE − λB)
α2

1− γ
(1− plim γ̂)− (λe − λb) plim α̂2.

From (34) we see that:

plim α̂2 =





λE − λB
λe − λb

α2

1− γ
(1− plim γ̂), Tb < TB, Te > TE,

<
λE − λB
λe − λb

α2

1− γ
(1− plim γ̂), otherwise.

(35)

Using this we find:

E [vTb+s−j] =

{
O(T−1), Tb < TB, Te > TE,

O(1) > 0, otherwise.

The difference in estimated and true but-for price is

b̂fpTb+s − bfpTb+s =
s−1∑

j=0

(γ + γ∗)j vTb+s−j +OP (T−1/2),

with:

E

[
s−1∑

j=0

(γ + γ∗)j vTb+s−j

]
=

{
O(T−1), Tb < TB, Te > TE,

O(1) > 0, otherwise.
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Hence:

plim
1

Te − Tb

Te−Tb∑

s=1

(
b̂fpTb+s − bfpTb+s

)

= plim
1

Te − Tb

Te−Tb∑

s=1

s−1∑

j=0

(γ + γ∗)j vTb+s−j =

{
0, Tb < TB, Te > TE,

> 0, otherwise,

which completes the proof of (i).

(ii) Noting that bfpTB = pTB we have for the overcharge

OTB+t = (pTB+t − bfpTB+t)Dt =
1− γt

1− γ
α2Dt,

which for t→∞ simplifies to α2/(1−γ). Therefore, we have for the average effective

overcharge

plim Ō = plim
1

TE − TB

TE∑

t=TB+1

(pt − bfpt)

= lim
1

TE − TB

TE∑

t=TB+1

1− γt

1− γ
α2

=
α2

1− γ
.

We have for the average estimated overcharge

plimO2 = plim
1

Te − Tb

Te∑

t=Tb+1

(
pt − b̂fpt

)

= plim
1

Te − Tb

Te∑

t=Tb+1

(pt − bfpt)− plim
1

Te − Tb

Te∑

t=Tb+1

(
b̂fpt − bfpt

)
.

Using Proposition 4 (i) we find that:

plimO2 = plim
1

Te − Tb

Te∑

t=Tb+1

(pt − bfpt) , Tb < TB, Te > TE,

> plim
1

Te − Tb

Te∑

t=Tb+1

(pt − bfpt) , otherwise.

Combining this with the fact that:

plim
1

Te − Tb

Te∑

t=Tb+1

(pt − bfpt) =
α2

1− γ
Tb > TB, Te < TE,

<
α2

1− γ
, otherwise,

completes the proof. �
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Proof of Theorem 3. We have for the effective damage

plim
1

T
CD = plim

1

T

TE∑

t=TB+1

(pt − bfpt)Qt

= plim
1

T

TE∑

t=TB+1

1− γt

1− γ
α2Qt

= lim
TE − TB

T
α2QC lim

1

T

TE∑

t=TB+1

1− γt

1− γ

=
α2

1− γ
(λE − λB)QC .

We have for the estimated damage

plim
1

T
ĈD2 = plim

1

T

Te∑

t=Tb+1

(
pt − b̂fpt

)
Qt

= plim
1

T

Te∑

t=Tb+1

(pt − bfpt)Qt + plim
1

T

Te∑

t=Tb+1

(
bfpt − b̂fpt

)
Qt

= plim
1

T
CD − plim

1

T

Te∑

t=Tb+1

(
b̂fpt − bfpt

)
Qt.

We will analyze the limiting behavior of the second term in more detail under Assumption

1. Proposition 4 (i) implies that

(
b̂fpTb+s − bfpTb+s

)
QTb+s = QTb+s

s−1∑

j=0

(γ + γ∗)j vTb+s−j +OP (T−1/2),

where

vTb+s−j = γ∗bfpTb+s−j−1 + β∗xTb+s−j + α∗1 − εTb+s−j +OP (T−1/2), j = 0, . . . , s− 2.

We note that

bfpt−1 =
α1

1− γ
+ β

∞∑

s=0

γsxt−1−s +
∞∑

s=0

γsεt−1−s.

Due to mx = 0, we can define the linear projection coefficients of a regression of bfpt−1 on

a constant and xt as mp and
mxp−1

mxx
respectively. Therefore, we can write:

bfpt−1 = mp +
mxp−1

mxx

xt + ηt,

ηt = β
∞∑

s=0

γsxt−1−s −
mxp−1

mxx

xt +
∞∑

s=0

γsεt−1−s,
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where by construction E [ηtxt] = 0. This leads to

E [bfpTb+s−j−1QTb+s] =
mxp−1

mxx

E [xTb+s−jQTb+s] +
α1

1− γ
E [QTb+s] ,

where we assumed that the projection error ηt is uncorrelated with QTb+s.

Using γ∗ = mxxc, β
∗ = −mxp−1c and α∗ = −mpmxxc we get

E [vTb+s−jQTb+s] = E [(γ∗bfpTb+s−j−1 + β∗xTb+s−j + α∗1 − εTb+s−j)QTb+s] +O(T−1)

= mxxc
mxp−1

mxx

E [xTb+s−jQTb+s]

+mxxc

(
α

1− γ
− (λE − λB)

α2

1− γ

)
E [QTb+s]

−mxp−1cE [xTb+s−jQTb+s]

−mpmxxcE [QTb+s]

− ((λe − λb) plim α̂2 − (λE − λB)α2)E [QTb+s]

− E [εTb+s−jQTb+s] +O(T−1).

Collecting terms, this leads to

E [vTb+s−jQTb+s] = E [QTb+s]

{
(λE − λB)

α2

1− γ
(1− plim γ̂)− (λe − λb) plim α̂2

}

− E [εTb+s−jQTb+s] +O(T−1).

Using (35) we find:

E [vTb+s−jQTb+s] =

{
−E [εTb+s−jQTb+s] +O(T−1), Tb < TB, Te > TE,

−E [εTb+s−jQTb+s] +O(1), otherwise,

where the O(1) remainder term is positive. The difference in estimated and true damage

per period is

(
b̂fpTb+s − bfpTb+s

)
QTb+s =

s−1∑

j=0

(γ + γ∗)j vTb+s−jQTb+s +OP (T−1/2),

hence

plim
1

Te − Tb

Te−Tb∑

s=1

(
b̂fpTb+s − bfpTb+s

)
QTb+s

= plim
1

Te − Tb

Te−Tb∑

s=1

s−1∑

j=0

(γ + γ∗)j vTb+s−jQTb+s

=−
s−1∑

j=0

(γ + γ∗)j E [εTb+s−jQTb+s]

≥0,
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when Tb < TB, Te > TE and under Assumption 2. In the other cases a strict inequality sign

holds. This shows that:

plim
1

T
ĈD2 ≤ plim

1

T
CD, Tb < TB, Te > TE

< plim
1

T
CD, otherwise,

which completes the proof. �
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Appendix B: Size Control for DGP (1)

For the Monte Carlo study, data have been generated according to DGP (1) with εt ∼
i.i.n.(0, σ2

ε). Explanatory variables are lagged prices pt−1 and, for simplicity, a single cost

factor xt. The cartel dummy is defined as in (2) and set at TB = 1
3
T and TE = 2

3
T . The

explanatory variable xt develops by an AR(1) model

xt = ρxt−1 + vt, (36)

where vt ∼ i.i.n.(0, σ2
v) independent of εt, i.e. the cost factor is assumed to be strictly

exogenous.

In order to investigate the actual size of various structural break inference procedures,

data have been generated under the null hypothesis H0 : α2 = 0. All experiments have a

sample of T = 100 observations and the number of replications is 10,000. Without loss of

generality we set α1 = 100(1− γ), so that the average price level in the simulations is 100.

We normalized with respect to the variance of the disturbance term σ2
ε . We furthermore

choose γ = {0.1, 0.5, 0.9} and ρ = {0.1, 0.5, 0.9}. These values roughly correspond to a low,

intermediate and high degree of serial correlation in the time series pt and xt.

To facilitate the comparison of simulation results across experiments, some important

design parameters are held fixed. We always set β such that the long-run effect of x on p

is unity, i.e. we specify β = 1− γ. Furthermore, σ2
ε is chosen such that the signal-to-noise

ratio of the model, defined as

SNR =
Var(pt − εt)

Var(εt)
, (37)

does not change between experiments. Assuming σ2
ε = 1 for DGP (1), Kiviet (1995) derives

the following relation between σ2
v and SNR and other model parameters

σ2
v =

1

β2

[
SNR− γ2

1− γ2

]
(1− γ2)(1− ρ2)(1− γρ)

1 + γρ
. (38)

We choose SNR = 9 across experiments corresponding with a population R2 of 0.9.

The correct dynamic specification (1) has been estimated in all experiments, hence OLS

estimators are consistent, and analyze actual rejection probabilities of sup F -tests and

double maximum (UD and WD) tests proposed by Bai and Perron (1998, 2003, 2006).26

The nominal significance level in the simulations is 5% always. For the sup F -tests, the

null hypothesis is no break versus k breaks where we experimented with k = {1, 2, 3}. The

finite sample properties of the various test procedures have been investigated for trimming

parameter µ = h/T = 0.15, which implies that a minimum of 15 observations is used in

any partition of the data, given that T = 100.27

26We used EViews 9 for all calculations.
27We obtained similar size and power properties result for µ = 0.05.
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The bootstrap version of the various testing procedures uses a standard non-parametric

resampling scheme. First, we obtained the OLS estimator allowing for breaks. Second, a

random sample is taken from the empirical distribution of the OLS residuals. Third, the

bootstrapped dependent variable is calculated according to equation (1). In the bootstrap

scheme, we kept the values of exogenous regressors as before. For the lagged dependent

variable regressor, the first observation on the dependent variable is kept also as before

and pseudo values for the remaining observations are constructed iteratively. Fourth, we

estimated the model and calculated the various test statistics from the resampled data.

Repeating steps 2 to 4 of the resampling scheme B times, together with the calculated

test statistic on the original data (B + 1) generated realizations of the test statistic. A

size-corrected test was constructed with these (B + 1) realizations by using the appro-

priate quantile of the bootstrap distribution as critical value. The number of bootstrap

replications B = 199.

Table 2 shows actual rejection probabilities of asymptotic and bootstrap sup F -tests and

double maximum tests. Autoregressive dynamics are varied in both pt and xt to analyze

their relevance for the accuracy of asymptotic approximations. Asymptotic tests performed

well under the null hypothesis when there is only small or moderate autoregressive dynam-

ics in the dependent variable, i.e. γ = {0.1, 0.5}. Rejection frequencies do not exceed 0.10,

which is reasonably close to the nominal level of 0.05. However, these tests become over-

sized when γ = 0.9. In this case, actual rejection frequencies are also increasing with the

persistence in the regressor x. In addition, size distortions of sup F -tests increase with

the number of breaks specified under H1. In general, size distortions of asymptotic tests

are largest when both p and x are highly serially correlated (γ = ρ = 0.9), corroborating

the simulation results for univariate models.28 In contrast, bootstrap tests are always size

correct, irrespective of the true value of the autoregressive dynamics. Therefore, in practice

one should favour the bootstrap version of the break tests always.

28Diebold and Chen (1996), O’Reilly and Whelan (2005). Unreported simulation results show the same

pattern for asymptotic sequential sup F tests.
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Table 2: Size of nominal 5% sup F- and double max tests.

γ ρ supF(1) supF(2) supF(3) UD max WD max

asymptotic tests

0.1 0.1 0.051 0.051 0.047 0.049 0.050

0.1 0.5 0.053 0.052 0.054 0.054 0.049

0.1 0.9 0.055 0.066 0.070 0.064 0.059

0.5 0.1 0.048 0.053 0.057 0.050 0.049

0.5 0.5 0.052 0.057 0.062 0.063 0.055

0.5 0.9 0.057 0.088 0.093 0.071 0.082

0.9 0.1 0.122 0.190 0.263 0.175 0.219

0.9 0.5 0.132 0.220 0.302 0.197 0.238

0.9 0.9 0.195 0.306 0.450 0.293 0.372

bootstrap tests

0.1 0.1 0.040 0.052 0.040 0.042 0.046

0.1 0.5 0.040 0.048 0.044 0.044 0.046

0.1 0.9 0.038 0.042 0.042 0.034 0.034

0.5 0.1 0.042 0.042 0.042 0.044 0.042

0.5 0.5 0.040 0.046 0.038 0.036 0.034

0.5 0.9 0.040 0.048 0.050 0.042 0.054

0.9 0.1 0.048 0.046 0.050 0.052 0.056

0.9 0.5 0.054 0.056 0.052 0.068 0.058

0.9 0.9 0.052 0.050 0.048 0.048 0.052

Note: T = 100, µ = 0.15.
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