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1. Introduction

In empirical econometric models it is often not unlikely that some explanatory variables

are in fact endogenous, because their realizations are contemporaneously correlated with

the error terms of the model. To overcome inference problems due to such correlation

one often exploits external (non-explanatory) variables that should be uncorrelated with

these errors. To verify whether these variables (instruments) seem uncorrelated with the

disturbances indeed one can use a so-called test for overidentifying restrictions (OR), see

Sargan (1958), Hansen (1982). The mandatory use of OR tests on a routine basis has

been advocated at various places in the literature. See, for instance, the list mentioned

in Baum et al. (2003, footnote 11). However, warnings that OR tests may mislead

practitioners were recently issued in Parente and Santos Silva (2012) and Guggenberger

(2012), and can also be found in, for instance, Hayashi (2000, p.218) and Cameron and

Trivedi (2005, p.277).

In this study we will place these warnings regarding OR tests into perspective and

highlight that they only apply if one is hesitant with respect to formulating an explicit

maintained hypothesis, involving su¢ cient a priori orthogonality conditions and exclu-

sion restrictions. Also we will expose the algebraic equivalences between OR and CR

(coe¢ cient restrictions) test statistics and explain why these tests nevertheless allow dis-

tinct inferences. Moreover, we discuss to what degree similar issues arise for incremental

OR tests.

For the sake of simplicity we will focus here mainly on the linear method of moments

context, but our derivations can be extended to more general settings, as we shall indi-

cate. First, while introducing our notation, we review some general results on testing

in a linear instrumental variables context, such as illustrating that the classical trinity

of test principles established in the context of Maximum Likelihood inference, consti-

tuted by Wald (W), Likelihood Ratio (LR) and Lagrange Multiplier (LM), have their

counterparts in a semiparametric setting in which models can e¢ ciently and robustly be

estimated by (generalized) method of moments, see also Newey and West (1987). In a

linear method of moments context CR tests based on a W statistic are in fact equivalent

to the test obtained by taking the di¤erence between evaluated criterion functions (CF)

for the restricted and the unrestricted model. The latter reminiscences of an LR-type

test. By employing an estimate for the disturbance variance obtained from the restricted

model both W and CF can be implemented as a kind of LM-type test. A very particular

implementation of a CF test gives the Sargan-Hansen statistic for testing overidentify-

ing restrictions. Thus, the very same test statistic can be interpreted either as a CR

test or as an OR instrument validity test. However, we will highlight that these two

interpretations require di¤erent maintained hypotheses. This has not always been made
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very clear in earlier literature.

We also prove that in linear models similar equivalences and di¤erences exist between

exclusion restrictions tests and so-called incremental overidentifying restrictions (IOR)

tests (also addressed as di¤erence in Sargan-Hansen tests), which verify the validity of

a subset of instruments. From these �ndings we conclude that strictly following formal

statistical test principles enables to characterize the context in which OR and IOR tests

should not mislead and in fact allow to distinguish inference regarding the (in)validity

of some additional orthogonality conditions from inference on the (un)tenability of par-

ticular exclusion restrictions. Practical problems do emerge only when one is unable or

unwilling to condition the analysis on a �rm initial maintained hypothesis.

The structure of this study is as follows. In Section 2 we introduce the model and

various test procedures and concepts. Section 3 demonstrates how the standard Sargan

test can either be used for testing instrument validity or under a di¤erent maintained

hypothesis can be interpreted as a CR test. Section 4 demonstrates to what degree these

results do apply to incremental Sargan tests as well. Finally Section 5 indicates options

for further generalizations and summarizes the conclusions.

2. Corresponding test principles

We focus on the single linear simultaneous regression model y = X� + " with " �
(0; �2"I); where X = (x1; :::; xn)

0 is an n�K matrix of rank K with unknown coe¢ cient

vector � 2 RK : To cope with E(xi"i) = �x" 6= 0 for i = 1; :::; n we will employ an

n� L instrumental variables matrix Z = (z1; :::; zn)0 of rank L � K. The instrumental
variables (IV) or two-stage least-squares (2SLS) estimator is given by

�̂ = (X 0PZX)
�1X 0PZy; (2.1)

where PA = A(A0A)�1A0 for any full column rank matrix A. When E(zi"i) = 0 (the

instruments are valid) and standard regularity conditions are ful�lled too (including

su¢ cient relevance of the instruments) then the IV estimator is consistent and asymp-

totically normal, whereas its variance can be estimated by dV ar(�̂) = �̂2"(X
0PZX)

�1;

where �̂2" = "̂
0"̂=n with residuals "̂ = y �X�̂:

A test on any set of K2 < K linear restrictions on the coe¢ cients � can after a simple

transformation of the model be represented as testing exclusion restrictions H0 : �2 = 0

in

y = X1�1 +X2�2 + " with " � (0; �2"I); (2.2)

where Xj is n � Kj and �j is Kj � 1 for j = 1; 2: Making use of standard results on

partitioned regression applied to the second-stage regression, in which y is regressed on
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PZX = (PZX1; PZX2) = (X̂1; X̂2); one easily �nds that �̂ = (�̂01; �̂
0
2)
0; with

�̂2 = (X̂
0
2MX̂1

X̂2)
�1X̂ 0

2MX̂1
y (2.3)

and dV ar(�̂2) = �̂2"(X̂
0
2MX̂1

X̂2)
�1; where MA = I � PA: The W statistic for testing

H0 : �2 = 0 against alternative H1 : �2 6= 0 readily follows and is given by

W�2 = �̂
0
2[
dV ar(�̂2)]�1�̂2: (2.4)

Under H0 it is asymptotically �2(K2) distributed, provided the maintained hypothesis

does hold indeed. The maintained hypothesis (which is the union of H0 and H1 and all

underlying assumptions) can here be characterized loosely as

M1: (i) the actual data generating process (DGP) is nested in model (2.2) with K regres-

sors; (ii) X and Z show su¢ cient regularity; (iii) n�1=2Z 0" d! N (0; �2" plimn�1Z 0Z):

Substituting (2.3) in (2.4) and making use of a result on projection matrices for a

partitioned full column rank matrix A = (A1; A2) which says PA = PA1 + PMA1
A2 ; we

�nd

W�2 = y
0PMX̂1

X̂2
y=�̂2" = y

0(PX̂ � PX̂1)y=�̂
2
" = y

0(MX̂1
�MX̂)y=�̂

2
" : (2.5)

Hence, the test statistic can easily be obtained by taking the di¤erence between the

restricted and the unrestricted sum of squared residuals of second stage regressions,

while scaling by a consistent estimator of �2" : If the latter is obtained from the restricted

residuals ~" = y �X1
~�1; where

~�1 = (X̂
0
1X̂1)

�1X̂ 0
1y (2.6)

is the restricted IV estimator (imposing �2 = 0) and ~�2" = ~"0~"=n, the test statistic

reminds of a Lagrange Multiplier test. Therefore we indicate it as

LM�2 = y
0(MX̂1

�MX̂)y=~�
2
" ; (2.7)

which is asymptotically equivalent with W�2 :

A test statistic with similarities to the LR principle is found as follows. Estimator �̂

is obtained by minimizing with respect to � a quadratic form in the vector Z 0(y �X�)
in which a weighting matrix is used proportional to (Z 0Z)�1: This yields a consistent

estimator with optimal variance under the maintained hypothesis. De�ning the criterion

function as

Q(�; y;X; Z; �2") = (y �X�)0Z(Z 0Z)�1Z 0(y �X�)=�2" ; (2.8)

one can verify that it attains its minimum for �̂ of (2.1), giving

Q(�̂; y;X; Z; �2") = (y �X�̂)0PZ(y �X�̂)=�2" = (y0PZy � 2�̂0X̂y + �̂0X̂ 0X̂�̂)=�2"

= (y0PZy � y0PX̂y)=�2" = (y0MX̂y � y0MZy)=�
2
" ;
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which has in its numerator the di¤erence between the sum of the squares of the second-

stage residuals and the reduced form residuals. In the model under �2 = 0; upon using

the criterion function Q(�1; y;X1; Z; �
2
"); one �nds ~�1 of (2.6) with Q( ~�1; y;X1; Z; �

2
") =

(y0MX̂1
y � y0MZy)=�

2
" : The di¤erence between these two minimized criterion functions

is

Q( ~�1; y;X1; Z; �
2
")�Q(�̂; y;X; Z; �2") = (y0MX̂1

y � y0MX̂y)=�
2
" :

Now substituting either �̂2" or ~�
2
" ; we �nd that taking the di¤erence between these two

evaluated criterion functions yields either

CF�2(�̂
2
") = Q(

~�1; y;X1; Z; �̂
2
")�Q(�̂; y;X; Z; �̂2") =W�2 (2.9)

or

CF�2(~�
2
") = LM�2 : (2.10)

These equivalences are algebraic, thus hold irrespective of the validity ofM1:

3. The Sargan test and exclusion restrictions

A special situation occurs in case L = K: This specializesM1 to what we will indicate by

ML=K
1 : Under this maintained hypothesis the model is just identi�ed, but overidenti�ed

under the K2 coe¢ cient restrictions �2 = 0: When the model is just identi�ed then,

when minimizing Q(�; y;X; Z; �2"); the L = K orthogonality conditions Z 0(y�X�̂) = 0
will all be satis�ed in the sample, giving Q(�̂; y;X; Z; �2") = 0: So, in this particular

situation, (2.9) specializes into

WL=K
�2

= CFL=K�2
(�̂2") = Q(

~�1; y;X1; Z; �̂
2
") = ~"

0PZ ~"=�̂
2
" ; (3.1)

and (2.10) into the asymptotically equivalent statistic

LML=K
�2

= CFL=K�2
(~�2") = ~"

0PZ ~"=~�
2
" : (3.2)

The latter expression is the well-known Sargan test statistic which is used to check the

validity of the instruments by testing the L�K1 overidentifying restrictions in the model

which has just the K1 regressors X1; and can be expressed as

y = X1�
�
1 + "

� with "� � (0; �2"�I): (3.3)

From its algebraic equivalence with a CR test it is immediately obvious that testing for

OR has similarities with testing the validity of L�K1 exclusion restrictions.

However, there are dissimilarities as well. Validity of the L orthogonality conditions

E(zi"i) = 0 is part of the maintained hypothesisML=K
1 for the test of L�K1 exclusion
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restrictions �2 = 0 in model (2.2), whereas the Sargan test is used to verify validity of the

orthogonality conditions E(zi"�i ) = 0 in model (3.3). Although using exactly the same

test statistic and critical values, we will explicate that the two tests have intrinsically

di¤erent H0 and H1 and build on di¤erent maintained hypotheses. We are not aware

of literature where these di¤erences and their consequences have been spelled out in full

detail. Below we aim to �ll this gap.

Note that expression (3.2) is invariant regarding X2: So, replacing X2 by any al-

ternative n � K2 matrix Xa
2 would yield equivalent results for CF

L=K
�2

(~�2"), provided

PZ(X1; X
a
2 ) has full column rank K = L: Thus, (X1; X

a
2 ) should have full column rank

and the variables Xa
2 should be su¢ ciently related to the instruments Z; but at the same

time they may also be endogenous regarding ": Due to the projection of the regressors on

the space spanned by the instruments Z in the second stage regression, and the presence

of the regressors X1; the CR test actually does not test the explanatory power of Xa
2

as such, but just that of MX̂1
PZX

a
2 = (PZ � PX̂1PZ)X

a
2 = (PZ � PX̂1)X

a
2 ; which is its

projection on the space spanned by Z; as far as this is orthogonal to PZX1:

A viable choice for Xa
2 would be the following. Let F = (F1; F2) be a full rank L�L

matrix, where F1 is L�L1; F2 is L�L2; with L = L1 +L2 and L1 = K1: Now consider

the transformed instruments Zf = (Zf1 ; Z
f
2 ) = ZF = (ZF1; ZF2); and let F1 be such

that square matrix Zf 01 X1 has full rank. Obviously, F is nonunique. Note that if the

transformed instruments Zf1 are not just relevant for X1; but were valid for the errors "�

of model (3.3) as well, then the coe¢ cients ��1 would be just identi�ed by them. When

taking Xa
2 = MZf1

Zf2 ; then PZ(X1; X
a
2 ) has full column rank as required, and statistic

CFL=K���2
(~�2") for testing H0 : �

��
2 = 0 in model

y = X1�
��
1 +MZf1

Zf2 �
��
2 + "

�� (3.4)

is therefore equivalent to the Sargan test statistic CFL=K�2
(~�2"): Estimating �

��
1 of (3.4)

by IV using the instruments Z or Zf (which is equivalent because PZ = PZf ) yields

�̂��1 = (X 0
1PZfMM

Z
f
1

Zf2
PZfX1)

�1X 0
1PZfMM

Z
f
1

Zf2
PZfy (3.5)

= (X 0
1PZf1

X1)
�1X 0

1PZf1
y = (Zf 01 X1)

�1Zf 01 y = �̂
�
1 ;

because PZfMM
Z
f
1

Zf2
PZf = PZf � PM

Z
f
1

Zf2
= PZf1

: Hence, augmenting model (3.3) by

K2 regressors MZf1
Zf2 and using instruments Z or Z

f yields coe¢ cient estimates �̂��1 for

the regressors X1 which are equivalent to the simple IV estimator �̂�1 obtained in model

(3.3) when just using the K1 instruments Z
f
1 ; irrespective of the validity of any of the

instruments.

Apart from the interpretation of CFL=K�2
(~�2") as testing K2 = L �K1 exclusion re-

strictions �2 = 0 in model (2.2) under maintained hypothesisML=K
1 ; which presupposes
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the K orthogonality conditions E(zi"i) = 0; yet another coherent interpretation of the

numerically equivalent test statistic CFL=K���2
(~�2") is the following. It tests whether the

L�K1 variables Z
f
2 are additional valid external instruments for model (3.3) under the

maintained hypothesis given by

ML=K
2 : (i) the DGP is nested in model (3.3) which has K1 < K = L regressors; (ii) X1

and Z (and thus Zf ) show su¢ cient regularity; (iii) n�1=2Zf 01 "
� d! N (0; �2"� plimn�1Z

f 0
1 Z

f
1 ):

Note that for adopting ML=K
2 in practice it might be desirable to specify matrix F1;

this issue will be addressed below.

Under ML=K
2 the value of E(zf2i"

�
i ) = �zf2 "�

is unspeci�ed. Obviously, if next to

Zf1 the variables Z
f
2 are uncorrelated with "

� then MZf1
Zf2 should not have explanatory

power in model (3.4). Hence, when adopting ML=K
2 ; then under the null hypothesis

��� = 0 in model (3.4) all instruments Z are valid for model (3.3), implying �zf2 "� = 0

so that ~�1 is consistent, asymptotically normal and e¢ cient for �1: Below we will simply

use the acronym AE (asymptotically e¢ cient) to indicate for an estimator if, under the

assumptions made, it is consistent with asymptotically normal distribution and smallest

asymptotic variance (in a matrix sense). The alternative ��� 6= 0 implies �zf2 "� 6= 0: So,
in the context of model (3.4) test statistic CFL=K���2

(~�2") tests the null hypothesis given by

the L�K1 orthogonality conditions E(z
f
2i"

�
i ) = 0 or overidentifying restrictions �

�� = 0:

When these conditions/restrictions are invalid then, given validity ofML=K
2 ; estimator

�̂�1 = (Z
f 0
1 X1)

�1Zf 01 y for �
�
1 is AE in model (3.3). In the extended regression model (3.4)

all variables in both Zf1 and Z
f
2 constitute valid instruments regarding "

�� underML=K
2 ;

because inclusion of the regressorsMZf1
Zf2 purges the disturbances from their correlation

with Zf2 : That this regression too produces the AE estimator �̂
�
1 for the coe¢ cients �1;

as is proved by (3.5), is because it constitutes a special case of the so-called "partialling

out" result which will be reviewed at the end of the next section.

It is the case that truth of the null �2 = 0 underML=K
1 implies E(zi"�i ) = 0; and so

does truth of the null E(zf2i"
�
i ) = 0 underML=K

2 : Under both null hypotheses estimator
~�1 is AE for �1:However, imposing the respective null hypotheses implies either accepting

coe¢ cient restrictions or accepting extra orthogonality assumptions. Invalidity of �2 = 0

under ML=K
1 renders �̂ the AE estimator for �; but invalidity of E(z�2i"

�
i ) = 0 under

ML=K
2 renders �̂�1 AE for the coe¢ cients of just the regressors X1; since in this setup

the DGP is supposed to be nested in model (3.3) which has just K1 regressors.

So, on the basis of the single test statistic LML=K
�2

(~�2") = CFL=K���2
(~�2"); or the as-

ymptotically equivalent WL=K
�2

(�̂2"); one can discriminate between either (in)validity of

L�K1 exclusion restrictions in model (2.2) or (in)validity of L�K1 external instruments

in model (3.3). This just hinges upon which of the nonnested maintained hypotheses has

actually been adopted: ML=K
1 orML=K

2 : In both contexts the tests concern a possible
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loss/gain in the degree of overidenti�cation by L � K1: Namely, either due to reject-

ing/accepting exclusion restrictions on the coe¢ cients of potential explanatory variables

X2 in model (2.2), or on accepting/rejecting exclusion restrictions on the coe¢ cients of

the auxiliary regressors MZf1
Zf2 in model (3.4). The latter implies accepting/rejecting

validity of L�K1 external instruments Z
f
2 :

The warnings of Parente and Santos Silva (2012) and Gugenberger (2012) concern

the problems that emerge when using the Sargan statistic for testing jointly the L or-

thogonality conditions E(zi"�i ) = 0 in model (3.3). However, using this L dimensional

null hypothesis, is asking too much from this L �K1 degrees of freedom test statistic,

leading to inconsistency of the test, meaning: existence of nonlocal alternatives to the

null that are not rejected with probability one asymptotically. The classic Sargan test on

instrument validity is only consistent in case one is willing to adopt maintained hypoth-

esis ML=K
2 : It is uncomfortable but also unavoidable that this maintained hypothesis

embraces the statistically untestable orthogonality conditions expressed by E(zf1i"
�
i ) = 0

(i = 1; :::; n): These untestable conditions entail: It is possible to �nd K1 linearly in-

dependent linear combinations of the K variables in matrix Z which establish valid

instruments for model (3.3) and ensure just identi�cation of ��1 :

It is the researcher who may decide whether (s)he leaves these K1 orthogonality

conditions implicit, or makes them explicit by actually specifying the matrix F1; for

instance by choosing F1 = (I; O)0 and then thus simply assuming that the �rst K1

instruments in the matrix Z are valid in model (3.3). In that special case the explicit

null hypothesis of the Sargan test is that the instruments MZ1Z2 are valid too, which

would imply E(zi2"�i ) = 0 in model (3.3).

4. The incremental Sargan test and exclusion restrictions

The validity of a subset of the instruments Zf2 for model (3.3) can be tested by a so-

called incremental Sargan or IOR test. For that we will examine too in what way such

a procedure has (dis)similarities with testing exclusion restrictions. However, for this

analysis we will take as our starting point the usual model with K regressors and L > K

instruments and therefore have to introduce some further notation.

We consider a partition of the matrix of L instruments, denoted as Z = (Zm; Za);

where for j 2 fm; ag matrix Zj = (zj1; :::; zjn)
0 is n � Lj: Matrix Zm; with Lm � K;

contains the instruments which are maintained to be valid, whereas the validity of the

additional La > 0 instruments Za will be examined by testing. So the maintained

hypothesis is now given by

ML>K
2 : (i) the DGP is nested in model y = X� + "; which has K regressors; (ii) X
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and Z = (Zm; Za) with L > Lm � K show su¢ cient regularity; (iii) n�1=2Z 0m"
d!

N (0; �2" plimn�1Z 0mZm):

Just using the instruments Zm yields estimator and residuals

�̂m = (X
0PZmX)

�1X 0PZmy; "̂m = y �X�̂m: (4.1)

From the foregoing section it follows that the Sargan statistic

Sm = n � "̂0mPZm "̂m="̂0m"̂m (4.2)

is asymptotically �2(Lm � K) distributed under ML>K
2 when Lm > K; whereas it is

zero for Lm = K: Using the additional instruments as well yields �̂ given in (2.1) and

"̂ = y �X�̂ and enables to calculate

Sma = n � "̂0PZ "̂="̂0"̂: (4.3)

Now the null hypothesis E(zia"i) = 0; which involves La orthogonality conditions for

model (2.2) additional to the Lm orthogonality conditions already implied by ML>K
2 ;

can be tested by the incremental Sargan statistic

ISa = Sma � Sm; (4.4)

which under ML>K
2 has asymptotic null distribution �2(La): Note that for Lm = K

statistic ISa corresponds to the Sargan test examined in the foregoing section, but now

the role of X1 is plaid by X; so K1 is now K; whereas K2 is given here by La and what

earlier was called ~" is given by "̂ now.

Most published derivations of the null distribution of ISa start o¤ from a GMM

(generalized method of moments) context. Our simple linear framework allows a very

concise derivation, which goes as follows. Without loss of generality we assume Z 0mZa =

O; which may have been achieved by replacing the original Za by MZmZa: PZ is not

a¤ected by this partial orthogonalization, but now PZ = PZm + PZa : From PZ "̂ =

PZ [I�X(X 0PZX)
�1X 0PZ ]" = (PZ�PPZX)" we �nd "̂0PZ "̂ = "0PZ"�"0PPZX" = "0(PZm+

PZa�PPZX)" and "̂0mPZm "̂m = "0(PZm�PPZmX)"; so "̂
0PZ "̂�"̂0mPZm "̂m = "0(PZa+PPZmX�

PPZX)": The matrix in this quadratic form is symmetric and idempotent. The latter

follows from PZaPPZmX = O and (PZa+PPZmX)PPZX = (PZa+PZm)X(X
0PZZ)

�1X 0PZ =

PPZX : Since tr(PZa +PPZmX �PPZX) = La+K�K = La this means that underML>K
2

and the null hypothesis E(zia"i) = 0 (i = 1; :::; n); so when all instrument in Z are

valid, ISa
d! "0(PZa + PPZmX � PPZX)"=�

2
"

d! �2(La); because under the null both

plim "̂0m"̂m=n = �
2
" and plim "̂

0"̂=n = �2" :
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We shall now examine tests for omitted regressors (or exclusion restrictions) and seek

cases which show correspondences with statistic ISa. Consider the extended model with

Ka � L�K additional regressors Xa given by

y = X� +Xa�a + "a; with "a � (0; �2"aI); (4.5)

and the maintained hypothesis de�ned by

ML>K
1 : (i) the DGP is nested in model y = X�+Xa�a+ "a; which has K+Ka � L re-

gressors; (ii) (X;Xa) and Z show su¢ cient regularity; (iii) n�1=2Z 0"a
d! N (0; �2"a plimn�1Z 0Z):

Let us indicate the IV results when estimating model (4.5) using instruments Z as

y = X�̂� +Xa�̂a + "̂a: Then the LM-like test statistic for H0 : �a = 0 is given by

CF�a(�̂
2
") = ("̂

0PZ "̂� "̂0aPZ "̂a)=�̂2" ; (4.6)

which underML>K
1 has asymptotic null distribution �2(Ka):

Still assuming without loss of generality that Z 0mZa = O; we shall �rst examine the

speci�c caseXa = Za; for which expression (4.6) can be specialized by using the following

results. Substituting Xa = Za we obtain

�̂� = (X
0PZMZaPZX)

�1X 0PZMZay = (X
0PZmX)

�1X 0PZmy = �̂m; (4.7)

because MZaPZ = PZ � PZaPZ = PZ � PZa = PZm : And, since in IV estimation the

residuals are orthogonal to the second-stage regressors, we have Z 0a"̂a = 0: This yields

PZ "̂a = (PZm + PZa)"̂a = PZm(y � X�̂� � Za�̂a) = PZm(y � X�̂�) = PZm(y � X�̂m) =
PZm "̂m; where we used (4.7) for the last equality. From this we �nd

CFXa=Za�a
(�̂2") = ("̂

0PZ "̂� "̂0aPZ "̂a)=�̂2" = ("̂0PZ "̂� "̂0mPZm "̂m)=�̂2"

= Sma � Sm
"̂0m"̂m
"̂0"̂

: (4.8)

Under ML>K
1 and H0 : �a = 0 both "̂0m"̂m=n and "̂

0"̂=n converge to �2" ; thus the ratio

"̂0m"̂m="̂
0"̂ equals 1 asymptotically. Therefore, under their respective null hypotheses, the

incremental Sargan test statistic ISa = Sma � Sm is asymptotically equivalent with the
exclusion restrictions test statistic CFXa=Za��a

(�̂2"):

In fact, this also holds for more general matrices than just Xa = Za: Consider instead

X�
a = ZaC1 +XC2 +MZC3 + "C4; (4.9)

where the �nite matrices C1; C2; C3; C4 are La � Ka; K � Ka; n � Ka and 1 � Ka

respectively. Now writing X̂�
a = PZX

�
a and X̂ = PZX it follows that X̂�

a = ZaC1 +

X̂C2 + PZ"C4: Under the null hypothesis �a = 0; we have plimn�1Z 0" = 0; hence
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PZ"C4 ! O; thus MX̂X̂
�
a ! MX̂ZaC1: The regularity assumption of ML>K

1 requires

this to have full column rank, hence C1 should have rank Ka � La: If Ka = La and C1
has full rank we obtain PMX̂X̂

�
a
! PMX̂Za

: Thus, tests for the omission of regressors Xa

which belong to group (4.9) with C1 of full rank Ka = La will yield test statistics which

under the null are all asymptotically equivalent with statistic ISa.

Estimator �̂ is AE both under ML>K
1 with valid exclusion restrictions �a = 0 and

underML>K
2 with valid additional instruments Za: However, underML>K

2 while instru-

ments Za are invalid �̂m is AE, whereas underML>K
1 with �a 6= 0 the estimators �̂� and

�̂a are AE in model (4.5), yielding an estimator for �� asymptotically equivalent to �̂m
only if Xa belongs to group (4.9) with Ka = La; C1 of full rank and C2 = O:

The algebraic estimator equivalence for Xa = Za given in (4.7) reestablishes the

so-called partialling out result, which says that IV coe¢ cient estimates are invariant

when (putative) exogenous regressors are deliberately omitted, provided they are also

removed from and �ltered out of the remaining instruments. In Hendry (2011) this

analytic result is established by simulation, which leads to the unsatisfactory conclusion

that (in our notation) �̂� and �̂m "hardly di¤er". Moreover, in the simulation design

used the instruments are all valid, L = 3; K = 2; La = 1 and all variables are normally

distributed, whereas neither of these is required for the algebraic result to hold exactly.

5. Interpretation and conclusion

The above results lead to clear guidelines only when a researcher is willing to adopt

unambiguously a particular maintained hypothesis, which (s)he should according to

sound Neyman-Pearson statistical test methodology. In practice, however, a more �ex-

ible though opportunistic approach may often seem more appealing. The two juxta-

posed maintained hypothesesML=K
1 andML=K

2 in Section 3, and their generalizations

ML>K
1 and ML>K

2 in Section 4, both suppose that knowledge is available already of

a model speci�cation in which the DGP is nested, whereas endeavors to reach that

stage form usually the major challenge in an empirical modelling exercise. This explains

why researchers1 when obtaining a signi�cant OR test may either conclude: (a) some

instruments are invalid, (b) the model speci�cation is de�cient (so its implied errors

may correlate even with instruments which would be valid for an adequate model spec-

i�cation), or (c) both model and instruments are unsound. We have shown that this

shilly-shally is a consequence of not building on a �rm maintained hypothesis. Under

ML>K
2 an insigni�cant OR statistic is either due to validity of the tested additional mo-

ment conditions, or to lack of power of the test under (a), but not to (b) or (c), whereas

a signi�cant OR statistic is either due to a Type I error or to invalid instruments. Prac-

1See, for instance, Hayashi (2000, p.218) and Cameron and Trivedi (2005, p.277).
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titioners who interpret an insigni�cant OR statistic as approval of the chosen model

speci�cation and the employed instruments should always realize that this presupposes

validity of the untested hypothesis that this instrument set contains a subset which

already just-identi�es the coe¢ cients of this chosen model speci�cation.

The presented results on instrument validity and coe¢ cient restriction tests can

rather straight-forwardly be generalized to linear models with nonspherical disturbances

estimated by generalized method of moments, because GMM conforms to IV/2SLS

after proper transformations. When " � (0; �2"
) this transformation requires (as

in GLS) to premultiply the model by an n � n matrix 	; where 	0	 = 
�1; so

that "� = 	" � (0; �2"I); but employ now as instruments Zy = (	0)�1Z; see Kiviet

and Feng (2016). Hence, all above results can easily be reformulated for the linear

GMM context, where (incremental) OR tests are usually addressed as Sargan-Hansen

tests and indicated as (di¤erences) in J tests.2 In case of unknown heteroskedastic-

ity (hence 
 is diagonal but not available), rather than robustifying ine¢ cient IV,

its �ndings �̂ and "̂ = y � X�̂ can be employed in a second step to obtain asymp-
totically e¢ cient feasible GMM inference. This can be represented3 as follows. Let

y�i = yi="̂i; X
� = (x�1; ::; x

�
n)
0 with x�i = xi="̂i and Zy = (zy1; :::; z

y
n) with z

y
i = zi � "̂i:

Next regressing y� on X� using instruments Zy yields �̂y = (X�0PZyX
�)�1X�0PZyy

� =

[X 0Z(Zy0Zy)�1Z 0X]�1X 0Z(Zy0Zy)�1Z 0y; with Zy0Zy = �ni=1"̂
2
i ziz

0
i: Its variance could be

estimated consistently by dV ar(�̂y) = [X 0Z(Zy0Zy)�1Z 0X]�1; and writing "̂y = y��X��̂y

the Sargan-Hansen statistic is Sy = "̂y0PZy "̂y = (y�X�̂y)0Z(Zy0Zy)�1Z 0(y�X�̂y); which
is asymptotically equivalent to the GMM maximized criterion function. Hence, also for

feasible GMM all earlier �ndings on CR and IOR tests have their (asymptotically equiv-

alent) counterparts. Note, however, that a robusti�ed variance estimator for �̂ would

be (X̂ 0X̂)�1�ni=1"̂
2
i x̂ix̂

0
i(X̂

0X̂)�1 with PZX = X̂ = (x̂1; :::; x̂n)
0: Employing this in a ro-

busti�ed version of the CR test W�2 of (2.4) does no longer seem to lead to a statistic

which can be expressed equivalently as the di¤erence between maximized robusti�ed

criterion functions, as in (2.9). Note that a robusti�ed Sargan statistic for IV is given

by "̂0(�ni=1"̂
2
i ziz

0
i)
�1"̂ = (y�X�̂)0Z(Zy0Zy)�1Z 0(y�X�̂): Due to the consistency of �̂ this

is asymptotically equivalent4 to the 2-step statistic Sy; and thus a robusti�ed CF test

has correspondences with a CR test based on 2-step feasible GMM estimator �̂y and no

longer with one based on the ine¢ cient �̂.

Also in the extended contexts indicated in the preceding paragraph the practical

relevance of the here presented �ndings is the following. An (incremental) Sargan-Hansen

2When embedded into a properly extended framework generalizations for nonlinear models can be
obtained as well; see, for instance, Newey (1985).

3See Newey and West (1987, p.786).
4Baum et al (2003, p.18) claim that S� and Sy are even numerically equivalent, which does not seem

right.
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test on the validity of (particular) orthogonality conditions uses exactly the same (or at

least an under the null asymptotically equivalent) test statistic with the same asymptotic

null distribution as a test for zero restrictions on the coe¢ cients of additional regressor

variables which may stem from a particular fairly wide group. However, in essence these

two test procedures build on di¤erent nonnested maintained hypotheses which enables

them to produce discriminative inferences.
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