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Abstract

There is a substantial theoretical literature on the estimation of short panel data models

with common factors nowadays. Nevertheless, such advances appear to have remained

largely unnoticed by empirical practitioners. A major reason for this casual observation

might be that existing approaches are computationally burdensome and difficult to pro-

gram. This paper puts forward a simple methodology for estimating panels with multiple

factors based on the method of moments approach. The underlying idea involves substitut-

ing the unobserved factors with time-specific weighted averages of the variables included in

the model. The estimation procedure is easy to implement because unobserved variables

are superseded with observed data. Furthermore, since the model is effectively parame-

terized in a more parsimonious way, the resulting estimator can be asymptotically more

efficient than existing ones. Notably, our methodology can easily accommodate observed

common factors and unbalanced panels, both of which are important empirical scenarios.

We apply our approach to a data set involving a large panel of 4,500 households in New

South Wales (Australia), and estimate the price elasticity of urban water demand.
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1. Introduction

There is an increasingly growing theoretical literature on estimating panel data mod-

els with common factors and fixed T , the number of time series observations. The com-

mon factor approach is appealing because it allows for several sources of multiplicative

unobserved heterogeneity and generalizes the highly popular two way error components

structure, which represents additive heterogeneity. To illustrate, consider the following

model:

yi,t = x′i,tβ + ui,t, ui,t = λ′ift + εi,t; i = 1, . . . , N t = 1, . . . , T, (1)

where both ft (factors) and λi (factor loadings) are L dimensional vectors. As an example,

consider the study area of analyzing returns to education, or earnings and inequality;

the individual wage rate, yi,t, is modeled as a function of variables such as education,

experience, tenure, gender and race; however, wages may also depend on individual-specific

characteristics that are unobserved and typically difficult to measure, like innate ability,

skills, and so forth. The two way error components model imposes the restriction that

these characteristics are constant over time, while any time-varying unobserved effects are

assumed to be common across all individuals. It is easy to see that this formulation is

actually a special case of the common factor approach, arising by setting L = 2, λi =

(γi, 1)′ and ft = (1, φt)
′. One advantage of the multi-factor approach is that it allows

the impact of individual-specific unobserved characteristics to vary over time in an inter-

temporarily arbitrary way. For instance, in the present example one can think of the

factors as representing prices for a set of individual-specific skills, which are likely to

fluctuate over time according to (say) the business cycle of the economy. By contrast, the

two way error components model assumes that prices do not vary over time, which may

not be realistic in practice.

The common factor approach is also appealing because it accommodates for time-

varying unobserved effects that hit all individual entities, albeit with different intensities.

For instance, in the empirical growth literature ft may represent common shocks, or

different streams of time-varying technology, while λi denotes the rate at which country

i absorbs such advances that may be potentially available to all economies; see Bun and

Sarafidis (2015) for a detailed discussion on these issues. In the context of estimation

of production functions, a subset of the factor component can be viewed as representing

different sources of technical efficiency that varies over time, while other factors can capture

industry-wide regulatory changes.

In all examples described above, it is not hard to think of reasons why the factor
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component is most likely to be correlated with the regressors, which renders estimators

that accommodate only for a two way error components structure inconsistent.

Perhaps one of the earliest methodologies put forward in dynamic panels to deal with

this type of multiplicative heterogeneity was proposed by Holtz-Eakin et al. (1988), and it

was subsequently extended by Nauges and Thomas (2003a); this procedure eliminates the

common factors using some form of quasi-differencing and utilizes a method of moments

approach to estimate the unknown parameters of the model. Ahn et al. (2001) and Ahn

et al. (2013) suggested a different way of eliminating the factors, based on quasi-long-

differences.

More recently, Robertson and Sarafidis (2015) proposed a GMM approach that intro-

duces new parameters to represent the unobserved covariances between the factor com-

ponent of the error term and the instruments; in addition, the authors showed that if the

structure of the model is autoregressive, there are restrictions in the nuisance parame-

ters that lead to a more efficient GMM estimator compared to existing quasi-differencing

approaches. Following Bai (2013), Hayakawa (2012) analyzes a GMM estimator that ap-

proximates the factor loadings using a Chamberlain (1982) type projection approach. On

the other hand, Bai (2013) proposes a maximum likelihood estimator. Most recently,

Hayakawa et al. (2014) propose a related maximum likelihood estimator that eliminates

the individual-specific, time-invariant effects from the model using first-differencing and

subsequently treats the remaining, genuine factor component as random and uncorrelated

with the covariates.

All aforementioned methods are highly non-linear, essentially because the unknown

factor component enters into the model in a multiplicative way. As a result, the com-

putational burden involved in implementing these approaches is non-negligible, as it is

the case with many non-linear algorithms. Furthermore, these methods can be difficult

to program and require starting values for a set of nuisance parameters, for which there

is often no underlying theory to suggest any. Local minima-related problems might also

arise, particularly for GMM estimators that rely on quasi-differencing.1

In this paper we propose a simple alternative methodology that involves substituting

the unknown factors with time-specific weighted averages of the variables included in the

model. The remaining parameters are estimated using a method of moments estimator,

or non-linear least squares. The gains of such strategy are threefold. First, given that the

model is effectively parameterized in a more parsimonious way, the resulting estimators

1See Kruiniger (2008) on this issue, as well as Juodis and Sarafidis (2014) for a more detailed discussion.
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can be asymptotically more efficient than existing ones. Second, the resulting estimation

procedure is substantially easier to program because the unobserved factors are superseded

by observed data. As a result, the issue of how to initialize nuisance parameters reduces

essentially to the rather more trivial task of implementing a grid search of structural pa-

rameters. Finally, the simplified moment conditions can be linearized in a straightforward

way, leading to a complete linear reparameterization of the model.2 We remark that the

proposed methodology is easily extendable to allow common factors that are observed,

and it can accommodate unbalanced panels as well.

Our strategy intuitively resembles the approach employed by the Common Correlated

Effects (CCE) estimator proposed by Pesaran (2006), and is also related to the recent

work by Karabıyık, Urbain, and Westerlund (2014), who extend the CCE approach using

external instruments, in addition to simple cross-sectional averages of the data. The main

difference is that the aforementioned papers consider estimation of static panels with

strictly exogenous regressors and N , T both large, whereas here the focus is on panels

with T fixed, while endogenous regressors are allowed.

The finite sample performance of the proposed estimators is investigated using simu-

lated data. The results indicate that these estimators perform well under a wide range

of specifications. The method is applied on a large sample of households in New South

Wales (Australia), each one observed over a period of 5 years, in order to estimate the price

elasticity of water usage demand. This is an important empirical topic and a subject of

ongoing research, not only among economists but also across international environmental

agencies, regulators, water utilities and the general public.

The outline of the rest of the paper is as follows. The next section provides some

background of the literature and introduces the main idea behind our approach using an

autoregressive model with a single factor component. Section 3 extends this to the dynamic

panel data model with covariates and multi-factor residuals. Section 4 investigates the

finite sample performance of the estimator, and Section 5 applies our approach to provide

new evidence on the effect of price elasticity on the demand for water. A final section

concludes.

In what follows we briefly introduce our notation. The usual vec(·) operator denotes

the column stacking operator, while vech(·) is the corresponding operator that stacks only

the elements on and below the main diagonal. Shorthand notation xi,s:q, s ≤ q is used to

denote the vectors of the form xi,s:q = (xi,s, . . . , xi,q)
′. For further details regarding the

2Hayakawa (2012) also discusses linearization of the moment conditions proposed by Ahn et al. (2013).
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notation used in this paper see Abadir and Magnus (2002).

2. Background and Main Idea

To facilitate exposition of the main ideas of this paper and how these relate to existing

work in the panel data GMM literature, this section considers a panel autoregressive model

of order one with a single factor. This particular choice is also motivated from the fact

that the AR(1) model has become the workhorse for theoretical analysis of panels with

weakly exogenous regressors (see e.g. Arellano (2003, Ch. 6)). The more general model

with covariates and multiple factors is developed in the next section.

2.1. Basic Model and Existing Literature

Let

yi,t = αyi,t−1 + ui,t, ui,t = λift + εi,t; i = 1, . . . , N, t = 1, . . . , T, (2)

where yi,t is the observation on the variable of interest for individual unit i at time t, ft

denotes the value of the unobserved factor at time t, λi is the individual-specific factor

loading and εi,t is a purely idiosyncratic error component.

There is a growing literature dealing with the model above when N is large and T

fixed. In this case, ft is typically treated as a fixed parameter to be estimated, while λi

is stochastic. Holtz-Eakin et al. (1988) and Nauges and Thomas (2003a) propose a GMM

estimator based on quasi-differences. In particular, multiplying the lagged value of (2) by

rt ≡ ft/ft−1 and subtracting from the original model yields

yi,t − rtyi,t−1 = α (yi,t−1 − rtyi,t−2) + εi,t − rtεi,t−1; t = 2, . . . , T . (3)

Hence the transformed error of the model is free from the factor component because

λift − rtλift−1 = λi (ft − rtft−1) = 0. (4)

The non-linear moment conditions are of the form

E [yi,s (εi,t − rtεi,t−1)] = 0; s < t− 1. (5)

Ahn et al. (2001) suggest transforming the model to eliminate the factor component in a

different way. In particular, normalizing fT = 1 and multiplying the model at period T

by ft yields

ftyi,T = αftyi,T−1 + λift + ftεi,T . (6)
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Subtracting the above equation from (2) yields

(yi,t − ftyi,T ) = α (yi,t−1 − ftyi,T−1) + (εi,t − ftεi,T ) ; t = 1, . . . , T − 1, (7)

which can be thought of as an equation expressed in quasi-long-differences. The non-linear

moment conditions are of the form

E [yi,s (εi,t − ftεi,T )] = 0; s < t. (8)

As pointed out by Kruiniger (2008), the method by Ahn et al. (2001) requires fT to be

bounded away from zero, or otherwise the quasi-long-differencing transformation described

above may fail to converge or be subject to local minima. Similarly, the transformation

by Holtz-Eakin et al. (1988) and Nauges and Thomas (2003a) requires that ft 6= 0 for all

t = 1, . . . , T − 1, in order for rt to be well-defined in all periods.3

Instead of eliminating the factor component by some form of quasi-differencing, Robert-

son and Sarafidis (2015) propose a GMM estimator that employs the following estimating

equations:

ms,t = αms,t−1 + gsft; s ≤ t, t = 1, . . . , T, (9)

where ms,t = E (yi,syi,t) and gs = E (yi,sλi). Furthermore, they show that a more efficient

estimator can be obtained by making use of the fact that, due to the autoregressive nature

of the model, the g’s have an autoregressive structure as well, which implies a more parsi-

monious parametrization of the model compared to (9) (their so-called FIVU estimator).

To see this, multiply (2) by λi and take expectations, which, assuming E (λiεi,t) = 0, yields

gs = αgs−1 + σ2
λfs; s = 1, . . . , T, (10)

where σ2
λ = E (λ2i ). Thus, knowledge of two extra parameters, σ2

λ and g0, provides a closed

form solution for all remaining g’s.

Recently, Hayakawa (2012) analyzes a GMM estimator that approximates the factor

loadings using a Chamberlain (1982) type projection approach. As shown by Juodis and

Sarafidis (2014), the resulting estimator is equivalent to the FIVU estimator that employs

the estimating equations in (9).4

3Juodis and Sarafidis (2014) discuss these issues further and investigate the finite sample properties

of several dynamic panel estimators using simulated data.
4We do not discuss the estimators by Bai (2013) and Hayakawa et al. (2014) because they both rely

on maximum likelihood and require strictly exogenous covariates, which is an assumption that is violated

in our empirical application.
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The aforementioned estimators are non-linear and can be difficult to program. In

addition, they require starting values for a large set of unknown nuisance parameters. For

instance, the GMM estimator that makes use solely of (9) without further restrictions

requires starting values either for {f1, . . . , fT} or {g0, . . . , gT−1}. Naturally, multiple local

minima-related issues might also arise in this case, as it is true for the estimators involving

some form of quasi-differencing.

2.2. Main Idea

The key feature of our approach is to replace ft with time-specific weighted averages of

observed data. Thus, in this respect our strategy resembles intuitively the one employed by

the CCE estimator proposed by Pesaran (2006), which is valid for panels with exogenous

regressors and N , T both large.

To illustrate this, let wi denote a weight for individual i that satisfiesN−1
∑N

i=1wiεi,t
p−→

E (wiεi,t) = 0 as N →∞. Define mt ≡ E (wiyi,t). Thus, multiplying (2) by wi and taking

expectations yields

mt = αmt−1 + µλft; t = 1, . . . , T, (11)

where µλ = E (wiλi) 6= 0 (by assumption). Hence, solving for ft yields

ft = (mt − αmt−1) /µλ. (12)

Within the GMM framework, the assumption µλ 6= 0 is actually easy to verify, as it will

be shown. Replacing ft in the original model (2) by the expression above we obtain

yi,t = αyi,t−1 + υi,t; υi,t = λi (mt − αmt−1) + εi,t, (13)

where, to save on notation, λi is reparametrized in terms of the original factor loading

divided by µλ, i.e. λi ≡ λi/µλ. Thus, multiplying (13) by yi,s and taking expectations

gives rise to the following estimating equations

ms,t = αms,t−1 + gs (mt − αmt−1) ; s < t, t = 1, . . . , T. (14)

The “structural” parameter, α, and the nuisance parameters (the g’s) can be estimated

using a straightforward application of non-linear least squares in (14), or a method of

moments estimator that is based on

E [yi,sυi,t − gs (mt − αmt−1)] = 0; s < t. (15)

Notably, starting values for the g’s can be obtained very easily because choosing a specific

value for α provides a closed form solution for gs, as it can be seen from (14); thus, the
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optimal solution can be obtained using an iterative procedure, where given α we estimate

gs, and given gs we estimate α. Subsequently, a grid search for α can be implemented

such that α̂ is chosen as the value of the autoregressive parameter that corresponds to the

smallest value of the objective function.

The estimation problem can even be linearized, at the expense of introducing extra

parameters. In particular, expanding the last term in (14) and setting g∗s ≡ αgs means

that α can be estimated using standard least squares. The model is exactly identified for

T = 4 and overidentified for T > 4. The identifying assumption is, again, µλ 6= 0.5

There are two important issues that emerge following the analysis above. Firstly, the

choice of wi used to obtain (11); and secondly, how to verify the assumption µλ 6= 0 such

that cross-sectional averages of the data can span ft.

2.3. Choices for wi

One choice for the weights is to simply set wi = 1, such that mt in (11) becomes the

crude time-specific average of yi,t. This particular strategy resembles the CCE estimator

of Pesaran (2006), as in this case the model is augmented with cross-sectional averages of

observed variables. The choice requires that E (λi) 6= 0, which can be a plausible condition

in several applications. In their Monte Carlo study, Juodis and Sarafidis (2014) show that

estimators that rely on normalizing factor-specific values (e.g. as in Ahn et al. (2013)) can

be sensitive to the underlying DGP for ft. Hence linearizing the model with respect to

non-stochastic weights wi = 1 may result in an estimate with superior properties, assuming

E(λi) 6= 0.

Remark 1. This particular choice for wi in the present model yields an estimator that

is asymptotically more efficient than the FIVU estimator proposed by Robertson and

Sarafidis (2015), which employs the estimating equations given in (9). This is because

the former requires estimating T + 1 parameters, while the latter estimates 1 + 2T − 1

parameters. To put it differently, the former estimator utilizes T additional moment

conditions, i.e. those in equation (11). Of course, these become redundant when µλ = 0.

The resulting estimator is also asymptotically more efficient than the GMM estimators

proposed by Ahn et al. (2001) and Nauges and Thomas (2003a) for exactly the same

reason: it makes use of additional information, which results in a more parsimonious

parameterization of the model.

5Clearly, the linearized estimator can provide an extra starting value of α for the iterative procedure

corresponding to (15).
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An alternative strategy is to choose weights with respect to the observed data. As an

example, one may set wi = yi,0, which implies that (11) can be expressed as

m0,t = αm0,t−1 + g0ft. (16)

Notice that this requires g0 6= 0, which will hold true unless the initial observation is

uncorrelated with λi, an implausible condition that violates the “fixed effects framework”.6

Remark 2. Setting wi = yi,0 implies that the T moment conditions with respect to yi,0

have been “consumed” to approximate ft. Therefore, the estimating equations in (14)

apply for s > 0 and t > 1. In other words, T moment conditions are effectively dropped

out in order to solve in terms of T unknown parameters, the f ’s. Thus, one could view

this estimator as a “normalized” version of FIVU, in which the estimating equations are

divided by g0.

Alternative choices of wi can be obtained based on yi,s, s > 0, or on powers of yi,0,

such as y2i,0 and so on. Although the latter strategy might appear to require non-zero

third moments, it is worth emphasizing here that since we employ non-central moments,

these can be different from zero even if the distribution of yi,t is symmetric. Furthermore,

in practice it is easy to verify whether this is true or not because for (say) wi = y2i,0,

E
(
y2i,0yi,t

)
can be trivially estimated using the sample average of wiyi,t.

Note that the approach developed in this paper is related to the recent work by

Karabıyık, Urbain, and Westerlund (2014), who suggest using external instruments in-

stead of simple cross-sectional averages and build an extended Common Correlated Esti-

mator (CCE) of Pesaran (2006). Given that external instruments can also be used within

our approach, the major difference is that the aforementioned paper considers consistent

estimation of static panels with strictly exogenous regressors for large N and T , whereas

here the focus is on panels with T fixed, and endogeneity is allowed.

2.4. Verifying the condition µλ 6= 0

The condition µλ 6= 0 is verifiable in two different ways. First of all, it is straightforward

to see that µλ = 0 implies that the factor is not spanned by weighted averages of the

observed data. Therefore, the model becomes mis-specified and thereby the moment

6Furthermore, the autoregressive nature of the model suggests that the initial condition yi,0 is a

weighted average of the pre-sample {ft}−St=0. Thus even if one ft ≈ 0 the total contribution of factors need

not be negligible.
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conditions are violated. This violation will be reflected in the overidentifying restrictions

test statistic that is readily available within our procedure.

Secondly, the condition can be verified based on an examination of the rank of the

matrix that contains the observed data. To see this, notice that for µλ = 0 mt in (11)

becomes just a multiple scalar of mt−1. As a result, collecting these moments in the [T × 2]

matrix H = (m,m−1), where m = (m1, . . . ,mT )′ and m−1 = (m0, . . . ,mT−1)
′, µλ = 0

implies that rank (H) = 1, i.e. H is rank-deficient. A similar result applies to models

with L > 1.

Remark 3. The condition µλ 6= 0 is effectively analogous to the assumption that fT 6= 0

in Ahn et al. (2013) or to the rank condition listed in equation (21) in Pesaran (2006).

The aforementioned papers do not provide a way to be able to verify in practice these

assumptions, which, it is fair to say, are taken for granted by empirical practitioners.

2.5. Basic Model with Observed Factors

A useful extension that is important to consider is a model with additional observed

factors. This is particularly relevant in a large number of applications, where some vari-

ables are common across individuals (especially those measured at the macro level, such

as interest rates, inflation rate, unemployment rate etc.). Therefore, these variables can

be viewed as common observed factors.

To illustrate, let

yi,t = αyi,t−1 + βit+ λift + εi,t; i = 1, . . . , N , t = 1, . . . , T, (17)

so that the model contains two factors, but one of them represents a known deterministic

trend. This particular choice is to simplify notation, without loss of generality. Taking

expectations yields

mt = αmt−1 + µβt+ µλft, (18)

where µβ = E (βi), which is not necessarily different from zero. Thus, solving for ft and

replacing its value in the original equation yields

yi,t = αyi,t−1 + υi,t; υi,t = βit+ λi (mt − αmt−1 − µβt) + εi,t, (19)

where, to save on notation, λi is again defined in terms of the original factor loading

divided by µλ.

As a result, multiplying the above model by yi,s and taking expectations yields

ms,t = αms,t−1 + gs (mt − αmt−1) + γst, (20)
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where γs ≡ (γ∗s − µβ), γ∗s ≡ [E (yi,sβi)− gsµβ] and gs has been defined previously. Ef-

fectively, equation (20) merely augments equation (14) by γst. Thus as before, picking a

value for α implies a closed form solution for gs (and γs). Estimation can be implemented

using a simple iterative procedure as discussed above.

In conclusion, our approach can accommodate common observed factors in a straight-

forward way. This is not the case with many of the estimators discussed in Section 2.1

(see Section 4.3. in Juodis and Sarafidis (2014) for a detailed discussion on this issue).

3. General Case

3.1. Model and Assumptions

Motivated by our application, we now consider the following dynamic panel data model

with a multi-factor error structure:

yi,t = αyi,t−1 +
K∑
k=1

βkx
(k)
i,t + λ′ift + εi,t; i = 1, . . . , N, t = 1, . . . , T. (21)

The dimension of the unobserved components λi and ft is [L× 1]. The main parameters

of interest are the “structural” parameters (α, β1, . . . , βK)′, which are all bounded by a

finite constant. For convenience we stack the observations over time for each individual i

so that the model can be rewritten in the following manner:

yi = αyi,−1 +
K∑
k=1

βkx
(k)
i + Fλi + εi, i = 1, . . . , N, (22)

where yi is defined as yi = (yi,1, . . . , yi,T )′ and similarly for (yi,−1,x
(k)
i ), while F =

(f1, . . . ,fT )′ is of dimension [T × L]. In what follows we specify a set of assumptions

commonly employed in the literature, followed by some discussion.

Assumption 1: (i) yi,0 and x
(k)
i,t have finite moments up to second order (for all k); (ii)

εi,t ∼ i.i.d. (0, σ2
ε) and has finite moments up to second order; (iii) λi ∼ i.i.d. (0,Σλ) with

finite moments up to second order, where Σλ is an [L0×L0] positive definite matrix, and

L0 denotes the true number of factors. F is non-stochastic and uniformly bounded such

that ||F ||< b <∞.

Assumption 2: E
(
εi,t|yi,0:t−1,λ′i,x

(1)
i,1:τ(t,1), . . . ,x

(K)
i,1:τ(t,K)

)
= 0 for all t, for some positive

integers τ (t, 1) , . . . , τ (t,K).
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Assumption 1(i) is a standard regularity condition. Assumptions 1(ii)-1(iii) are em-

ployed mainly for simplicity and can be relaxed to some extent.7 For example, εi,t can

be heteroskedastic across both dimensions, provided that a sandwich type formula for the

variance-covariance matrix of the estimator is used. Conditional moments of λi can also

be heteroskedastic. The independence assumption across i can be relaxed as well, so long

as there are sufficient regularity conditions such that probability limits of the terms de-

fined below converge to expectations. We refrain from embarking on such generalizations

in order to avoid unnecessary notational cluttering.

Assumption 2 characterises the exogeneity properties of the covariates. In particular,

covariates that satisfy τ (t, k) = T (τ (t, k) = t) are strictly (weakly) exogenous with re-

spect to the idiosyncratic error component, otherwise they are endogenous. The estimator

proposed in this paper can allow for strictly/weakly exogenous and endogenous regressors.

In addition, Assumption 2 implies that the idiosyncratic errors are conditionally serially

uncorrelated. Again, this can be relaxed in a relatively straightforward way; for example,

one could assume instead that either E
(
εi,t|yi,0:q,λ′i,x

(1)
i,0:τ(t,1), . . . ,x

(K)
i,0:τ(t,K)

)
= 0, where

q < t − 1, or E
(
εi,t|λ′i,x

(1)
i,0:τ(t,1), . . . ,x

(K)
i,0:τ(t,K)

)
= 0. In the former case a moving aver-

age process of a certain order in εi,t is permitted and moment conditions with respect to

(lagged values of) yi,q can be used. In the latter case, an autoregressive process in εi,t is

permitted and moment conditions with respect to (lagged values of) x
(k)
i,τ(t,k) remain valid.

Finally, Assumption 2 implies that the idiosyncratic error is conditionally uncorrelated

with the factor loadings. This is required for identification based on internal instruments

in levels and it can be relaxed to some extent, at the expense of considerable extra com-

putational burden. Notice lastly that the set of our assumptions implies that yi,t has finite

second-order moments, but it does not imply conditional homoskedasticity for the error

components.

Suppose that there exists an [L×1] vector of individual-specific weightswi that satisfies

N−1
N∑
i

εiw
′
i

p−→ E (εiw
′
i) = OT×L.

Therefore, post-multiplying (22) by w′i and taking expectations we obtain

My = αMy,−1 +
K∑
k=1

βkM
(k)
x + FGw, (23)

7The zero-mean assumption for εi,t is actually implied by Assumption 2.
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where My = E (yiw
′
i), and so on for the remaining “M” (moments) matrices, while Gw =

E (λiw
′
i), is an [L× L] matrix. Assuming that Gw has full rank, one can solve for F as

follows:

F =

(
My − αMy,−1 −

K∑
k=1

βkM
(k)
x

)
G−1w .

Replacing the above value of F in the original model expressed in vector form yields

yi = αyi,−1 +
K∑
k=1

βkx
(k)
i +

(
My − αMy,−1 −

K∑
k=1

βkM
(k)
x

)
λi + εi

= αyi,−1 +
K∑
k=1

βkx
(k)
i + (IT ⊗ λ′i) vec

(
M ′

y − αM ′
y,−1 −

K∑
k=1

βk
(
M (k)

x

)′)
+ εi,

(24)

where, as in the model with one factor, λi is redefined in terms of G−1w , i.e. λi ≡ G−1w λi.

Let zi =

(
y′i,−1,

(
x
(1)
i,0:τ(T,1)

)′
, . . . ,

(
x
(K)
i,0:τ(T,K)

)′)′
denote a [d× 1] vector that contains

all available instruments, the size of which depends on the number of variables employed

as instruments and their exogeneity properties.8 Also, let S = diag (S1, . . . ,ST ) denote

a block diagonal matrix with a typical (block-)diagonal entry equal to St, where St is a

[ζt × d] selection matrix of zeros and ones that picks from the vector zi ζt valid instruments

at time t. As a result, S has dimension [ζ × dT ], where ζ =
∑T

t=1 ζt. Define Z ′i ≡
S (IT ⊗ zi). Under Assumptions 1-2, the following set of population moment conditions

is valid by construction:

E (Z ′iεi) = S E (vec (ziε
′
i)) = 0ζ . (25)

Thus, pre-multiplying (24) by Z ′i and taking expectations yields

m = αm−1 +
K∑
k=1

βkmk + S (IT ⊗G) vec

(
M ′

y − αM ′
y,−1 −

K∑
k=1

βk
(
M (k)

x

)′)

= αm−1 +
K∑
k=1

βkmk + S vec

(
GM ′

y − αGM ′
y,−1 −

K∑
k=1

βkG
(
M (k)

x

)′)
, (26)

or

m = αm−1 +
K∑
k=1

βkmk + S

[(
My − αMy,−1 −

K∑
k=1

βkM
(k)
x

)
⊗ Id

]
g, (27)

8Here we implicitly assume that for each k, if q ≤ t then also τ(q, 1) ≤ τ(t, 1), which is a reasonable

assumption so long as εi,t is i.i.d.
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where g = vec (G) and G = E (ziλ
′
i), a matrix that contains nuisance parameters and has

dimension [d×L]. Observe that F has been superseded by observed data. As such, starting

values for the “structural” parameters provide a close form solution for a set of starting

values for g. Furthermore, optimization can be performed iteratively in a straightforward

way.

As the vector of estimating equations in (27) stands, not all dL nuisance parameters

in g can be uniquely identified. The total number of identifiable parameters (up to a nor-

malization) depends on the number of factors (L), as well as on the exogeneity properties

of the regressors (τ(T, k)s). In particular, the number of identifiable parameters is given

by

#parameters = K + 1 + d× L− ξ(L, τ(T, 1), . . . , τ(T,K)).

To illustrate what the ξ(L, τ(T, 1), . . . , τ(T,K)) function looks like, consider the case where

all regressors are weakly exogenous, i.e. τ(t, k) = t for all k. Notice that the moment

conditions with respect to yi,t are of triangular form because yi,t itself and future values

of yi,t are not valid instruments, i.e. E (yi,sεi,t) 6= 0 for s ≥ t. In the present example, the

same holds for the covariates since they are assumed not to be strictly exogenous. As a

result, G can be identified only in a block triangular fashion as well. To see this consider

equation (21) at period t = T :

yi,T = αyi,T−1 +
K∑
k=1

βkx
(k)
i,T + λ′ifT + εi,T .

At this time period one can use present/lagged values of yi,T−1 and present/lagged values

of x
(k)
i,T as instruments. However, due to the weak exogeneity assumption of all regressors,

the following parameters in g appear only in the equation at time t = T :

E[yi,T−1λ
′
i],E[x

(1)
i,Tλ

′
i], . . . ,E[x

(K)
i,T λ

′
i]. (28)

Thus, there are K+1 estimating equations that make use of yi,T−1 and x
(k)
i,T , k = 1, . . . , K,

as instruments and L(K+ 1) nuisance parameters. Hence, for L > 1 one can identify only

certain linear combinations of the parameter vector g, that is, identification of g is up to

a normalization. As a result, following Juodis and Sarafidis (2014) one can conclude that

ξ(L, τ(T, 1), . . . , τ(T,K)) = (K + 1)
L(L− 1)

2
. (29)

Remark 4. If one relaxes the weak exogeneity assumption and instead assumes that all

regressors are endogenous (i.e. τ(t, k) = t − 1), the form of ξ(L, τ(T, 1), . . . , τ(T,K))

remains unchanged.
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Let θ = (α, β1, . . . , βK , g
′
r)
′ ∈ Θ , where gr denotes the vector of the remaining free

parameters in g following a particular set of normalizations, and let Θ denote the full

parameter space of θ. Define

µi (θ) = Z ′i

(
yi − αyi,−1 −

K∑
k=1

βkx
(k)
i

)
− S

[((
yi − αyi,−1 −

K∑
k=1

βkx
(k)
i

)
w′i

)
⊗ Id

]
g̃,

(30)

where g̃ =
(
g′, (g\gr)′

)′
and g\gr denotes the part of g not in gr.

Assumption 3: Θ is compact and contains θ0 in its interior, where θ0 denotes the true

parameter vector. In addition, θ0 is identified on Θ such that E [µi (θ)] = 0 iff θ = θ0.

Assumption 4: Γ ≡ E [∂µi (θ) /∂θ′]θ=θ0
and ∆ ≡ E

[
µi (θ0)µi (θ0)

′] exist and are full

rank matrices.

The following proposition summarizes the asymptotic properties of the proposed esti-

mator.

Proposition 1. Let µN (θ) = N−1
∑N

i=1µi (θ) and define

θ̂ = arg min
θ∈Θ

µN (θ)′ΩNµN (θ) ,

where ΩN is a given positive definite matrix. Then under Assumptions 1-4, θ̂ converges

in probability to θ0 and

√
N
(
θ̂ − θ0

)
d−→ N

(
0, (Γ ′ΩΓ )

−1
(Γ ′Ω∆ΩΓ ) (Γ ′ΩΓ )

−1
)
.

Proof. The proof follows directly from Robertson and Sarafidis (2015).

Here Ω = plimN→∞ΩN . If ΩN = Ω is chosen as ∆−1, then the resulting GMM esti-

mator is optimal in the class of GMM estimators that make use of the moment conditions

in (25). The same result applies if one replaces ∆ by a consistent estimate.

Remark 5. As shown by Robertson and Sarafidis (2015), the choice of the identification

scheme (i.e. the set of normalizing restrictions) on the vector of nuisance parameters g

is not important. Moreover, if one is interested only in estimating the structural param-

eters of the model, it is not even necessary to impose normalizing restrictions, rather,

it suffices that such a normalizing scheme exists.9 In particular, the GMM estimator of

9See Theorem 3 in their paper.

15



the structural parameters that involves optimizing the objective function with respect

to ϑ ≡ (α, β1, . . . , βK , g
′)′ will coincide asymptotically with the estimator that optimizes

with respect to θ. As a result, the structural parameters of the model can be estimated

in practice based on a simple iterative procedure using the estimating equations in (27).

Remark 6. The proposed estimator can be trivially extended to unbalanced panels by

simply introducing indicators, as it is the case for the standard fixed effects estimator,

depending on whether a particular moment condition is available for individual i or not.

This is not the case with many other dynamic panel estimators with common factors, as

it is discussed in detail in Section 4.2. in Juodis and Sarafidis (2014).

3.2. A Linearized Version of the Estimator

The vector of estimating equations from the previous section can be easily linearized

by defining in (26) the new parameters G0 ≡ −αG, Gk ≡ −βkG. In this case the moment

conditions become linear. Hence the total number of parameters in (26) is given by

#parameters = K + 1 + dL+ d(K + 1)L.

Compared to (26), its linearized version contains d(K + 1)L additional parameters. Es-

sentially, instead of estimating the model with L unobserved factors one can now estimate

the model with L̃ ≡ L(K + 2) observed factors.

Similarly to the discussion regarding identification in the previous section, not all ele-

ments of the “G” matrices can be uniquely identified in this case. For example, assuming

no serial correlation in εi,t, the number of moment conditions with respect to lagged values

of yi,t and the number of the corresponding parameters that are identifiable is given by

#moments(yi,−1) =
T (T + 1)

2
, #parameters(yi,−1) = 1 +

(
T − L̃− 1

2

)
L̃.

Here as in Section 3.1, the normalization term L̃(L̃− 1)/2 corresponds to the unobserved

“last” elements of the E[yi,−1λ
′
i] that cannot be separately identified, see also Juodis and

Sarafidis (2014). Alternatively, without loss in efficiency one can drop the L̃(L̃+1)/2 lower

triangular moment conditions associated with lagged values of yi,t and the same number

of corresponding parameters, such that

#moments(yi,−1) =
T (T + 1)

2
− L̃(L̃+ 1)

2
, #parameters(yi,−1) = K + 1 +

(
T − L̃

)
L̃.

(31)
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Letting b = T − L̃, the aforementioned lower triangular moment conditions are given by

E(εi(yi,−1 − gwi)
′) =



m11

. . .

mb,b

... mb+1,b+1

...
. . .

mT,1 mT,b mT,b+1 · · · mT,T


,

forming a triangle with corners (mb+1,b+1,mT,T ,mT,b+1).

Pooling all the moment conditions available with respect to the covariates in this form,

one obtains the following number of moment conditions and identifiable parameters:

#moments = ζ − L̃(L̃+ 1)

2
(K + 1), #parameters = (K + 1)

(
1 +

(
T − L̃

)
L̃
)
. (32)

3.3. Testing for the rank of Gw

As in the simple case, the full rank assumption onGw can be verified either by using the

overidentifying restrictions test statistic, or based on the rank of a matrix that contains

observed data. Since the former way is identical to what we have already discussed in

Section 2.4, we focus on the latter.

Define the following matrix

M ≡ [My,My,−1,M1, . . . ,MK ] ,

which is of dimension [T × (K + 2)L]. The following theorem is fundamental for our

approach.

Theorem 1. Suppose that M is a full rank matrix, i.e. rk (M ) = (K + 2)L. Then Gw

is invertible.

Proof. The proof is provided in the Appendix.

As a result of the theorem above, one could in principle verify, prior to estimation,

whether the unobserved matrix Gw has full rank by checking if the [T × (K + 2)L] matrix

M of observed data satisfies rk (M ) = (K+2)L. However, since in practiceM is replaced

by sample moment covariances, this issue needs to be determined using a formal statistical

test. Camba-Méndez and Kapetanios (2008) analyze a wide range of statistical methods

for testing the rank of a matrix.10 In the Monte Carlo section that follows, we investigate

10See also the commonly used procedure of Kleibergen and Paap (2006).
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within our set up the properties of the test statistic proposed by Robin and Smith (2000),

described in the Appendix, which is relatively simple to implement and has the advantage

that it does not require the variance-covariance matrix of M to have full rank, or that its

rank is known. The results demonstrate that the method works very well.

3.4. Observed Factors

Consider a model that contains both observed and unobserved factors, that is, in vector

form we now have

yi = αyi,−1 +
K∑
k=1

βkx
(k)
i + F oλoi + F uλui + εi, (33)

where F o and F u denote the observed and unobserved factors, respectively, with dimen-

sions [T × Lo] and [T × L]. Post-multiplying the model above by w′i, taking expectations

and solving for F u yields

F u =

(
My − αMy,−1 −

K∑
k=1

βkM
(k)
x − F o (Go

w)′
)(

(Gu
w)′
)−1

,

where Go
w = E (wi(λ

o
i )
′) is an [L× Lo] matrix. Plugging this expression into the original

model yields

yi = αyi,−1 +
K∑
k=1

βky
(k)
i + F oλ̃oi +

(
My − αMy,−1 −

K∑
k=1

βkM
(k)
x

)
λ̃ui + εi,

where λ̃oi = λoi − (Go
w)′
(
(Gu

w)′
)−1

λui is [Lo × 1], and λ̃ui =
(
(Gu

w)′
)−1

λui is [L× 1] , or

yi = αyi,−1 +
K∑
k=1

βkx
(k)
i +

(
λ̃oi ⊗ IT

)′
vec (F o)

+
(
λ̃ui ⊗ IT

)′
vec

(
My − αMy,−1 −

K∑
k=1

βkM
(k)
x

)
+ εi. (34)

Thus, multiplying the expression above by Z ′i and taking expectations yields

m = αm−1 +
K∑
k=1

βkmk + S vec (F o ⊗ Id) go

+ S

[(
My − αMy,−1 −

K∑
k=1

βk
(
M (k)

x

))
⊗ Id

]
gu,

where Go = E

(
zi

(
λ̃oi

)′)
, go = vec (Go), Gu = E

(
zi

(
λ̃ui

)′)
and gu = vec (Gu).
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One can easily see that the total number of identified parameters is given by

#parameters = K + 1 + d× (L+ Lo)− ξ(L+ Lo, τ(T, 1), . . . , τ(T,K)).

Analogously to the model without observed factor the estimating equations above

can be easily linearized by setting Gu
0 ≡ −αGu and Gu

k ≡ −βkGu. It is clear that

the presence of observed factors in the model does not increase the number of parameters

following linearization. As a result, the total number of factors is just the sum of linearized

observed factors and true observed factors, i.e.

L̃ = L(K + 2) + Lo. (35)

The total number of non-redundant moment conditions and identifiable parameters follows

directly from (32) using the new definition of L̃.

3.5. Selecting the number of factors

So far the true number of factors has been treated as known. However, in practice

this quantity is typically unknown and needs to be determined from the data. Within

our framework the number of factors can be selected consistently using the Schwartz

information criterion, as proposed originally by Ahn et al. (2013). This is formalized in

the following proposition:

Proposition 2. Let QN

(
θ̂ (ΩN)

)
be the value of the objective function evaluated at θ̂

given ΩN and the observed data:

QN

(
θ̂ (ΩN)

)
= µ′N

(
θ̂
)
ΩNµN

(
θ̂
)
.

Consider the following Schwartz Criterion (BIC):

SN (L) = N ×QN

(
θ̂ (ΩN) |L

)
− ln (N)× h (L) , (36)

where h (L) = %× κ (L) = O (1), a strictly increasing function of L with 0 < % <∞ and

κ (L) = ζ − dim
(
θ̂
)

. Under the set of our assumptions, we have

L̂
p→ L0 as N →∞.

Proof. This follows directly from Robertson and Sarafidis (2015).

The above result implies that in principle the empirical researcher may estimate models

with L = 0, 1, . . . , Lmax, and choose L̂ as the value of L that corresponds to the smallest
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BIC value. Lmax itself can be determined based on the overidentifying restrictions test

statistic, provided that the latter is constructed using the optimal GMM weighting matrix.

In particular, for L < L0 we have QN

(
θ̂ (ΩN) |L

)
p→ ∞ as N grows large. Therefore,

fitting a smaller number of factors than the true number should result in rejecting the

null hypothesis of the validity of the instruments with probability approaching one as the

sample size increases. On the other hand, for L = L0 the overidentifying restrictions test

statistic based on the optimal weighting matrix is asymptotically chi-squared distributed

with degrees of freedom equal to the difference between moment conditions and estimable

parameters. Hence, provided that the level of significance is adjusted downwards as the

sample size increases, the probability of rejecting the null hypothesis at L = L0 approaches

zero.

4. Monte Carlo study

Our finite sample study considers a dynamic model with K = 1, i.e.

yi,t = αyi,t−1 + βxi,t + ui,t; ui,t =
L∑
`=1

λ`,if`,t + εyi,t, t = 1, . . . , T.

The processes for xi,t and ft are given, respectively, by

xi,t = δyi,t−1 + αxxi,t−1 +
L∑
`=1

γ`,if`,t + εxi,t;

f`,t = αff`,t−1 +
√

1− α2
fε
f
`,t; εf`,t ∼ N (0, 1), ∀`.

The factor loadings are generated as λ`,i ∼ N (µλ, 1) and

γ`,i = µλ + ρ(λ`,i − µλ) +
√

1− ρ2υf`,i; υf`,i ∼ N (0, 1)∀`,

where ρ denotes the correlation coefficient between the factor loadings of the y and x

processes. The parameter µλ controls the mean of the factor loadings. Furthermore, the

idiosyncratic errors are generated as

εyi,t ∼ N (0, 1) ; εxi,t ∼ N
(
0, σ2

x

)
, t ≥ 0.

The signal-to-noise ratio of the model is defined as follows:

SNR ≡ 1

T

T∑
t=1

var
(
yi,t|λ`,i, γ`,i, {f`,s}ts=−S

)
var εyi,t

− 1.
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In all designs σ2
x is set such that SNR = 5. This value lies within the range of values

considered in the literature, e.g. Bun and Kiviet (2006) specifies SNR ∈ {3; 9}. The

initial observation for each i is generated as

xi,0 =
L∑
`=1

γ`,if`,0 + εxi,0; f0 ∼ N (0, 1); yi,0 =
L∑
`=1

λ`,i + εyi,0,

which ensures that the parameter g0 is non-stochastic; see Robertson et al. (2014) for

a related discussion. We consider N = {200; 800} and T = {4; 8}. Furthermore, α =

{0.4; 0.8} and β = 1 − α, such that the long run parameter always remains equal to

1. The values of the remaining parameters are as follows: ρ = {0; 0.6}, µλ = {0; 1},
δ = {0; 0.3}, αx = 0.6, αf = 0.5 and L = 1. The number of replications performed equals

2, 000 for each design and the factors are drawn in each replication.

4.1. Results

First, we consider three non-linear estimators proposed in this paper, based on different

choices for wi. In particular, NC(·) and Ny(·) denote the non-linear GMM estimators that

make use of wi = 1 and wi = yi,0 respectively, while NY2(·) is the corresponding estimator

making use of wi = y2i,0. The digit in (·) refers to the one step and two step versions of

the estimators. Starting values for the one step non-linear estimators are based on two

sets of U [0, 1] random variables both for α and for β. For the two step estimators we also

include the one step estimates among the starting values.

The results are reported in the Appendix in terms of median bias and root median

square error, which is defined as

RMSE =
√

med
[
(α̂r − α)2

]
,

where α̂r denotes the value of α obtained in the rth replication using a particular estimator.

As an additional measure of dispersion we report the radius of the interval centered on

the median containing 80% of the observations, divided by 1.28. This statistic, which we

shall refer to as “quasi-standard deviation” (denoted qStd) provides an estimate of the

population standard deviation if the distribution were normal, with the advantage that

it is more robust to the occurrence of outliers compared to the usual expression for the

standard deviation.

Finally, we report empirical rejection frequencies of the t-test, where nominal size is

set equal to 5%. For all two step estimators we report results based on corrected standard

errors using the correction formula of Windmeijer (2005). Thus, we differ from other
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studies (e.g. Robertson and Sarafidis (2015) and Ahn et al. (2013)) that do not consider

corrected standard errors for non-linear estimators. Furthermore, for the two step GMM

estimators we also report the empirical size of the overidentifying restrictions (J) test

statistic.

Tables B1 and B4 (B2 and B5) correspond to the non-linear estimators that make use

of wi = y2i,0 (wi = 1) for µλ = 1 and µλ = 0, respectively. For the case where µλ = 1, both

estimators perform very well as there exists very little bias and empirical size is close to

the nominal level for both α and β. Moreover, the size of the J test is also close to the

5% level in all circumstances. On the other hand, for µλ = 0 both estimators are biased

and size-distorted, as expected. However, the J test statistic appears to have good power

in picking this up. In summary, these estimators perform well when they are consistent

and the J test statistic has good power to identify cases where they are not.

Tables B3 and B6 present results for Ny(·), which makes use of wi = y1i,0, under the

same setup. As expected, the performance of the estimator is largely unaffected by the

value of µλ. Compared to the estimators that use information from µλ, the tests based

on Ny(·) tend to be slightly oversized. Furthermore, for µλ = 1 Ny(·) is less efficient than

the other two estimators (since it makes use of T less moment conditions) and this is well

reflected by the larger values of RMSE and qStd.

Tables B7, B8 and B9 present results on the performance of the linearized estimators

for the case where T = 8 and µλ = 1. We do not examine T = 4 because in this

case the linearized estimators are either infeasible, or exactly identified and thereby the

overidentifying restrictions test statistic is infeasible. We can observe that the performance

of the linearized estimators remains satisfactory, although it is “pound-for-pound” inferior

to the performance of the non-linear estimators, which implies that extra simplicity comes

with a cost. The results for µλ = 0 are similar to those for the non-linear estimators, i.e.

the linearized estimators that use wi = 1 and wi = y2i,0 are biased and size-distorted. We

do not report these results to save space (available upon request).

Table 1 presents results with respect to testing for the rank of M using the method

proposed by Robin and Smith (2000). We focus on the case where ρ = 0.6, δ = 0.3

to save space, whereas M is constructed using wi = 1. The results for the remaining

parametrizations are very similar and available upon request. Under our set up, µλ = 0

implies that rk (M ) = 0, whereas for µλ = 1 we have rk (M) = 3. As we observe, under

the null hypothesis, µλ = 0, empirical size is close to its nominal level in all circumstances.

Furthermore under the alternative, power is close to unity regardless of the parametrization
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Table 1: Test Results for the Rank of M

.

N T α Size Power

200 4 .4 .057 .998

200 4 .8 .053 .999

200 8 .4 .051 1.00

200 8 .8 .052 1.00

800 4 .4 .050 1.00

800 4 .8 .050 1.00

800 8 .4 .049 1.00

800 8 .8 .053 1.00

Note: δ = 0.3, ρ = 0.6.

selected. Therefore, we may conclude that testing for the rank of M , a matrix that can

be trivially estimated from the observed data, appears to be an attractive alternative for

verifying whether the full rank assumption on Gw holds true or not.

5. Estimation of the Price Elasticity of Urban Water Demand

5.1. Motivation

The need for establishing and maintaining efficient and sustainable urban water man-

agement systems is of paramount importance nowadays, especially because of global warm-

ing and the ever-increasing urbanization, which are expected to put pressure on natural

resources and ecosystems in the near future. According to a recent report published in

2013 by the United Nations, by 2030 there will be over one billion more people living in

large urban centres around the world than today.11

Urban water networks are characterised by relatively large infrastructure costs com-

pared to operating costs. Thus, as it is common with many other utilities industries and

natural monopolies, urban water usage prices are often regulated with a view to recover

the costs of production that would occur in a competitive market plus a rate of return on

capital. The aforementioned price markup is often inversely related to the price elasticity

of water usage demand, a policy rule that is known as Ramsey pricing.

11See http://www.un.org/sg/management/pdf/HLP P2015 Report.pdf, page 18.
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Given that water is an essential good for many purposes, consumer demand is price

inelastic. However, the actual degree of sensitivity of consumers to changes in prices bears

important implications for public policy and decision making for viable water management

systems. For example, planning fixed capital investments in alternative water source

generation technologies requires such information.12 Moreover, possible overestimation

(say) of the magnitude of the price elasticity of demand can lead to hundreds of millions

in revenue losses to a water utility.13

The magnitude of price elasticity is largely an empirical issue and it depends, among

other things, on the housing composition within a particular urban centre, the average

efficiency of water appliances, and so on. As a result, there is a large number of studies

in the literature of urban water management that focuses on the estimation of the price

elasticity of demand; see e.g. Arbués et al. (2003) and Araral and Wang (2013) for excellent

surveys.14

Most of existing research employs a static framework. However, as pointed out by

Nauges and Thomas (2003b), a dynamic specification is more appropriate since current

water use is likely to be influenced by past use, which is due to habit formation in wa-

ter consumption such as car washing, showering and garden watering, as well as due to

the specific stock of durable goods that exists in a house, such as showerheads, washing

machines and so on. Nauges and Thomas (2003b) demonstrate that a dynamic model of

water usage can be derived from an intertemporal structural optimization problem of price

determination, where local communities have a two-fold objective: the maximization of

consumers’ welfare and cost recovery.

Therefore, in what follows we are going to estimate a dynamic panel data model of

water consumption, controlling for local weather conditions and allowing for multiplicative

unobserved heterogeneity, which is represented by a factor structure.

12See, for example, the recent technical report titled “Assessment of cost recovery through

water pricing”, which is published by the European Environment Agency, as well as the 2015

IMF Study on managing water challenges and policy instruments. Both are available on

the web: see http://www.bdl.hu/ uploads/assessment of cost recovery through water˙pricing.pdf and

https://www.imf.org/external/pubs/ft/sdn/2015/sdn1511tn.pdf respectively.
13See e.g. the Productivity Commission’s Inquiry report titled “Australia’s Urban Water Sector” which

is available at http://www.pc.gov.au/inquiries/completed/urban-water/report/urban-water-volume1.pdf.
14Sibly and Tooth (2015) provide an in-depth recent analysis of supply side issues regarding residential

water usage.
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5.2. Data and Methodology

We examine the effect of prices on urban water usage demand using multi-household

level data for New South Wales, Australia. These data have been made publicly available

by Sydney Water Corporation as part of the supporting information provided in the study

of residential water use pricing that was undertaken by Abrams, Kumaradevan, Sarafidis,

and Spaninks (2012). The data are aggregated to some extent in order to maintain privacy.

In particular, each cross-sectional unit represents an average of four to six households,

which are located nearby and have similar property size.15

Sydney Water is the largest water utility in Australia, serving more than 4 million

people, while its area of operations covers around 12, 700 km2. Our sample consists of a

balanced panel of 4, 500 multi-household cross-sectional units, each one being observed over

a period of 5 years, 2004-2008 inclusive. The original data set is available on a quarterly

basis, however the analysis in this section employs year-specific averages in order to avoid

any likely contamination with seasonal variation. This is potentially an important issue, as

pointed out by Abrams et al. (2012), because to the extent that water demand for outdoor

use is more responsive to prices than for indoor use, one expects that price elasticity is

higher during the summer compared to the winter.

Our sample contains owner-occupied houses only, which have property size less than 600

m2. The reasons are two-fold: first of all, households in NSW face distinct price signals,

depending on dwelling type (e.g. houses, maisonettes, apartments) and tenancy status

(e.g. owner occupied or tenanted). For instance, households of owner-occupied houses

face a strong price signal relative to other households because they receive their water

bills directly from the water utility; on the other hand, for tenanted houses the landlord

may or may not pass on water usage charges to the tenants, depending for example on

whether the property is served by an individual water meter or not. Finally, apartments

in NSW are most often served by a common water meter in the same building and thereby

households do not get charged directly for their water use. This feature implies that the

degree of sensitivity to a given change in price across these types of residence is likely to

be rather different (heterogeneous) and thereby estimation methods that are applied to

pooled data may not provide consistent estimates of the price coefficient.

Secondly, water consumption may be structurally different for houses that occupy very

large areas of land. That is, such properties often have their own storage water tank and

possibly access to underground water.

15See Abrams et al. (2012) for more information regarding the construction of the data set.
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For the same reason, our sample contains households that have not participated in a

water appliance efficiency program; one can anticipate a smaller price elasticity of demand

for households that have already participated in such programs, as they might exhibit

a reduced ability to lower their demand based on higher levels of appliance efficiency

(demand hardening) and they might also be operating under a “conservation mindset” at

first place.

The model we consider to study the price elasticity of water demand is as follows:

ln (consi,t) = α ln (consi,t−1)+β1pricei,t+β2tempi,t+β3raini,t+ui,t, uit = λ′ift+εi,t, (37)

where consi,t denotes average daily water consumption for household i at year t, expressed

in thousands of litres of water (kL), pricei,t is the average real price (in Australian dollars)

paid per kilolitre of water used by household i at time t, while tempi,t and raini,t denote

the average amounts of daily rainfall (mm) and temperature (degrees Celsius) during year

t. Finally, ui,t is a composite disturbance that contains a factor component. This structure

allows for multiplicative unobserved heterogeneity and nests the popular two way error

components model as a special case.

By construction the price variable is endogenous because during the period of the

analysis a two-tier pricing scheme was in place in NSW such that consumers paid a higher

price when their consumption exceeded a certain threshold level.

The values of the weather variables are individual-specific and they have been deter-

mined by the physical proximity of each property to a total of thirteen weather stations

that exist across Sydney and are operated by the Bureau of Meteorology. The main reason

for this is that weather patterns can vary substantially across NSW and, more specifically,

in general there are cooler conditions and more rainfall on the coast compared to many

areas that are located inland.

The following table presents some descriptive statistics for the variables of the model.

The average (median) daily water usage in the sample is roughly .567 (.515) kL, which

indicates that water consumption is skewed to the right; this is expected because there is

no upper bound in water consumption (loosely speaking). The between standard deviation

of daily water usage is larger than the within standard deviation, which implies that there

is more variation in water consumption across households than over time, as expected.

Interestingly, the same holds true for temperature. On the other hand, the opposite is

true for rainfall, i.e. there appears to exist more variation in rainfall over time than

across households within the sample. Finally, for the price variable the between standard

deviation is about 10 times smaller than the within deviation, i.e. the largest proportion of
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variation in price is due to the consecutive, year by year, upward changes set by the NSW

Independent Pricing and Regulatory Tribunal (IPART). This indicates the importance of

having a large cross-sectional dimension in the sample to be able to identify the effect of

price.

Table 2: Descriptive Statistics

mean median st.dev. 10th perc. 90th perc.

cons. overall .567 .515 .328 .203 .977

between .303 -.117 .118

within .126 .219 .959

rain overall 2.36 2.16 .739 1.54 3.50

between .350 -2.08 2.91

within .651 .681 1.05

temp. overall 23.4 23.7 1.13 21.8 24.5

between 1.04 21.4 24.2

within .437 -.601 .493

price overall 1.35 1.37 .140 1.17 1.56

between .013 1.34 1.36

within .139 1.17 1.56

Figure 1 depicts the values of the cross-sectional averages of the variables of the model

(except for rain), setting their corresponding 2004 values equal to 100. Therefore, the

values of the variables from 2005 onwards are essentially percentage changes relative to the

base year. To enhance visualization of the data, the values of water usage and temperature

are plotted with respect to the left vertical axis, while those of price are plotted with respect

to the right vertical axis. For instance, average water usage in 2007 was roughly 10% lower

than 2004. On the other hand, average price in 2008 was roughly 33% higher than 2004.

During the period of our analysis, average daily temperature has followed a downward

trend overall, whereas prices have steadily gone upwards every single year. At the same

time, water usage experienced a significant drop in 2007 and remained much lower in 2008

relative the previous years.

We specify a log-linear functional form for the following two reasons: contrary to
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Figure 1: Water Consumption, Price and Temperature

the constant-elasticity (double-log) model, this specification implies that price elasticity

depends on the level of price itself, that is, consumers become more sensitive to changes in

price the higher the level of price is. This is consistent with utility theory (see, for example

Al-Qunaibet and Johnston (1985)). In addition, in comparison to the linear model that

has also been popular in the literature, the log-linear specification does not imply the

existence of a “choke price” beyond which no water would be demanded from households.

This is an important feature of our model because water is an essential product for survival

and therefore some water will be consumed even if prices are very high. Notice that our

specification also implies that the elasticity of water demand to weather conditions is not

constant but depends on the level of temperature and rainfall as well, which is a desirable

feature.

We have estimated (37) by fitting models with L = 0, 1, 2 factors. In addition, we also

estimated (37) (i) by applying first-differences and making use of lagged instruments in

levels, which is essentially the popular GMM estimator proposed by Arellano and Bond

(1991); and (ii) based on the system GMM estimator proposed e.g. by Arellano and Bover

(1995). The number of factors is selected based on the model information criterion in

equation (36). Following Ahn et al. (2013) and Robertson and Sarafidis (2015), we set

h (L) = T−0.3× 0.75× df (L), where df (L) is the number of degrees of freedom associated

with the model fitted with L factors. The performance of this criterion in the context of

dynamic panels has been investigated by Robertson and Sarafidis (2015). Starting values

for the structural parameters for the non-linear estimators have been obtained using 200

random draws from the standard normal distribution. Optimization is implemented using

the iterative procedure described in Sections 2 and 3.
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5.3. Results

We estimate the following seven models: M0 and MTWDIF (or MTWSY S) denote

the models that impose uit = εit and uit = ηi + γt + εit, respectively. That is, M0

imposes zero factors, while MTWDIF and MTWSY S impose a two way error components

structure. The former is based on the Arellano-Bond estimator and the latter on the

System GMM estimator; M1c, M1y0 and M1y20 allow for one genuine factor with weights

equal to wi = 1, wi = yi0 and wi = y2i0 respectively; finally, M2 allows for two factors with

weights given by wi = (1, y2i0)
′
. In all models the price variable is treated as endogenous

and is instrumented by appropriate lagged values of the same variable, while the weather

variables are treated as exogenous. All models make use of ζ = 39 moment conditions,

except for M1y0 that utilises 4 less moment conditions, as well as the Arellano-Bond and

System GMM estimators that make use of 17 and 21 moment conditions, respectively.

In Table 3 we summarize the results in terms of the overidentifying restrictions (J)

test statistic, its p-value, the number of degrees of freedom for each model, and finally

BIC. As it is clear, when we fit either zero factors or a two way error components

structure, the p-value of the J statistic is close to zero, which implies that the model is

mis-specified. On the other hand, fitting one or two genuine factors leads to failing to

reject the null hypothesis that the instruments are valid, which provides evidence that the

factor structure is supported by the data over the two way error components structure.

Among these specifications M1c (i.e. wi = 1) corresponds to the smallest BIC value.

Therefore in what follows we mainly focus on this particular model.

Table 3: Model Selection

.

M0 MTWDIF MTWSY S M1c M1y0 M1y20 M2

J test 156.3 27.6 49.2 21.5 22.9 27.3 3.02

p-value .000 .002 .000 .369 .291 .128 .933

BIC 10.6 -17.8 -4.91 -61.8 -43.7 -56.6 -30.3

df 35 10 13 20 16 20 8

Table 4 presents the estimation results for the coefficients of the model. The entries in

the last row correspond to the long-run price coefficient, computed by dividing the short-

run price coefficient, β1, by one minus the autoregressive parameter, α. The standard

error of the long run estimated price coefficient is obtained using the Delta method.16

16Alternatively, one can use the cross-sectional bootstrap as in Kapetanios (2008), to do inference.
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Table 4: Estimation Results for M1c.

Coef. Std. Err. t-ratio p-value

α .393 .056 7.06 .000

β1 -.213 .072 -2.98 .003

β2 -.006 .009 -0.73 .466

β3 .040 .010 3.55 .000

β1/(1− α) -.352 .140 -2.50 .012

As we can see, all coefficients have the correct sign. A unit (dollar) increase in the price

of water is estimated to cause a reduction in (logged) water consumption of approximately

.213 and .352 units in the short- and long-run respectively. Similarly, a unit increase in

temperature (rain) is expected to increase (reduce) water consumption by approximately

.039 (.006) units in the short-run and .064 (.001) units in the long-run. The coefficient of

rainfall is not significantly different from zero, which is consistent with findings in other

studies in the literature (see e.g. Abrams et al. (2012)). The value of the autoregressive

coefficient is less than .4 and implies that it takes about 2.5 time periods (years) for 90%

of the total (i.e. long-run) price effect to be realized, all other things remaining constant.

It is worth noting here that the estimated short-run price coefficient obtained from

MTWDIF and MTWSY S is positive and statistically insignificant in both cases. This

demonstrates the importance of allowing for a genuine factor component in the model.

We remark that the result of the overidentifying restrictions test statistic for M1c

implies that µλ 6= 0. As a way of cross-checking this outcome we wish to test for the rank

of M , computed based on wi = 1, using the procedure described in the Appendix. Given

that the data do not have mean zero, an appropriate null hypothesis is rk (M) = K + 2.

However, since K+2 > T the test is not feasible as it stands. Therefore, to make progress

we have implemented the test by constructing M without raini,t. This strategy makes

sense because the slope coefficient of this variable is close to zero. The resulting CRT test

statistic equals 2.11 and has a p-value close to zero. Hence, we conclude that µλ 6= 0.

The price elasticity of demand is computed by multiplying the relevant price coefficients

with a range of values for price. In Table 5 we present some estimates of the price elasticity

at four different values of price; namely, mean and median price, as well as the 10th and

90th percentiles. For example, at the median price within the sample of $1.151 per kL the

price elasticity of demand is about .293 per cent in the short-run and .482 per cent in the

long-run.

30



Table 5: Point-wise predicted elasticities for M1c.

10th perc. mean median 90th perc.

price 1.17 1.35 1.37 1.56

SR elasticity -.249 -.288 -.293 -.333

LR elasticity -.411 -.475 -.482 -.548

As expected, urban water demand appears to be rather more elastic in the long-run

than in the short run, which may be attributed to habit formation and technological

constraints of water appliances. This outcome shows that it is important to estimate a

dynamic model of urban water demand. In comparison to other studies in the literature,

the estimated price elasticity of demand obtained in the present paper is statistically

similar to the value obtained by Nauges and Thomas (2003b) (see Table III in their

paper) although theirs is derived from the constant-elasticity model using municipal-level

data and includes average income but not weather conditions. As a robustness check we

have also estimated a model that includes NSW-wide disposable income as a common

observed factor, with household-specific loadings. These loadings could be interpreted as

if they reflected the scalar of proportionality for household i’s income over the NSW-wide

average income. Thus, for (say) γi = 1.2 household i’s income is 1.2 times greater than

the average. These results are very similar to those described above and thereby we do

not report them.

6. Concluding Remarks

This paper put forward a new methodology that simplifies estimation of dynamic panel

data models with multi-factor residuals, for fixed number of time-series observations. The

underlying idea is to replace the unobserved factors with (weighted) averages of observed

data. This leads to a more parsimonious parametrization of the model. As a result, starting

values of the unknown parameters are easy to obtain. The simulation exercise shows

that the proposed estimators perform more than satisfactorily and their finite samples

properties are well understood.

We hope that the proposed methodology will enhance the application of estimators

that allow for multi-factor residuals in panels involving micro level data, and encourage

empirical researches to implement these estimators in practice.
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Appendix A. Theoretical Results

Appendix A.1. Derivation of the S.E. correction for the ARX(1) model

For convenience of derivations we define β0 ≡ α and X0 ≡ Y−1. One can similarly

accommodate further lags of yi,t, but for simplicity we stick to the ARX(1) model. Next,

we rewrite the moment conditions as

µN(θ) =
1

N
S vec

(
(Ξ −WG′)

′

(
Y −

K∑
k=0

βkXk

))
. (A.1)

Here all Y ,Y−1,X1, . . .XK are [N ×T ], Ξ is [N × d] and W is [N ×L], with typical row

elements y′i, y
′
i,−1, x

(k)′

i , z′i and w′i respectively. G is of dimension [d × L], while recall
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that S is of dimension [ζ × Td]. The [ζ × (K + 1 + dL)] Jacobian matrix Γ̂N(θ) of these

moment conditions is given by:

Γ̂N(θ) =
(
Γ̂

(1)
N (θ), Γ̂

(2)
N (θ)

)
.

Here

Γ̂
(1)
N (θ) = − 1

N
S
(

vec
(
(Ξ −WG′)′X0

)
, . . . , vec

(
(Ξ −WG′)′XK

) )
;

Γ̂
(2)
N (θ) = − 1

N
S

(((
Y −

K∑
k=0

βkXk

)′
W

)
⊗ Id

)
.

Finally, we can derive the second-derivative (GN , in the notation of Windmeijer (2005))

matrix which is defined in the following way:

dvec(Γ̂N(θ)) = HN dθ,

where HN is [ζ(K+ 1 +dL)× (K+ 1 +dL)] It is straightforward to derive the above term

given that both blocks of the Γ̂N(θ) matrix are linear in parameters. As a result we have

HN =

(
O H

(1,2)
N

H
(2,1)
N O

)
,

where

H
(1,2)
N =

1

N
(S ⊗ IK+1)


(X ′0W )⊗ Id

...

(X ′KW )⊗ Id

 ,

H
(2,1)
N =

1

N

(
vec (S ((X ′0W )⊗ Id)) , . . . , vec (S ((X ′KW )⊗ Id))

)
,

are [ζ(K + 1) × dL] and [ζ(dL) × (K + 1)] respectively. The Γ̂N(θ) and HN matrices

can be plugged into the formula (2.5) of Windmeijer (2005) (assuming one uses Iζ as an

identity matrix in the first step):

v̂arc(θ̂2) =
1

N
A−1

θ̂2,ΩN (θ̂1)
Γ̂N(θ̂2)

′Ω−1N (θ̂1)Γ̂N(θ̂2)A
−1
θ̂2,ΩN (θ̂1)

+
1

N
Dθ̂2,ΩN (θ̂1)

A−1
θ̂1
Γ̂N(θ̂1)

′Γ̂N(θ̂2)A
−1
θ̂2,ΩN (θ̂1)

+
1

N

(
Dθ̂2,ΩN (θ̂1)

A−1
θ̂1
Γ̂N(θ̂1)

′Γ̂N(θ̂2)A
−1
θ̂2,ΩN (θ̂1)

)′
+Dθ̂2,ΩN (θ̂1)

v̂ar(θ̂1)D
′
θ̂2,ΩN (θ̂1)

,
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where θ̂2 is the two-step GMM estimator with optimal weighting matrix ΩN(θ̂1) based on

the residuals from the firs-step. While,

Aθ̂2,ΩN (θ̂1)
= Γ̂N(θ̂2)

′Ω−1N (θ̂1)Γ̂N(θ̂2) +H ′N

(
IK+1+dL ⊗Ω−1N (θ̂1)µN(θ̂2)

)
;

Aθ̂1
= Γ̂N(θ̂1)

′Γ̂N(θ̂1);

v̂ar(θ̂1) =
1

N
A−1

θ̂1
Γ̂N(θ̂1)

′Ω−1N (θ̂1)Γ̂N(θ̂1)A
−1
θ̂1
.

Note that we slightly deviate from the formula used in Windmeijer (2005) to calculate the

v̂ar(θ̂1) because we ignored the second term to simplify computations. Alternatively, one

can consider Aθ̂1
= Γ̂N(θ̂1)

′Γ̂N(θ̂1) + H ′N

(
IK+1+dL ⊗ µN(θ̂1)

)
. The jth column of the

[(K+1+dL)× (K+1+dL)] matrix Dθ,ΩN (θ), say Dθ̂2,ΩN (θ̂1)
[, j] is given by the following

expression:

Dθ̂2,ΩN (θ̂1)
[, j] = A−1

θ̂2,ΩN (θ̂1)
Γ̂N(θ̂2)

′Ω−1N (θ̂1)
∂ΩN(θ)

∂θj

∣∣∣∣
θ̂1

Ω−1N (θ̂1)µN(θ̂2);

∂ΩN(θ)

∂θj
=

1

N

N∑
i=1

(
∂µi(θ)

∂θj
µi(θ)′ + µi(θ)

∂µi(θ)′

∂θj

)
.

Results for the model with observed factors follows analogously by noting that in that

case one has

µN(θ) = S vec

(
1

N
(Ξ −WG′)

′

(
Y −

K∑
k=0

βkXk

)
−Go(F o)′

)
. (A.2)

Appendix A.2. Proof of Theorem 1

Proof. For notational simplicity we consider the case where α = β2 = . . . βK = 0. There-

fore, with a slight abuse of notation we can write

My = βMx + FGw = βMx + V ,

where FGw = V . Let M ≡ (My,Mx), a [T × 2L] matrix. Therefore, solving for V

yields

V = (My,Mx) (IL,−βIL) = MB.

It is clear that rank(B) = L.

Suppose that matrix M has full rank, i.e. the column space of M spans R2L. This

means that there exists a submatrix of M , given by Ms = SM , where S is a [2L× T ]

selector matrix, such that Ms is non-singular. Hence, using a standard result of rank

equality for non-singular matrices (see e.g. page 13 in Horn and Johnson, 1995) we have

rank (MsB) = rank (B) = L.
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However, due to the fact that

MsB = SMB = SV ,

we also have

rank (SV ) = L.

Therefore, since

rank (SV ) ≤ rank (V ) = rank (FGw) ≤ rank (Gw) ,

it follows that rank(Gw) = L.

For the general case, one can write

My = αMy,−1 +
K∑
k=1

βkM
(k)
x + V ,

and solve in terms of V = MB, where M ≡
(
My,My,−1,M

(1)
x , . . . ,M

(K)
x

)
. The proof

then follows in an identical way. QED

Appendix A.3. Testing for the rank of M

The method proposed by Robin and Smith (2000) focuses on the eigenvalues of quadratic

forms of a matrix. In particular, let M̂ denote the sample counterpart of M and

A ≡ M̂M̂ ′. Consider the following statistic:

CRT = N

(K+2)L∑
`=%+1

$`, (A.3)

where $` are the eigenvalues of the [T × T ] matrix A in descending order and % denotes

the rank of M . Under the null hypothesis, the above statistic converges in distribu-

tion to a weighted sum of independent χ2
1 random variables. The weights are given by

the largest eigenvalues − denoted by τj with j = 1, . . . , (T − %) ((K + 2)L− %) − of(
D′% ⊗C ′%

)
V (D% ⊗C%), where D% and C% denote the eigenvectors corresponding to the

(K + 2)L − % and T − % smallest eigenvalues of M ′M and A, respectively, while V is

such that √
N vec

(
M̂ −M

)
d−→ N (0,V ) . (A.4)

Appendix B. Monte Carlo results
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