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Abstract

This paper considers estimation of general panel data models subject to the incidental

parameter problem of Neyman and Scott (1948). Our main focus is on the finite sample

behavior of analytical bias corrected Maximum Likelihood estimators as discussed in Hahn

and Kuersteiner (2002), Hahn and Newey (2004) and Hahn and Kuersteiner (2011). As it

is mentioned in Hahn and Newey (2004) and Arellano and Hahn (2006), in principle it is

possible to iterate the bias formula to obtain an estimator that might have better finite

sample properties than the one step estimator. In this paper we will investigate merits

and limitations of iterative bias correction procedures in finite samples, by considering

three examples: Panel AR(1), Panel VAR(1) and Static Panel Probit.

Keywords: Panel Data, Maximum Likelihood, Bias Correction, Large T Consistency,

Probit, Monte Carlo Simulation.

JEL: C13, C33.

1. Introduction

The inconsistency of the conventional Fixed Effect (FE) estimator in Dynamic Panel

Data (DPD) models for fixed T has been one of the leading topics in the DPD literature

for the last three decades, see e.g. Nickell (1981) and Kiviet (1995). Because of the

inconsistency of the FE estimator, the estimation of linear DPD models has been mainly

concentrated within the GMM framework, with the estimators suggested by Arellano and

Bond (1991) inter alia.
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October 9, 2015



In his seminal paper Kiviet (1995) suggested to bias correct the conventional FE esti-

mator using some initial fixed T consistent estimator of the bias term. Following similar

lines Hahn and Kuersteiner (2002) proposed a bias corrected FE estimator using an alter-

native set of large N and large T asymptotics. In principal, their approach is operational

even for small values of T and does not require complicated procedures to obtain standard

errors for inference. Later Hahn and Newey (2004) and Hahn and Kuersteiner (2011)

described analytical bias correction procedures for non-linear static and dynamic panel

data models, with the approach of Hahn and Kuersteiner (2002) as a special case.

In all the aforementioned papers finite sample results are provided for one-step bias

corrected estimators. However, as it was mentioned in Hahn and Newey (2004), in prin-

ciple it is possible to iterate the bias formula to obtain an estimator that might have

better finite sample performance without compromising asymptotic properties. In this

paper, we will consider three commonly analyzed examples in the panel data literature

and investigate whether iterative methods can improve finite sample properties of the bias

corrected estimators. As it will turn out, the results are mixed and depend crucially on

the particular setup considered.

The rest of this note is structured as follows. In Section 2 we introduce the PVAR(1)

model and provide finite sample evidence for both univariate and bivariate systems. We

continue in Section 3 with another commonly used example in the panel data literature,

namely a static panel probit model. Finally, we conclude in Section 4.

2. Linear models

In this paper we will focus on simple linear dynamic specifications without any ad-

ditional explanatory variables and/or cross-sectional dependence. Namely, we consider

a general (reduced form) Panel Vector Autoregressive models of order one or shortly

PVAR(1):

yi,t = ηi +Φyi,t−1 + εi,t, i = 1, . . . , N, t = 1, . . . , T, (2.1)

where yi,t is an [m× 1] vector, Φ is an [m×m] matrix of parameters to be estimated, ηi

is an [m× 1] vector of fixed effects and εi,t is an [m× 1] vector of innovations independent

across i, with zero mean and constant covariance matrix Σ.1 If we set m = 1 the model

reduces to the linear DPD model with AR(1) dynamics.

1Later in the paper we present the detailed analysis when Σ is i specific.
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For a prototypical example of (2.1) consider the following bivariate model (see e.g.

Bun and Kiviet (2006), Akashi and Kunitomo (2012) and Hsiao and Zhou (2015)):

yi,t = ηyi + γyi,t−1 + βxi,t + ui,t,

xi,t = ηxi + φyi,t−1 + ρxi,t−1 + vi,t,

where E[ui,tvi,t] = σuv. Depending on the parameter values, the process {xi,t}Tt=0 can be

either exogenous (φ = σuv = 0), weakly exogenous (σuv = 0) or endogenous (σuv 6= 0). In

the next two sub-sections we will discuss the results for m = 1 and m = 2, respectively.

2.1. Panel AR(1)

The panel AR(1) model without exogenous regressors is the simplest possible speci-

fication among all Dynamic Panel Data models. However, it is also the most commonly

studied model in Monte Carlo studies. It is well known that the FE (or equivalently, Maxi-

mum Likelihood) estimator is not consistent for a fixed number of time series observations,

see e.g. Nickell (1981). Because of the inconsistency of the FE estimator, the estimation

of linear DPD models has been mainly concentrated within the GMM framework, with

the most popular estimators introduced by Arellano and Bond (1991) and Blundell and

Bond (1998).2

However, there is a long standing tradition of bias-corrected estimators of this model

for fixed T , substantially influenced by the work of Kiviet (1995). The fixed T assumption

is crucial for models with few time-series observations. If, on the other hand, the time-

series dimension is not negligible then one can consider joint asymptotic approximation for

N, T →∞. Using alternative large N ,T asymptotics with N/T → ρ Hahn and Kuersteiner

(2002) proved the following result:

Theorem 2.1.

√
NT (φ̂FE − φ0)

d−→ N

(
−√ρ σ2

σ2
X(1− φ0)

,
σ2

σ2
X

)
, (2.2)

where

σ2
X = plim

N,T→∞

1

NT

N∑
i=1

T∑
t=1

ỹ2
i,t−1 =

σ2

1− φ2
0

. (2.3)

2Alternatively, there is a growing literature on fixed T consistent likelihood based estimators, e.g.

Hsiao et al. (2002), Kruiniger (2013) and Bun et al. (2015).
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The non-centrality parameter −√ρ σ2

σ2
X(1−φ0)

captures the asymptotic bias of order

O(T−1) while the remaining higher order terms are asymptotically negligible as N
T 3 → 0.

Both equations of Theorem 2.1 can be combined to conclude that the non-centrality pa-

rameter in the asymptotic distribution is given by:

−√ρ(1 + φ0) (2.4)

Remark 2.1. Note that the non-centrality parameter does not change if the white noise

assumption is relaxed to the original assumptions of Hahn and Kuersteiner (2002). Fur-

thermore, similarly to Juodis (2014) one can also show that this conclusion is also valid if

some degree of time-series heteroscedasticity is allowed.

One can then conclude that bias-corrected FE estimator of the following

ˆ̂
φFE = φ̂FE +

1

T
(1 + φ̌),

where φ̌ is any large N ,T consistent estimator of φ, is consistent for N, T → ∞ and it is

also free from non-centrality term in the limiting distribution. The key difference between

approaches based on fixed T and large T approximations, is that in the latter case one

can use φ̂FE as plug-in estimator in the bias formula. Particularly, Hahn and Kuersteiner

(2002) suggest a bias corrected fixed effect estimator of the following forms:

ˆ̂
φFE =

T + 1

T
φ̂FE +

1

T
.

Finite sample properties of this bias corrected estimator are well documented in the panel

data literature, see e.g. Bun and Carree (2005), Hahn and Moon (2006), Moreira (2009)

and more recently Everaert (2013).

Several remarks regarding this estimator are worth mentioning. First of all, as it was

pointed-out in Hahn and Newey (2004) and Arellano and Hahn (2006), it is possible to

iterate the bias formula. The iterative bias corrected estimator φ(∞) solves:

φ̂(k) =

(
φ̂FE +

1

T

)
+

1

T
φ̂(k−1), k →∞.

It is not difficult to see that in this simple case the iterative bias corrected estimator is of

the following form:

φ̂(∞) =
T

T − 1
φ̂FE +

1

T − 1
.

So that

φ̌ =
T

T − 1
φ̂FE +

1

T (T − 1)
, (2.5)

4



rather than φ̌ = φ̂FE. As φ(∞)−φ(k) = Op(T−2), for large values of T both estimators are

identical, but for small values the discrepancy between the two estimators may be sub-

stantial. To discuss the matter in further detail note that under rather general conditions

one can show that:3

E[φ̂FE] = φ0 −
1

T
(1 + φ0) +R,

where the remainder term R is of order O(T−2). It then easily follows that:

E
[

ˆ̂
φ
]

= φ0 +

(
R +

1

T
R− 1 + φ0

T 2

)
, (2.6)

E
[
φ̂(k)
]

= φ0 +

(
R

k∑
j=0

1

T j
− 1 + φ0

T 1+k

)
, ∀k ≥ 1 (2.7)

E
[
φ̂(∞)

]
= φ0 +

T

T − 1
R = φ0 +

(
R +

1

T
R

)
+R

∞∑
j=2

1

T j
. (2.8)

As a result:

E
[
φ̂(∞)

]
− E

[
ˆ̂
φ
]

=
1 + φ0

T 2
+O(T−4). (2.9)

From the above we conclude as follows. From equations (2.6)-(2.8) we can observe the

effects of analytical bias correction procedures on the higher order bias terms of the FE

estimator. Although Dhaene and Jochmans (2015) made this observation while comparing

analytical and Jackknife bias correction procedures, no analytical results were provided in

their study.4

The way higher order bias terms are altered differs substantially between the one step

and fully iterated estimators. The main difference is in the additional O(T−2) order term

introduced by the
ˆ̂
φ estimator. As a result the fully iterated estimator does not change

the bias term of order O(T−2).5 Note that for all values of φ0 in the stationary region this

term is always negative, see e.g. Kiviet (1995). As equation (2.9) indicates, this term will

play the leading role to explain the discrepancy between the two estimator. Lastly, in a

situation where r = 0 the fully-iterated estimator is exactly unbiased, while the one-step

counterpart still contains a bias term of order O(T−2).

3Here by the expectation operator we mean the expansion after taking the limit in the cross-sectional

dimension N , similar to Dhaene and Jochmans (2015).
4In the case of the fully iterated bias corrected estimator it can be easily seen that the bias term of

order k is given by B′
k =

∑k
j=2Bj .

5Similar to the one step bias corrected estimator, the Split Panel Jackknife estimator of Dhaene and

Jochmans (2015) does affect all higher order terms.
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Remark 2.2. Note that for T = 2 we have φ(∞) = 2φ̂FE + 1. This estimator is nothing

but the bias corrected FE estimator under the assumption of covariance stationarity.6 If

this assumption is not violated, this estimator is fixed T consistent. In terms of the results

presented in equation (2.6)-(2.8) this case refers to r = 0.

Coming back to the results of Theorem 2.1 note that as an estimator of σ2 we have

used7 the method of moments (or autocovariance) based estimator:

σ̂2 = (1− φ̌2)
1

NT

N∑
i=1

T∑
t=1

ỹ2
i,t−1.

This estimator is consistent for large N and large T , but for small values of T might

be sensitive to possible deviations of the initial condition from the equilibrium.8 Thus

alternatively we can use the standard Maximum Likelihood estimator of σ2:

σ̂2(φ̌) =
1

N(T − 1)

N∑
i=1

T∑
t=1

(
ỹi,t − φ̌ỹi,t−1

)2
.

The bias corrected estimator is then defined as:

φ̂M = φ̂FE +
1

T

σ̂2(φ̌)

(1− φ̌)σ̂2
X

,

with φ̌ = φ̂FE in this paper. The bias corrected estimators of this structure can be

especially useful for models with e.g. additional exogenous regressors where not clear

correspondence between σ2
X and φ can be derived. At this stage it might be tempting to

consider the iterated version of this estimator, but as it turned out in preliminary Monte

Carlo studies this estimator fails to converge on many occasions. Thus by considering

only the leading term of the Nickell (1981) bias, convergence issues of the Bun and Carree

(2005) iterative bias corrected estimator are not solved.9

For a finite sample study we take the original designs from Hahn and Kuersteiner

(2002) and for illustration consider bias properties only. Moreover, we replace designs

6Similarly, for T = 2, one can refer to this estimator as the FDLS estimator of Han and Phillips (2013),

that is consistent for any T .
7Implicitly in this paper and explicitly in Hahn and Kuersteiner (2002).
8Recall that the sufficient condition for this estimator to be

√
NT consistent is (1/N)

∑N
i=1 y

2
i,0 =

Op(1).
9In a preliminary study other feasible large N , T bias corrected estimators that included additional

higher order terms were considered. However as their performance was inferior to estimators presented

here, we decided to skip the finite sample results for them.
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with T = 20 to the ones with T = 2. By φ̂
(1)
HK and φ̂

(∞)
HK we respectively denote one step

and iterated bias corrected estimators of Hahn and Kuersteiner (2002). The one step bias

iterated estimator as in Bun and Carree (2005) that is asymptotically equivalent to HK

estimator is denoted by φ̂
(1)
BC .

Table 1: Mean Bias and RMSE AR(1) with stationary initial condition yi,0. 100000 Monte Carlo replica-

tions.

Bias RMSE

Case N/T φ0 φ̂FE φ̂
(1)
HK φ̂

(∞)
HK φ̂M φ̂

(1)
BC φ̂FE φ̂

(1)
HK φ̂

(∞)
HK φ̂M φ̂

(1)
BC

(1) 100/2 0.00 -0.49 -0.25 0.00 0.27 -0.12 0.51 0.28 0.18 0.30 0.17

(2) 100/2 0.30 -0.65 -0.32 0.00 0.14 -0.21 0.66 0.35 0.19 0.21 0.24

(3) 100/2 0.90 -0.95 -0.47 0.00 0.03 -0.44 0.96 0.50 0.20 0.28 0.47

(4) 100/5 0.00 -0.20 -0.04 0.00 0.00 -0.03 0.20 0.07 0.06 0.05 0.06

(5) 100/5 0.30 -0.28 -0.07 -0.02 -0.02 -0.07 0.28 0.09 0.06 0.06 0.09

(6) 100/5 0.90 -0.47 -0.18 -0.11 0.01 -0.23 0.47 0.18 0.12 0.11 0.24

(7) 100/10 0.00 -0.10 -0.01 0.00 0.00 -0.00 0.10 0.04 0.03 0.04 0.04

(8) 100/10 0.30 -0.14 -0.02 -0.01 0.00 -0.02 0.14 0.04 0.04 0.04 0.04

(9) 100/10 0.90 -0.24 -0.08 -0.06 0.12 -0.11 0.25 0.09 0.07 0.14 0.12

Results in Table 1 indicate that the iterated bias corrected estimator strictly dominates

the one-step estimator of Hahn and Kuersteiner (2002) in terms of the finite sample bias.

This conclusion is valid irrespective of the time series dimension and degree of persistence

in {yi,t}. It does not come as a surprise that this domination is especially clear for T = 2

when the iterated estimator is fixed T consistent. For most scenarios the finite sample bias

of φ̂
(1)
HK and φ̂

(1)
BC estimators is of comparable magnitude and sign. The φ̂M estimator, on

the other hand, has smaller finite sample bias than φ̂
(1)
HK in 7 out of 9 scenarios. However,

it is dominated by φ̂
(∞)
HK in the vast majority of cases. Note that results in Table 1 confirm

that the difference between φ̂
(1)
HK − φ̂

(∞)
HK can be solely explained by the (1 + φ0)/T 2 term,

as shown in (2.9).

2.2. Panel VAR(1)

Now we take one step further in terms of the model complexity and consider the Panel

Vector Autoregressive model of order 1 for which the simple panel AR(1) model is just

a special case. For this setup the non-centrality parameter in the limiting distribution of

the fixed effects estimator is given by:

−√ρ
(
Im ⊗ (Σ−1

X (Im −Φ0)−1)
)

vec (Σ0). (2.10)
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Here ΣX =
∑∞

j=0Φ
j
0Σ0(Φj0)′ with σ2

X as a special case and Σ0 = E[εi,tε
′
i,t]. Similarly to

the univariate case we can use this fact to derive:

vec (Σ0) = (Im ⊗ Im −Φ0 ⊗Φ0) vecΣX .

So that the non-centrality parameter can be rewritten as:

−√ρ (Im ⊗ ((Im −Φ0)ΣX))−1 (Im ⊗ Im −Φ0 ⊗Φ0) vecΣX

However, unlike the univariate case, this expression cannot be further simplified. Hence,

the bias corrected estimator for PVAR(1) (with trivial generalization to PVAR(p) with p

finite) is given by:

vec
(

ˆ̂
Φ′FE

)
= vec

(
Φ̂′FE

)
+

1

T

(
Im ⊗ ((Im − Φ̌)Σ̂X)

)−1 (
Im ⊗ Im − Φ̌⊗ Φ̌

)
vec Σ̂X

(2.11)

for some consistent estimator Φ̌. Similarly to the univariate case we can consider an

iterative bias corrected estimator based on equation (2.11) and another one based on the

Maximum Likelihood estimator Σ.

One special case is obtained if the population matrices are such thatΦ0Σ0 = (Φ0Σ0)′.10

Then the results that are available for the univariate case are directly applicable for the

multivariate case as well. In particular:

Φ
(∞)
HK =

T

T − 1
Φ̂FE +

1

T − 1
Im.

To see this consider equation (2.10), and observe that if Φ0Σ0 = (Φ0Σ0)′, one has

ΣX =
∞∑
j=0

Φ
(2j)
0 Σ0 = (Im −Φ2

0)−1Σ0, (2.12)

thus

−√ρ
(
Im ⊗ (Σ−1

X (Im −Φ0)−1)
)

vec (Σ0) = −√ρ vec(Im +Φ0),

which is a trivial extension of the univariate case m = 1.

To illustrate the applicability of the iterative procedure in bivariate case, we provide

two designs that are based on a comprehensive study of Juodis (2014):

Φ0 =

(
0.4 0.2

0.2 0.4

)
, Σ0 =

(
0.07 0.05

0.05 0.07

)
.

10The Monte Carlo designs of this type were considered in the Monte Carlo study of Binder et al.

(2005). As discussed by Juodis (2014), in general this condition is highly restrictive because higher order

PVAR(p) processes violate it by construction.

8



and

Φ0 =

(
0.4 0.15

−0.1 0.6

)
, Σ0 =

(
0.07 0.05

0.05 0.07

)
.

In terms of both persistence and population R2
∆ these two designs are comparable. How-

ever, only the first design satisfies the Φ0Σ0 = (Φ0Σ0)′ condition. For ease of exposition

we present results for φ11 and φ12 elements of Φ. Sample sizes considered are the same as in

the univariate case. We define the Φ̂M estimator analogously to its univariate counterpart.

At first, let us focus on the results for diagonal element φ11 in Table 2. Similar to the

Table 2: VAR(1). Bias of diagonal elements

Case N/T φ11 φ̂FE φ̂
(1)
HK φ̂

(2)
HK φ̂

(3)
HK φ̂M

Design 1

(1) 100/2 0.4 -0.70 -0.35 -0.18 -0.09 0.01

(2) 100/5 0.4 -0.31 -0.09 -0.04 -0.04 -0.03

(3) 100/10 0.4 -0.15 -0.03 -0.01 -0.01 -0.01

Design 2

(4) 100/2 0.4 -0.73 -0.34 -0.14 -0.05 0.07

(5) 100/5 0.4 -0.34 -0.09 -0.04 -0.03 -0.02

(6) 100/10 0.4 -0.17 -0.03 -0.01 -0.01 -0.01

Table 3: VAR(1). Bias of off-diagonal elements

Case N/T φ12 φ̂FE φ̂
(1)
HK φ̂

(2)
HK φ̂

(3)
HK φ̂M

Design 1

(1) 100/2 0.2 -0.10 -0.05 -0.02 -0.01 0.00

(2) 100/5 0.2 -0.06 -0.03 -0.02 -0.02 -0.02

(3) 100/10 0.2 -0.03 -0.01 -0.01 -0.01 -0.01

Design 2

(4) 100/2 0.15 -0.02 -0.05 -0.06 -0.07 -0.07

(5) 100/5 0.15 0.02 -0.01 -0.02 -0.02 -0.02

(6) 100/10 0.15 0.02 0.00 -0.01 -0.01 -0.01

univariate results in Table 1, we see a substantial reduction in finite sample bias of the HK

one-step estimator as compared to the FE estimator. This conclusion is valid irrespective

of design and/or sample size considered. More importantly, analogous to the Panel AR(1)

model, an iterated version of the HK estimator further reduces the finite sample bias at
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every iteration step. However, unlike in the univariate case, we do not present results for

the fully iterated estimator φ
(∞)
HK because in the second design the iterative procedure does

not converge. That is a clear indication that for more-complex problems where no closed

form solution for Φ̂(∞) is available, the fully iterated bias correction procedures are not

feasible. As for the Φ̂M estimator, analogously to the AR(1) case it has superior finite

sample bias properties as compared to the usual one-step iterated estimator of HK.

The results for the off-diagonal element φ12 are quite unexpected and qualitatively

different to those for φ11. At first sight, based on the top part of Table 3 we can conclude

that in terms of both patterns and magnitudes there is no clear difference between results

for diagonal and off-diagonal elements in Φ. However, this conclusion is true for Design

1 only. First of all, the FE estimator for the off-diagonal elements has a quite small bias

in both absolute and relative terms. As a result, in most cases bias correction procedures

correct “too much” and in the wrong direction (note the sign of the bias changed for

T = 5, 10). Hence, for small values of φ12 this overshooting might result in “sign biased”

estimates after the bias correction even in the situations where the FE estimator itself

points into the right direction.

3. Static panel probit

In this section we discuss the final example that is commonly used in panel data

literature. Originally this example was analyzed by Heckman (1981) and later exploited

heavily in numerous Monte Carlo studies to illustrate incidental parameter problem. For

simplicity and possibility of comparison we will use the setup of Hahn and Newey (2004).

The model of interest can be summarized as:

y∗i,t = αi + β′xi,t + εi,t, εi,t
iid∼ N(0, 1)

yi,t = 1(y∗i,t > 0).

with k strictly exogenous regressors xi,t. Denoted by θ ≡ (α1, . . . , αN)′ the (fixed effects)

log-likelihood function has the following expression:11

`(β,θ) =
N∑
i=1

T∑
t=1

log(Φ
[
(2yi,t − 1)(αi + x′i,tβ)

]
)).

11We prefer to use this particular expression of the log-likelihood to simplify expressions for derivatives

of the log-likelihood function.
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The maximum likelihood estimator of β suffers from the incidental parameter problem

and is not consistent for fixed T (unlike the standard linear model with strictly exoge-

nous regressors). Similarly to linear models presented in previous sections we can reduce

asymptotic bias of ML estimator up to order O(T−2) using analytical bias correction for-

mulas of Hahn and Newey (2004). In order to use their approach we need to provide

expressions for the first two derivatives of the log-likelihood function `(β,θ) with respect

to αi and first derivative with respect to β. At first, for the ease of notation denote

fi,t ≡ (2yi,t − 1)(αi + x′i,tβ) then:

ui,t(β) ≡ ∂`i,t
∂β
|αi=αi(β) =

φ(fi,t)

Φ(fi,t)
(2yi,t − 1)xi,t,

vi,t(β) ≡ ∂`i,t
∂αi
|αi=αi(β) =

φ(fi,t)

Φ(fi,t)
(2yi,t − 1),

vi,t,α(β) ≡ ∂2`i,t
∂α2

i

|αi=αi(β) = −
(

2yi,t − 1

Φ(fi,t)

)2

φ(fi,t) [Φ(fi,t)fi,t + φ(fi,t)] .

The (one-step) bias corrected estimator is then given by:

β(1) = β̂ML +
1

T
H(β̌)−1b(β̌),

H(β) = − 1

NT

N∑
i=1

T∑
t=1

Ui,t(β)Ui,t(β)′,

b(β) = − 1

2N

N∑
i=1

(
T∑
t=1

Ui,t(β)Vi,t(β)/

(
T∑
s=1

vi,s(β)2

))
,

Vi,t(β) = vi,t(β)2 + vi,t,α(β),

Ui,t(β) = ui,t(β)− vi,t(β)

(
T∑
s=1

ui,s(β)vi,s(β)/

(
T∑
s=1

vi,s(β)2

))
.

Here, similarly to univariate linear setup, β̌ is any (large N, T) consistent estimator of β.

For any given value of β̌ we obtain αi(β̌) with simple Newton-Raphson iterations using

expressions of derivatives presented above.

For the Monte Carlo analysis we take a setup of Hahn and Newey (2004) without any

changes:

y∗i,t = αi + β0 × xi,t + εi,t, εi,t
iid∼ N(0, 1),

xi,t = 0.1t+ 0.5xi,t−1 + ε
(x)
i,t , ε

(x)
i,t

iid∼ U(−1/2, 1/2),

xi,0
iid∼ U(−1/2, 1/2), αi

iid∼ N(0, 1).
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We set N = {100; 500} and vary T = {4; 8} while the number of MC replications is set to

10, 000.12 Joint log-likelihood function `(β,θ) is maximized with respect to all parameters

using the Newton-Raphson algorithm that exploits sparsity of the Hessian matrix, for

further details please refer to e.g. Greene (2004).13 The iterative bias correction procedure

can be summarized by the following algorithm:14

Algorithm 1 Iterative Bias Correction Procedure

1. For k = 1, . . . , kmax:

2. Given β(k−1) compute αi(β
(k−1)) ∀i = 1, . . . , N using Newton-Raphson algorithm,

3. Given β(k−1) and αi(β
(k−1)) compute: β(k) = β̂ML + 1

T
H(β(k−1))−1b(β(k−1));

4. If ‖β(k) − β(k−1)‖ < ε, stop.

Here we set β(0) = β̂ML.

We present the results with biases of conventional FE and bias corrected estimators in

Table 4. In vast majority of the cases φ
(∞)
HN converges after 7 − 8 iterations, no non-

convergence cases were observed.15 From the results presented in Table 4 it can be seen

Table 4: Static panel probit β0 = 1, with 10000 MC replications

Case N/T βFE β
(1)
HN φ

(2)
HN φ

(∞)
HN

(1) 100/4 0.42 0.11 0.16 0.15

(2) 100/8 0.19 0.05 0.06 0.06

(3) 500/4 0.41 0.11 0.15 0.15

(4) 500/8 0.18 0.05 0.06 0.06

that the FE-probit estimator is substantially biased in finite sample with bias diminishing

in T . Furthermore, as it was already well documented in the Panel Data literature, this

estimator tends to have a positive bias. Turning our attention to bias corrected estimators

we can see that the estimator of Hahn and Newey (2004) reduced the absolute bias of the

FE estimator almost 4 times, while the relative bias is reduced from roughly 40% (20%) to

20% (5%) depending on the sample size T = 4 (T = 8). The results are identical to those

12Note that in the original study of Heckman (1981) only 25 MC replications were performed.

13We fix starting values for all replications to β = 0 and αi
iid∼ N(0, 1).

14Alternatively, we can fix αi for all k to αi(β
(0)).

15For larger values of β0 (> 3) the iterative bias correction procedure failed to converge for several

replications, due to the nearly perfect separation of the data.
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presented by Hahn and Newey (2004), confirming that no programming error was made.

Unlike the one step estimator, two step and fully iterated versions of the bias corrected

estimator do not lead to improvements in terms of the finite sample bias. On the contrary,

further iterations result in marginally higher bias as compared to the one step iterated

estimator.

4. Conclusions

In this paper we have studied finite sample properties of the bias corrected Maximum

Likelihood estimators for panel data models. Following suggestions in the Dynamic Panel

Literature we have particularly focused on the iterated bias corrected estimators and their

finite sample properties. We have shown that in simple panel AR(1) model unlike the

one-step iterated estimator of Hahn and Kuersteiner (2002) the fully iterated estimator

does not change bias of the order T−2 and thus might be preferred for this reason. We

illustrated this issue in a short Monte Carlo study. In addition, Monte Carlo results suggest

that the use of alternative estimators for variance parameter might lead to finite sample

improvements as compared to the one-step iterated estimator as in Hahn and Kuersteiner

(2002).

Afterwards we have taken a next step in terms of the model complexity and considered

Panel VAR(1) model. We have argued that no explicit analytical formula is available

for the fully-iterated bias corrected estimator. Furthermore, no clear results are available

regarding the existence of the fully-iterated estimator in this case. In the Monte Carlo

part of that section we have provided some evidence on the behavior of the iterative

procedures for this type of models. In particular, we have encountered that while iterative

procedures tend to reduce bias for diagonal elements of the VAR parameter matrix, no

general conclusion can be reached for off-diagonal elements.

As our final example of this paper we have taken static panel probit model, that has

long history of finite sample studies in the literature. We have replicated Monte Carlo

results of Hahn and Newey (2004) and found that the one step iterated estimator a reduces

substantial amount of the finite sample bias. However, our finite sample results suggest

that further iterations of the bias formula do not lead to any improvement in terms of

bias. On the contrary, we have encountered situations where additional iterations lead to

more pronounced bias in comparison to the one step iterated estimator.
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