
 

 
 
 

 
Discussion Paper: 2014/10 

 
Inference about the Indirect Effect: 

a Likelihood Approach 
 

 
Noud P.A. van Giersbergen 

 
 
 
 
 
 

www.ase.uva.nl/uva-econometrics 
 

Amsterdam School of Economics 
Department of Economics & Econometrics 
Valckenierstraat 65-67 
1018 XE  AMSTERDAM 
The Netherlands 

 

 

 



Inference about the Indirect Effect:

a Likelihood Approach

Noud P.A. van Giersbergen∗

Email: N.P.A.vanGiersbergen@UvA.nl

UvA-Econometrics, Amsterdam School of Economics

Department of Econometrics, University of Amsterdam,

Valckenierstraat 65-67, 1018 XE, Amsterdam, The Netherlands

December 30, 2014

Abstract

Prior research for constructing confidence intervals for an indirect effect has focused

on a Wald statistic. In this paper, however, the inference problem is analyzed from a

likelihood ratio (LR) perspective. When testing the null hypothesis H0 : αβ = 0, the

LR test statistic leads to the minimum of two t-ratios, whose size can be controlled. A

confidence interval is obtained by inverting the LR statistic. Another confidence interval

is obtained by inverting the sum of two pivotal t-statistics. In the Monte Carlo simula-

tions, this latter confidence interval is the best performer: it outperforms the commonly

used existing methods.

1 Introduction

An indirect effect implies a causal relation between an independent variable, a mediating

variable and a dependent variable; see Sobel (1990) for a detailed analysis. Indirect effects

are important in sociology, psychology and economics. Recently, the statistical properties

of estimators of indirect effects have received much attention, especially by MacKinnon

and coauthors. Key papers in this field are MacKinnon et al. (2002) and MacKinnon et al.

(2004). The latter paper concludes that confidence intervals for the indirect effect based on

the distribution of products are the most accurate and they perform even better than bootstrap

intervals. These confidence intervals are based on critical values reported by Meeker et al.

(1981).

∗Helpful comments from Kees Jan van Garderen and Hans van Ophem are gratefully acknowledged.
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The indirect effect can be written as a product of two parameters: αβ (to be defined

later). Research has concentrated on the following Wald statistic:

α̂β̂ − αβ√
V (α̂β̂).

All kinds of different variance estimators have been proposed, although the simple formula

based on the multivariate delta method derived by Sobel (1982) seems to work best:

V (α̂β̂) = α̂2
V (β̂)+ β̂

2
V (α̂). (1)

In contrast to the existing literature, a likelihood based approach will be investigated in this

paper. However, since the parameter of interest is a product, the analysis will not be standard.

We shall focus on the likelihood ratio (LR) statistic. For testing αβ = 0, the LR test statistic

leads to an exact test, i.e. there exists a critical value such that the size is never greater than

the nominal significance level in finite samples. However, the LR test is conservative, just

like the Wald statistic. Besides size-considerations, the LR test statistic is the most powerful

test due to the Neyman-Pearson lemma in the simple hypothesis setup. Although our analysis

concerns the composite case, it is hoped that the LR statistic is still more powerful than the

Wald statistic.

The paper is organized as follows. Section 2 introduces the model and its likelihood.

In Section 3, the LR Statistic for testing H0 : αβ = 0 is analyzed. The construction of

confidence intervals is discussed in Section 4. The fifth section presents some simulation

results. Finally, the main conclusions are summarized in the last section.

2 The Model and Likelihood

We consider the following data generating process (DGP):

y = δx + β0 + βxm + ε = X

 δ

β0

+ βxm + ε, (2)

xm = αx + α0 + ξ = X

 α

α0

+ ξ, (3)

where X = [x : ι] is a n × 2 matrix, y, x , xm , ε and ξ are n × 1 vectors. For the likelihood

function, normality is assumed: εi ∼ N (0, σ 2
ε) is independent of ξ i ∼ N (0, σ 2

ξ ). It turns
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out that the LR approach delivers a test statistic whose distribution does not dependent too

much on the normality assumption. Although the structural equation in (2) does not include

additional exogenous variables, they can easily be included in the equation like

y = δx + β0 + βxm + Zλ+ ε,

where Z denotes a n×m matrix of exogenous variables. However, equation (2) results if the

additional exogenous regressors Z have been partialled out and the degrees of freedom are

modified as needed. The same reasoning can be applied to equation (3).

The regression equations shown in (2) and (3) can be derived as the marginal model of

xm given x and the conditional model of y given x and xm , when the tripled (y, xm, x) is

assumed to be normally distributed. In econometrics, regression (2) is also referred to as the

structural model, while regression (3) is known as the reduced model, although usually ε is

then assumed to be correlated with ξ . Note that when ε is correlated with ξ , OLS estimators

are not consistent anymore and some kind of instrumental variables (IV) estimator has to be

used for the structural model. The coefficient δ denotes the direct effect of x on y (i.e. the

partial effect of x on y holding the mediating variable xm constant). Substituting formula (3)

into (2) gives

y = X

 δ + αβ

β0 + α0β

+ βξ + ε,
= X

 τ

τ 0

+ ε+, ε+ = βξ + ε. (4)

The total effect is given by τ , while αβ is the so-called indirect effect. Since model (4)

wrongly omits the regressor xm when β 6= 0, the disturbance term ε+ is correlated with ξ in

this case.

Defining θ = (δ, β0, β)
′ and ψ = (α, α0)

′, the likelihood is given by

L(θ, ψ, σ 2
ε, σ

2
ξ ) = f (y|x, xm, δ, β0, β) f (xm |x, α, α0)

=
(

2πσ 2
ε

)− n
2

exp(−
1

2σ 2
ε

∑
ε2

i )
(

2πσ 2
ξ

)− n
2

exp(−
1

2σ 2
ξ

∑
ξ2

i ).

Since there are no restrictions between the parameters of the structural and reduced form

equation and εi is independent of ξ i , the likelihood is just the product of the likelihood of the

structural and reduced form equation. The ML estimators of θ andψ are the OLS estimators.
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This leads to the following concentrated log-likelihood function (concentrated with respect

to θ and ψ)

lc ∝ −
n

2
log(σ̂ 2

ε)−
1

2σ̂ 2
ε

ε̂′ε̂ −
n

2
log(σ̂ 2

ξ )−
1

2σ̂ 2
ξ

ξ̂
′
ξ̂ .

The ML estimators of σ 2
ε and σ 2

ξ are respectively

σ̂ 2
ε =

1

n
ε̂′ε̂ and σ̂ 2

ξ =
1

n
ξ̂
′
ξ̂ .

Hence, the unrestricted (u) maximized likelihood is

Lu = max L(θ̂ , ψ̂, σ̂ 2
ε, σ̂

2
ξ ) =

(
2π

n

)−n

exp(−n)SSR−n/2
ε SSR

−n/2
ξ .

where SSRε = ε̂
′ε̂ and SSRξ = ξ̂

′
ξ̂ .

3 The LR statistic for αβ = 0

The likelihood ratio test compares the unrestricted maximized likelihood with the maximized

likelihood subject to the restriction H0 : αβ = 0. Maximizing the likelihood under the null

hypothesis can be done in two distinct steps: (i) first, maximize subject to α = 0 and (ii)

secondly, maximize subject to β = 0. The maximized concentrated log-likelihood function

under α = 0 is given by

lc(α = 0) ∝ −
n

2
log(σ̂ 2

ε)−
1

2σ̂ 2
ε

ε̂′ε̂ −
n

2
log(σ̃ 2

ξ )−
1

2σ̃ 2
ξ

ξ̃
′
ξ̃ ,

where ξ̃ = xm − α̃0 are the restricted residuals. This leads to the restricted estimator of

σ̃ 2
ξ = n−1SSRα=0 with SSRα=0 = ξ̃

′
ξ̃ , so that the maximized likelihood under α = 0 is

given by

Lα=0 = max
s.t. α=0

L(θ̂ , ψ̃, σ̂ 2
ε, σ̃

2
ξ ) =

(
2π

n

)−n

exp(−n)SSR−n/2
ε SSR

−n/2
α=0 .

Analogously, we obtain under β = 0

Lβ=0 = max
s.t. β=0

L(θ̃ , ψ̂, σ̃ 2
ε, σ̂

2
ξ ) =

(
2π

n

)−n

exp(−n)SSR
−n/2
β=0 SSR

−n/2
ξ ,

where SSRβ=0 = ε̃
′ε̃ with ε̃ = y − δ̃x − β̃0. The likelihood ratio becomes

λ =
Lu

max{Lα=0, Lβ=0}
= min

{
Lu

Lα=0

,
Lu

Lβ=0

}
= min

{(
SSRξ

SSRα=0

)−n/2

,

(
SSRε

SSRβ=0

)−n/2
}
= min(λα, λβ).
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As usual, the F-ratio is a monotone transformation of the likelihood ratio:

fmin = min

{
n − 2

1
(λn/2
α − 1),

n − 3

1
(λ

n/2
β − 1)

}
.

Since we are only testing one parameter at a time, this is also equivalent to the minimum of

the t-statistics for α = 0 and β = 0:

t2
min = min

{
t2
α =

α̂2

SE(α̂)2
, t2
β =

β̂
2

SE(β̂)2

}
. (5)

For a critical region, we look for a critical value such that

max
αβ=0

P[t2
min > c] ≤ ω,

where ω denotes the nominal significance level. When α = 0, β ∈ R, we have

tα ∼ Tn−2 and tβ ∼ Tn−3(β/σ β̂),

so tβ follows a non-central T -distribution with n − 3 degrees of freedom and non-centrality

parameter β/σ β̂ . When |β| becomes large, |tβ | also gets large, so that min{t2
α, t

2
β} ≈ t2

α under

α = 0, β ∈ R. For |β| → ∞, the α-upper quantile of the t2
n−2(= F1,n−1)-distribution can

be taken as critical value. Analogously, we get for β = 0, α ∈ R:

tα ∼ Tn−2(α/σ α̂) and tβ ∼ Tn−3.

Now, for |α| → ∞, we can take the α-upper quantile of the t2
n−3(= F1,n−3)-distribution as

critical value. Since the critical value for n − 3 is larger than for n − 2, the quantile should

be taken from the F1,n−3-distribution or equivalently |tn−3|-distribution.

Figure 1 shows the 95%-quantile of min{t2
α, t

2
β} for n = 50 based on Monte Carlo simu-

lation (100,000 replications). In the upper figure, β = 0 and α varies. The critical value is

lowest when α = 0 and it converges to F5%(1, 48) = 4.0427 when |β| becomes large. In the

lower figure, α = 0 and β varies. For t2
β , the same behavior is observed: the critical value

becomes smaller as |β| becomes smaller.

Insert Figure 1 around here.

4 Confidence Interval for αβ

Most of the literature has focused on setting up confidence intervals. One way to determine

a confidence interval is by inverting a test statistic, so a confidence interval contains all the
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values γ such that H0 : αβ = γ cannot be rejected. Contrary to the previous section, we

cannot assume that one of the parameters is zero. Hence, we have to maximize the log-

likelihood under the restriction αβ = γ . Recall that ξ = xm−αx−α0, so the log-likelihood

becomes under the restriction α = γ /β :

l(θ, α0, σ
2
ε, σ

2
ξ ) ∝ −

n

2
log(σ 2

ε)−
1

2σ 2
ε

∑
ε2

i −
n

2
log

(
σ 2
ξ

)
−

1

2σ 2
ξ

∑
(xm,i −

γ

β
xi − α0)

2.

Now, the log-likelihood of the reduced model is connected to the structural model. The

first-order conditions (FOC) with respect to β and σ 2
ξ change to:

∂l

∂β
=

1

σ̃ 2
ε

∑
(yi − δ̃xi − β̃0 − β̃xm,i )xm,i −

1

σ̃ 2
ξ

∑
(xm,i −

γ

β̃
xi − α̃0)

γ

β̃
2
xi = 0,(6)

∂l

∂σ 2
ξ

= −
n

2σ̃ 2
ξ

+
1

2σ̃ 4
ξ

∑
(xm,i −

γ

β̃
xi − α̃0)

2 = 0.

From the other FOCs, we can express all other estimators as a function of (β̃, γ ) and the

data. For the regression coefficients, we get

δ̃ =
Sx Sy − nSx,y + (nSx,xm − Sx Sxm)β̃

S2
x − nSx,x

,

β̃0 =
Sx Sx,y − Sx,x Sy + (Sxm Sx,x − Sx Sx,xm)β̃

S2
x − nSx,x

,

α̃0 =
Sxm β̃ − γ Sx

nβ̃
,

where Sv =
∑n

i=1 v j for v ∈ {y, xm, x} denotes the sum of a variable and Sv,w =
∑n

i=1 viwi

for v,w ∈ {y, xm, x} denotes the cross-product of two variables. Using these expressions

and the FOCs for σ̃ 2
ε and σ̃ 2

ξ , we can get a FOC for β in (β̃, γ ) and the data only:

γ 2(nSx,x − S2
x )+ N11β̃

γ 2(nSx,x − S2
x )β̃ + D11β̃

2
+ D12β̃

3
+

N20+ N21β̃

D20+ D21β̃ + D22β̃
2
= 0,

where
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N11 = γ (Sx Sxm − nSx,xm),

D11 = 2γ (Sx Sxm − nSx,xm), D12 = (nSxm,xm − S2
xm),

N20 = S2
x Sxm,y − nSxm,y Sxx − Sx Sxm Sx,y + nSx,xm Sx,y + Sxm Sx,x Sy − Sx Sx,xm Sy,

N21 = nSxm,xm Sx,x − S2
x Sxm,xm − S2

xm Sxx + 2Sx Sxm Sx,xm − nS2
x,xm,

D20 = nS2
x,y − 2Sx Sx,y Sy + Sx,x S2

y + S2
x Sy,y − nSx,x Sy,y,

D21 = 2(nSxm,y Sx,x − S2
x Sxm,y + Sx Sxm Sx,y − nSx,xm Sx,y − Sxm Sx,x Sy + Sx Sx,xm Sy),

D22 = Sx2Sxm,xm + S2
xm Sx,x − nSxm,xm Sx,x − 2Sx Sxm Sx,xm + nS2

x,xm .

Taking the two fractions together, we see that the roots of the FOC condition yields a quar-

tic polynomial in β̃, with a zero coefficient for β̃
2
. The advantage of having a closed form

polynomial is that there exist fast and accurate procedures for finding all the roots. Once the

roots are determined, the β̃ with the highest log-likelihood value is the ML estimator. Note

that commonly used optimization procedures have difficulties with determining a global op-

timum. A 100(1−ω)% confidence region is obtained by determining all γ values for which

H0 : αβ = γ is not rejected at significance level ω, i.e.

C I (γ )
Asymp

L R = {γ : L R(γ ) ≤ χ2
1(1− ω)}. (7)

This set can be accurately approximated by some search technique, for instance grid search

or bisection. Note that there is no guarantee that the region is indeed an interval, i.e. the

region could consist of a union of disjoint intervals.

Next, we shall derive an interval that can be determined by just finding roots of a poly-

nomial. This interval is based on the following idea: a 100(1 − ω)% confidence region for

the mean of a p-dimensional Np(µ,6) is the ellipsoid determined by all µ such that

n(ū − µ)′S−1(ū − µ) ≤
p(n − 1)

n − p
Fp,n−p(ω),

where ū = n−1
∑n

i=1 ui and S = (n − 1)−1
∑n

i=1(ui − ū)(ui − ū)′. When S is diagonal,

this boils down to the sum of squared t-statistics. In our case, we have

τα(α)
2 + τβ(β)

2,

where τα(α) = (α̂ − α)/SE(α̂) and τβ(β) = (β̂ − β)/SE(β̂) are two pivotal statistics;

here τ is used since the statistic also depends upon an unknown parameter. However, a
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confidence interval for γ is required, which is only one parameter. So, instead of taking the

critical values from a χ2-distribution with two degrees of freedom in case of (α, β), we now

take the quantiles from a χ2-distribution with only one degree of freedom. This leads to the

following 100(1− ω)% asymptotic confidence interval:

C I (γ )
Asymp

t2 = {γ : τα(α)
2 + τβ(β)

2 ≤ χ2
1(1− ω)}. (8)

It should be noted that the intervals defined by (7) and (8) are not numerically identical, i.e.

in finite samples the two intervals are numerically slightly different.

Note that τα(α)
2 + τβ(β)2 ≤ q defines an elliptical confidence region for (α, β). The

extreme values for β are obtained for α = α̃, while the extreme values for α are obtained for

β = β̃. To compare the confidence region approach with the test statistic approach, we look

at the event that the confidence region contains the value zero, i.e. αβ = 0. When α = α̃,

the t-statistic for α equals zero, i.e. τα(α̃) = 0, and the set defined by {β : τβ(β)
2 ≤ qβ}

contains zero if β̃/SE(β̃) ≤
√

qβ . The probability of this inequality is highest when β = 0,

so that qβ = F1,n−3(ω). Analogously for α, the set defined by {α : τα(α)
2 ≤ qα} contains

zero if α̃/SE(α̃) ≤
√

qα when β = β̃. This leads to qα = F1,n−2(ω). Combining these two

results, we see that zero is included in the interval if

max{t2
α = τα(0)

2, t2
β = τβ(β)

2} ≤ F1,n−3(ω),

since F1,n−3(ω) > F1,n−2(ω). Note that this is the dual of the test statistic given in (5). This

result suggests a better finite-sample performance by replacing the critical value based on

the χ2-distribution with the appropriate quantile of the F1,n−3-distribution:

C I (γ )F
t2 = {γ : τα(α)

2 + τβ(β)
2 ≤ F1,n−3(ω)}. (9)

A confidence interval based on τα(α)
2 + τβ(β)2 ≤ q has the advantage that no search

technique has to be used for finding the lower and upper confidence limit. The equation

(α̃ − α)2

V (α̃)
+
(β̃ − β)2

V (β̃)
= q, (10)

can be solved with respect to β:

β∗± =
β̃V (α̃)±

√
V (α̃)V (β̃)(qV (α̃)− (α̃ − α)2

V (α̃)
. (11)
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The equation defined by the +-sign describes the upper contour of the ellipse, while the

‘−’-equation describes the lower contour. The upper confidence limit for γ is defined as

max αβ s.t. equation (10).

We can substitute equation (11) into αβ to get a formula in α and estimates only. The

optimum is found by solving the FOC for α, i.e. set the derivative of αβ∗± to zero. For the

β∗+-solution, we obtain after reducing fractions to the same denominator:

V (β̃){qV (α̃)− (α̃ − 2α)(α̃ − α)} + β̃
√

V (α̃)V (β̃)(qV (α̃)− (α̃ − α)2√
V (α̃)V (β̃)(qV (α̃)− (α̃ − α)2

= 0. (12)

This fraction is zero if the numerator is zero and the denominator different from zero. The

numerator consists of the sum h1(α)+h2(α). Solving h1(α)+h2(α) = 0, implies calculating

the roots of the following polynomial:

C4α
4 + C3α

3 + C2α
2 + C1α + C0 = 0, (13)

where

C0 = α̃2β̃
2
V (α̃)V (β̃)− qβ̃

2
V (α̃)2V (β̃)+ α̃4

V (β̃)2 − 2qα̃2
V (α̃)V (β̃)2 + q2V (α̃)2V (β̃)2,

C1 = −2α̃β̃
2
V (α̃)V (β̃)− 6α̃3

V (β̃)2 + 6qα̃V (α̃)V (β̃)2,

C2 = β̃
2
V (α̃)V (β̃)+ 13α̃2

V (β̃)2 − 4qV (α̃)V (β̃)2,

C3 = −12α̃V (β̃)2,

C4 = 4V (β̃)2.

We get the same equation for the β∗−-part (only multiplied by −1). In general there are 4

roots, although some may be complex. If the roots are calculated, the corresponding β-values

are easily found using equation (11). The upper and lower confidence limit is obtained by

finding the largest and smallest value for the set {αiβ i }, where αi enumerates all the real

roots of equation (13); see Figure 2 for an illustration

In Figure 2, the results of inverting the LR statistic is shown for two different samples.

The blue line shows the trajectory of (α̃, γ /α̃) when varying γ such that the LR statistic

does not reject H0 : αβ = γ . The ellipses are the boundaries of two sets (α, β) such that

τα(α)
2 + τβ(β)2 ≤ q. For the upper figure, we have α̃ and β̃ significantly different from

zero and both confidence limits are positive. Furthermore, there are only two real roots for
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α, so there are four corresponding β-values indicate by circles. In the lower figure, α̃ and β̃

are both not significantly different from zero. There are four real roots for α, which leads to

eight possible (α, β)-values. The upper limit is positive, while the lower limit is negative.

Insert Figure 2 around here.

5 Monte Carlo Results

Since the LR approach has only an asymptotic justification, the finite-sample behavior is

investigated through Monte Carlo simulation. All simulations were carries out by MATLAB,

although a connection with R was established using statconnDCOM to obtain the Meeker

critical values using the RMediation package; see Tofighi and MacKinnon (2011).

Confidence limits based on a Wald statistic are given by(
α̂β̂ − q(1− ω/2)SE(α̂β̂), α̂β̂ − q(ω/2)SE(α̂β̂)

)
, (14)

where q(ω) denote the ω-quantile of some distribution. Wald-based intervals in this paper

use the Sobel standard error as shown in formula (1). The normal approximation uses the

quantiles of the standard normal distribution, i.e. q(ω) = 8−1(ω) where 8(·) denotes the

cdf of the standard normal distribution. The Meeker interval uses the same standard errors,

but other quantiles:

q(ω) =
qα̂β̂(ω)− tαtβ√

t2
α + t2

β + 1
,

where qα̂β̂(ω) is the ω-quantile of the product of two normally distributed random variables.

Note that the Meeker interval can be asymmetric. For the intervals based on inversion, we

consider the interval based on inverting the LR statistic and the asymptotic χ2-distribution

given in formula (7). Furthermore, we consider the interval based on {γ : τα(α)
2+τβ(β)2 ≤

F1,n−3(ω)} and the roots of formula (13); this is called the sum T 2-inversion method.

Since the inferential problem is almost symmetric in α and β, we only have to consider

halve the number of parameter combinations. Moreover, the two pivotal statistics τα(α)
2

and τβ(β)
2 are invariant with respect to the variances and the regression coefficients δ, β0

and α0, so we can set without loss of generality σ 2
ε = σ 2

ξ = 1 and δ = β0 = α0 = 0 in

the DGP. The simulation study is based on 10,000 replications with sample sizes of 50, 200

and 500 for γ ∈ {0, 0.04, 0.16, 0.36, 0.64, 1} for various values of α and β; see Figure 3.
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We focus on the type-I error rates denoted by ω̂. These error rates are significantly different

from the nominal significance level ω if

|ω̂ − ω| > 2.5758
√
ω(1− ω)/10, 000,

where 2.5758 = −z0.005. For ω = 2.5%, we have |ω̂ − ω| > 0.4%. So, one out of

hundred simulations (1% = 2 · 0.005) is expected to lead to error rates that are significantly

different from ω. Note that a conservative confidence interval leads to error rates that are

too low, although this might still lead to exact inference. This seems to be unavoidable if no

knowledge about either α or β is known. However, error rates that are significantly too high

are incompatible with exact inference procedures.

Insert Figure 3 around here.

Table 1 shows the results for n = 50. As expected, inference based on symmetric normal-

based intervals lead to error rates that are significantly too low (i.e. γ is to the left; 26 in total)

or too high (i.e. γ is to the right; 15 in total). The Meeker-based interval performs much

better, but also suffers from error rates that are too high over all values of γ considered.

In total, 13 error rates are too low and 25 are too high. The performance of interval based

on inverting the LR statistic and the χ2-distribution is very similar to the Meeker-based

intervals: 6 error rates are too low and 25 are too high. Finally, intervals based on the sum

T 2-inversion method and the F-distribution is the best performer: 15 error rates are too low,

but only 2 are too high. All conclusions also qualitatively hold for n = 200, although the

differences are now smaller. The number of error rates that are too high reduces to 9 for the

Meeker intervals, to 4 for the χ2-LR inverted statistic and only 3 for the sum T 2-inversion

method. The results for n = 500 show that the performance of the two confidence intervals

based on inverting the LR statistic are very similar, although the use of the F-quantile still

leads to a small advantage. Note that for this quite large sample size, the Meeker interval

still significantly overrejects in 7 out of 54 parameter combinations.

Insert Tables 1-3 around here.

6 Conclusion

In this paper, we have looked at various confidence intervals for the indirect effect. Prior

research has focused on a Wald-type statistic. However, in the likelihood approach, there are
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three classical tests: Wald, Lagrange Multiplier (or Score) and LR tests. The LR test plays

a central role in the Neyman-Pearson lemma and it is usually the most powerful test. When

testing the null hypothesis H0 : αβ = 0, the LR test statistic leads to the minimum of two

t-ratios (t-statistics for testing zero values under the null). It can be shown that the size of

this test, i.e. probability to reject a true null over the whole restricted parameter space, can

be bounded.

A confidence interval is obtained by inverting the LR statistic. Looking from a different

perspective, a confidence interval can also be based on inversion of the sum of two pivotal t-

statistics. The lower and upper limits are easily obtained by calculating the roots of a quartic

polynomial. Analyzing the rejection rule for H0 : αβ = 0 based on the confidence interval,

a finite-sample correction is suggested, i.e. usage of critical values from a particular F-

distribution. The Monte Carlo simulations show that the latter confidence interval performs

best: it has the least type-I errors different from the nominal significance level.
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Figure 1: Critical values for αβ = 0 based on 100,000 replications and n = 50.
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Figure 2: Confidence interval for γ based on inverting LR test statistic. Green points denote

the lower and upper confidence limits.
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Figure 3: Parameter combinations (red circles) used in the Monte Carlo simulation. Combi-

nations of (α, β) that lead to the same indirect effect γ = αβ are joined by lines.
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Table 1: Type-I Error Rates in percentage points based on 10,000 replications, nominal

significance level of 5% (two-sided) and n = 50.

Normal Meeker LR(2) sumT2(F )

   L R L R L R L R

0 0.0 0 0.00 ‐ 0.01 ‐ 0.16 ‐ 0.20 ‐ 0.18 ‐ 0.25 ‐ 0.14 ‐ 0.17 ‐

0 0.2 0 0.10 ‐ 0.06 ‐ 0.79 ‐ 0.73 ‐ 0.86 ‐ 0.83 ‐ 0.61 ‐ 0.58 ‐

0 0.4 0 0.62 ‐ 0.77 ‐ 2.32 2.68 2.23 2.61 1.76 ‐ 2.17

0 0.6 0 1.35 ‐ 1.61 ‐ 2.96 + 3.29 + 2.83 3.10 + 2.39 2.72

0 0.8 0 2.12 1.88 ‐ 3.28 + 2.85 3.16 + 2.82 2.66 2.42

0 1.0 0 2.26 2.50 2.89 3.06 + 2.89 3.06 + 2.48 2.67

0 1.5 0 2.31 2.75 2.60 2.99 + 2.66 3.05 + 2.25 2.62

0.04 0.2 0.2 0.26 ‐ 8.89 + 0.89 ‐ 9.12 + 1.37 ‐ 2.19 1.13 ‐ 1.60 ‐

0.04 0.4 0.1 0.60 ‐ 3.23 + 1.68 ‐ 5.25 + 2.10 2.95 + 1.77 ‐ 2.50

0.04 0.6 0.06667 1.22 ‐ 2.09 ‐ 2.66 3.54 + 2.86 3.03 + 2.38 2.50

0.04 0.8 0.05 1.63 ‐ 2.68 2.59 3.60 + 2.66 3.36 + 2.24 2.93 +

0.04 1.0 0.04 2.45 2.30 3.46 + 2.71 3.58 + 2.66 2.89 2.42

0.04 1.5 0.02667 2.36 2.67 2.67 2.98 + 2.75 3.04 + 2.35 2.53

0.16 0.4 0.4 0.63 ‐ 7.35 + 1.47 ‐ 4.95 + 1.87 ‐ 3.44 + 1.57 ‐ 2.89

0.16 0.6 0.26667 0.91 ‐ 5.07 + 1.89 ‐ 4.20 + 2.30 3.35 + 1.97 ‐ 2.91 +

0.16 0.8 0.2 1.25 ‐ 3.64 + 2.13 3.53 + 2.49 3.17 + 2.03 ‐ 2.74

0.16 1.0 0.16 1.87 ‐ 3.02 + 2.56 3.20 + 2.78 2.97 + 2.40 2.54

0.16 1.5 0.10667 2.47 2.70 2.95 + 2.84 3.05 + 2.92 + 2.54 2.43

0.36 0.6 0.6 0.88 ‐ 5.62 + 1.60 ‐ 3.78 + 2.12 3.16 + 1.67 ‐ 2.60

0.36 0.8 0.45 1.23 ‐ 4.90 + 2.04 ‐ 3.68 + 2.55 3.16 + 2.05 ‐ 2.69

0.36 1.0 0.36 1.67 ‐ 3.95 + 2.36 3.38 + 2.70 3.16 + 2.29 2.66

0.36 1.5 0.24 2.46 3.07 + 2.89 3.03 + 3.16 + 3.01 + 2.66 2.61

0.64 0.8 0.8 1.36 ‐ 4.90 + 1.91 ‐ 3.62 + 2.29 3.25 + 1.90 ‐ 2.74

0.64 1.0 0.64 1.33 ‐ 4.33 + 1.88 ‐ 3.40 + 2.25 3.15 + 1.89 ‐ 2.58

0.64 1.5 0.42667 1.91 ‐ 3.48 + 2.41 3.09 + 2.62 3.05 + 2.31 2.55

1 1.0 1 1.44 ‐ 4.19 + 2.03 ‐ 3.21 + 2.35 3.04 + 1.99 ‐ 2.48

1 1.5 0.66667 1.93 ‐ 3.55 + 2.28 3.09 + 2.45 2.99 + 2.18 2.60

Remarks: sumT2(F) is based on τα(α)
2+τβ(β)2 and the F-distribution. Columns indicated

with an L show the estimated error rates when γ is to the left, i.e. γ <lower confidence

limit. R-columns show the estimated error rates when γ is to the right, i.e. γ >upper

confidence limit. A ‘−’-sign indicates that the error rate is significantly too low, while a

‘+’-sign indicates that the error rate is significantly too high.
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Table 2: Type-I Error Rates in percentage points based on 10,000 replications, nominal

significance level of 5% (two-sided) and n = 200.

Normal Meeker LR(2) sumT2(F )

   L R L R L R L R

0 0.0 0 0.00 ‐ 0.00 ‐ 0.11 ‐ 0.13 ‐ 0.10 ‐ 0.13 ‐ 0.10 ‐ 0.13 ‐

0 0.2 0 0.49 ‐ 0.43 ‐ 2.25 2.11 2.05 ‐ 1.90 ‐ 1.94 ‐ 1.86 ‐

0 0.4 0 1.71 ‐ 1.82 ‐ 2.68 2.70 2.54 2.55 2.46 2.44

0 0.6 0 2.13 2.05 ‐ 2.66 2.45 2.60 2.43 2.44 2.35

0 0.8 0 2.14 2.44 2.28 2.63 2.28 2.63 2.22 2.54

0 1.0 0 2.54 2.70 2.62 2.89 2.62 2.89 2.54 2.77

0 1.5 0 2.21 2.44 2.25 2.46 2.28 2.46 2.18 2.43

0.04 0.2 0.2 0.60 ‐ 7.34 + 1.53 ‐ 4.96 + 1.96 ‐ 3.34 + 1.88 ‐ 3.21 +

0.04 0.4 0.1 1.07 ‐ 3.18 + 1.94 ‐ 3.08 + 2.25 2.52 2.09 ‐ 2.45

0.04 0.6 0.06667 1.96 ‐ 2.52 2.64 2.70 2.65 2.54 2.57 2.45

0.04 0.8 0.05 2.10 2.55 2.38 2.70 2.39 2.61 2.31 2.54

0.04 1.0 0.04 2.46 2.50 2.72 2.59 2.73 2.58 2.62 2.46

0.04 1.5 0.02667 2.51 2.94 + 2.59 2.97 + 2.63 2.98 + 2.50 2.88

0.16 0.4 0.4 1.24 ‐ 4.65 + 1.87 ‐ 3.33 + 2.13 2.78 2.04 ‐ 2.71

0.16 0.6 0.26667 1.61 ‐ 3.51 + 2.24 2.93 + 2.47 2.58 2.36 2.42

0.16 0.8 0.2 1.54 ‐ 3.33 + 1.92 ‐ 3.14 + 2.04 ‐ 2.99 + 1.97 ‐ 2.94 +

0.16 1.0 0.16 2.02 ‐ 2.79 2.38 2.70 2.48 2.59 2.36 2.48

0.16 1.5 0.10667 2.34 2.50 2.47 2.50 2.51 2.51 2.39 2.40

0.36 0.6 0.6 1.46 ‐ 4.02 + 2.00 ‐ 3.12 + 2.32 2.87 2.16 2.74

0.36 0.8 0.45 1.76 ‐ 3.38 + 2.11 2.91 + 2.34 2.71 2.19 2.60

0.36 1.0 0.36 2.08 ‐ 3.24 + 2.55 2.90 2.72 2.74 2.57 2.62

0.36 1.5 0.24 2.49 2.84 2.66 2.71 2.70 2.65 2.62 2.51

0.64 0.8 0.8 1.74 ‐ 3.88 + 2.11 3.33 + 2.36 3.14 + 2.23 2.96 +

0.64 1.0 0.64 1.81 ‐ 3.38 + 2.22 2.83 2.45 2.70 2.30 2.58

0.64 1.5 0.42667 2.22 3.01 + 2.51 2.88 2.58 2.87 2.49 2.79

1 1.0 1 1.84 ‐ 3.33 + 2.16 2.86 2.35 2.78 2.23 2.65

1 1.5 0.66667 2.08 ‐ 2.91 + 2.39 2.62 2.46 2.55 2.42 2.46

Remarks: see Table 1.
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Table 3: Type-I Error Rates in percentage points based on 10,000 replications, nominal

significance level of 5% (two-sided) and n = 500.

Normal Meeker LR(2) sumT2(F )

   L R L R L R L R

0 0.0 0 0.00 ‐ 0.00 ‐ 0.08 ‐ 0.14 ‐ 0.09 ‐ 0.16 ‐ 0.09 ‐ 0.16 ‐

0 0.2 0 1.28 ‐ 1.46 ‐ 2.67 3.18 + 2.44 2.88 2.40 2.85

0 0.4 0 2.61 2.23 3.08 + 2.54 3.04 + 2.50 2.95 + 2.46

0 0.6 0 2.48 2.58 2.61 2.77 2.58 2.76 2.55 2.71

0 0.8 0 2.22 2.79 2.29 2.92 + 2.28 2.91 + 2.23 2.83

0 1.0 0 2.30 2.44 2.32 2.46 2.32 2.46 2.30 2.44

0 1.5 0 2.78 2.29 2.82 2.31 2.83 2.32 2.78 2.29

0.04 0.2 0.2 1.08 ‐ 5.57 + 1.87 ‐ 3.75 + 2.24 2.84 2.20 2.81

0.04 0.4 0.1 1.70 ‐ 3.08 + 2.24 2.93 + 2.32 2.68 2.27 2.64

0.04 0.6 0.06667 2.11 2.80 2.34 2.81 2.39 2.75 2.30 2.67

0.04 0.8 0.05 2.26 2.29 2.42 2.34 2.43 2.29 2.39 2.26

0.04 1.0 0.04 2.43 2.47 2.48 2.48 2.49 2.48 2.47 2.45

0.04 1.5 0.02667 2.38 2.77 2.40 2.77 2.41 2.79 2.38 2.73

0.16 0.4 0.4 1.82 ‐ 3.96 + 2.35 3.05 + 2.49 2.89 2.46 2.86

0.16 0.6 0.26667 1.66 ‐ 3.29 + 2.15 2.86 2.32 2.63 2.27 2.59

0.16 0.8 0.2 2.08 ‐ 3.02 + 2.39 2.84 2.46 2.81 2.44 2.75

0.16 1.0 0.16 2.16 2.88 2.31 2.83 2.37 2.77 2.34 2.74

0.16 1.5 0.10667 2.39 2.30 2.50 2.30 2.53 2.30 2.46 2.30

0.36 0.6 0.6 1.87 ‐ 3.20 + 2.33 2.73 2.50 2.64 2.46 2.61

0.36 0.8 0.45 1.96 ‐ 3.13 + 2.27 2.74 2.42 2.60 2.36 2.57

0.36 1.0 0.36 2.22 3.05 + 2.43 2.78 2.53 2.66 2.47 2.62

0.36 1.5 0.24 2.39 2.88 2.53 2.82 2.59 2.80 2.51 2.72

0.64 0.8 0.8 1.93 ‐ 2.86 2.23 2.50 2.32 2.45 2.31 2.39

0.64 1.0 0.64 2.17 3.20 + 2.39 2.89 2.45 2.79 2.43 2.77

0.64 1.5 0.42667 2.52 2.79 2.62 2.68 2.67 2.64 2.62 2.56

1 1.0 1 2.18 3.06 + 2.39 2.86 2.44 2.81 2.40 2.75

1 1.5 0.66667 2.13 3.15 + 2.23 2.99 + 2.31 2.93 + 2.25 2.91 +

Remarks: see Table 1.

18


	CoverDP1410
	1410

