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Abstract

The performance in finite samples is examined of inference obtained by vari-
ants of the Arellano-Bond and the Blundell-Bond GMM estimation techniques
for single dynamic panel data models with possibly endogenous regressors and
cross-sectional heteroskedasticity. By simulation the effects are examined of us-
ing particular instrument strength enhancing reductions and transformations of
the matrix of instrumental variables, of less robust implementations of the GMM
weighting matrix, and also of corrections to the standard asymptotic variance es-
timates. We compare the root mean squared errors of the coefficient estimators
and also the size of tests on coefficient values and of different implementations
of overidentification restriction tests. Also the size and power of tests on the va-
lidity of the additional orthogonality conditions exploited by the Blundell-Bond
technique are assessed over a pretty wide grid of relevant cases. Surprisingly, par-
ticular asymptotically optimal and relatively robust weighting matrices are found
to be superior in finite samples to ostensibly more appropriate versions. Most of
the variants of tests for overidentification restrictions show serious deficiencies. A
recently developed modification of GMM is found to have great potential when
the cross-sectional heteroskedasticity is pronounced and the time-series dimension
of the sample not too small. Finally all techniques are employed to actual data
and lead to some profound insights.
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1 Introduction

One of the major attractions of analyzing panel data rather than single indexed vari-
ables is that they allow to cope with the empirically very relevant situation of unobserved
heterogeneity correlated with included regressors. Econometric analysis of dynamic re-
lationships on the basis of panel data, where the number of surveyed individuals is
relatively large while covering just a few time periods, is very often based on GMM
(generalized method of moments). Its reputation is built on its claimed flexibility,
generality, ease of use, robustness and efficiency. Widely available standard software
enables to estimate models including exogenous, predetermined and endogenous regres-
sors consistently, while allowing for semiparametric approaches regarding the presence
of heteroskedasticity and the type of distribution of the disturbances. This software
also provides specification checks regarding the adequacy of the internal and external
instrumental variables employed and the specific assumptions made regarding (absence
of) serial correlation.

Popular are especially the GMM implementations put forward by Arellano and Bond
(1991). However, practical problems have often been reported, such as vulnerability due
to the abundance of internal instruments, discouraging improvements of 2-step over 1-
step GMM findings, poor size control of test statistics, and weakness of instruments
especially when the dynamic adjustment process is slow (a root is close to unity). As
remedies it has been suggested to reduce the number of instruments by renouncing
some valid orthogonality conditions, but also to extend the number of instruments by
adopting more orthogonality conditions. Extra orthogonality conditions can be based
on certain homoskedasticity or stationarity assumptions or initial value conditions, see
Blundell and Bond (1998). By abandoning weak instruments finite sample bias may
be reduced, whereas by extending the instrument set with a few strong ones the bias
may be further reduced and the efficiency enhanced. Presently, it is not clear yet how
practitioners can best make use of these suggestions, because no set of preferred testing
tools is yet available that allows to select instruments by assessing both their validity
and their strength, and to classify individual regressors accurately as either endogenous,
predetermined or strictly exogenous. Therefore it happens often that in applied research
models and techniques are selected simply on the basis of the perceived significance and
plausibility of their coefficient estimates, whereas it is well known that imposing invalid
coefficient restrictions and employing regressors wrongly as instruments will often lead
to relatively small estimated standard errors, which then contain misleading information
on the actual precision of often seriously biased estimators.

The available studies on the performance of alternative inference techniques for dy-
namic panel data models have obvious limitations when it comes to advising practitioners
on the most effective implementations of estimators and tests under general circum-
stances. As a rule, they do not consider various empirically relevant issues in conjunc-
tion, such as: (i) occurrence and the possible endogeneity of regressors additional to the
lagged dependent variable, (ii) occurrence of individual effect (non-)stationarity of both
the lagged dependent variable and other regressors, (iii) cross-section and/or time-series
heteroskedasticity of the idiosyncratic disturbances, and (iv) variation in signal-to-noise
ratios and in the relative prominence of individual effects. For example: the simulation
results in Arellano and Bover (1995), Hahn and Kuersteiner (2002), Alvarez and Arel-
lano (2003), Hahn et al. (2007), Kiviet (2007), Kruiniger (2008), Okui (2009), Roodman
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(2009b), Hayakawa (2009) and Han and Phillips (2013) just concern the panel AR(1)
model under homoskedasticity. Although an extra regressor is included in the simu-
lation studies in Arellano and Bond (1991), Kiviet (1995), Bowsher (2002), Hsiao et
al. (2002), Bond and Windmeijer (2005), Bun and Carree (2005a,b), Bun and Kiviet
(2006), Gouriéroux et al. (2010), Hayakawa (2010), Dhaene and Jochmans (2012), Flan-
nery and Watson Hankins (2013), Everaert (2013) and Kripfganz and Schwarz (2013),
this regressor is (weakly-)exogenous and most experiments just concern homoskedastic
disturbances and stationarity regarding the impact of individual effects. Blundell et
al. (2001) and Bun and Sarafidis (2013) include an endogenous regressor, but their
design does not allow to control the degree of simultaneity; moreover, they stick to
homoskedasticity. Harris et al. (2009) only examine the effects of neglected endogene-
ity. Heteroskedasticity is considered in a few simulation experiments in Arellano and
Bond (1991) in the model with an exogenous regressor, and just for the panel AR(1)
case in Blundell and Bond (1998). Windmeijer (2005) analyzes panel GMM with het-
eroskedasticity, but without including a lagged dependent variable in the model. Bun
and Carree (2006) and Juodis (2013) examine effects of heteroskedasticity in the model
with a lagged dependent and a strictly exogenous regressor under stationarity regard-
ing the effects. So, we have to conclude that knowledge is still scarce with respect to
the performance of GMM when it is not only needed to cope with genuine simultaneity
(which we consider to be the core of econometrics), but also because of occurrence of het-
eroskedasticity of unknown form. Moreover, many of the simulation studies mentioned
above did not systematically explore the effects of relevant nuisance parameter values on
the finite sample distortions to asymptotic approximations. Regarding the performance
of tests on the validity of instruments worrying results have been obtained in Bowsher
(2002) and Roodman (2009b) for homoskedastic models. On the other hand Bun and
Sarafidis (2013) report reassuring results, but these just concern models where T = 3.
Our grid of examined cases will be much wider and have more dimensions. Moreover,
we will deliberately explore both feasible and unfeasible versions of estimators and test
statistics (in unfeasible versions particular nuisance parameter values are assumed to be
known). Therefore we will be able to draw more useful conclusions on what aspects do
have major effects on any inference inaccuracies in finite samples.

The data generating process designed here can be simulated for classes of models
which may include individual and time effects, a lagged dependent variable regressor
and another regressor which may be correlated with these and other individual effects
and be either strictly exogenous or jointly dependent with regard to the idiosyncratic
disturbances, whereas the latter may show a form of cross-section heteroskedasticity as-
sociated with both the individual effects. For a range of relevant parameter values we
will verify in moderately large samples the properties of alternative GMM estimators,
both 1-step and 2-step, focussing on alternative implementations regarding the weighting
matrix and corresponding corrections to variance estimates according to the often prac-
ticed approach by Windmeijer (2005). This will include variants of the popular system
estimator, which exploit as instruments the first-difference of lagged internal variables
for the untransformed model in addition to lagged level internal variables as instruments
for the model from which the individual effects have been removed. We will examine
cases where the extra instruments are valid, and where they are not, to verify whether
particular tests for overidentification restrictions have appropriate size and power, such
that with reasonable probabilities valid instruments will be recognized as appropriate
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and invalid instruments will be detected and discarded. Moreover, following Kiviet and
Feng (2014), we shall investigate a rather novel modification of the traditional GMM
implementation which aims at improving the strength of the exploited instruments in
the presence of heteroskedasticity. Of course, also the simulation design used here has
its limitations. It has only one extra regressor next to the lagged dependent variable, we
only consider cross-sectional heteroskedasticity, and all basic random terms have been
drawn from the normal distribution. Moreover, the design does not accommodate gen-
eral forms of cross-sectional dependence between error terms. However, by including
individual and time specific effects particular simple forms of cross-sectional dependence
are accommodated.

The structure of this study is as follows. In Section 2 we first present the major
issues regarding IV and GMM coefficient and variance estimation in linear models and
on inference techniques on establishing instrument validity and regarding the coefficient
values by standard and by corrected test statistics. Next in Section 3 the generic results
of Section 2 are used to discuss in more detail than provided elsewhere the various
options for their implementation in linear models for single dynamic simultaneous micro
econometric panel data relationships with both individual and time effects and some form
of cross-sectional heteroskedasticity. In Section 4 the Monte Carlo design is developed
to analyze and compare the performance of alternative often asymptotically equivalent
inference methods in finite samples of empirically relevant parametrizations. Section
5 summarizes the simulation results, from which some preferred techniques for use in
finite samples of particular models emerge, plus a warning regarding particular types of
models that require more refined methods yet to be developed. Next, in Section 6, we
examine whether these techniques yield new insights when employed to empirical data
on life-cycle labor supply which have been analyzed already extensively in the literature.
Finally Section 7 concludes.

2 Basic GMM results for linear models

Here we present concisely the major generic results on IV and GMM inference for sin-
gle indexed data that could either represent time-series or a cross-section. First we
define the model and estimators, discuss some of their special properties and consider
specific test situations. From these general findings for linear regressions the examined
implementations for specific linear dynamic panel data models follow easily in Section
3.

2.1 Model and estimators

Let the scalar dependent variable yi depend linearly on K regressors xi and an unob-
served disturbance term ui, and let there be L ≥ K variables zi (the instruments) that
establish orthogonality conditions such that

yi = x′iβ0 + ui
E[zi(yi − x′iβ0)] = 0

}
i = 1, ..., n. (2.1)

Here xi and β0 are K × 1 vectors, β0 containing the true values of the unknown coeffi-
cients, and zi is an L×1 vector. Applying the analogy principle, the method of moments

4



(MM) aims to find an estimator for model parameter β by solving the L sample moment
equations

n−1
∑n

i=1
zi(yi − x′iβ̂) = 0. (2.2)

Generally, these have a unique solution only when L = K and then yield

β̂ =
(∑n

i=1
zix
′
i

)−1∑n

i=1
ziyi, (2.3)

provided the inverse exists. For L > K the MM recipe to find a unique estimator is:
minimize with respect to β the criterion function∑n

j=1
[(yj − x′jβ)z′j]G

∑n

i=1
[zi(yi − x′iβ)]

for some weighting matrix G. It can be shown that the asymptotically optimal choice
for G is an expression which has a probability limit that is proportional to the inverse
of the asymptotic variance V of

n−1/2
∑n

i=1
ziui

d→ N(0, V ).

When ui ∼ iid(0, σ2
u) an optimal choice for G is proportional to the inverse of

∑n
i=1 ziz

′
i

and the MM estimator is

β̂IV = [X ′Z(Z ′Z)−1Z ′X]−1X ′Z(Z ′Z)−1Z ′y, (2.4)

where y = (y1 · · · yn)′, X = (x1 · · ·xN)′ and Z = (z1 · · · zN)′. But, when E(ziui) = 0
while u = (u1 · · ·un)′ ∼ (0, σ2

uΩ), where Ω has full rank and without loss of generality
tr(Ω) = n, the optimal choice for G is a matrix proportional to (Z ′ΩZ)−1, yielding MM
estimator

β̂GMM = [X ′Z(Z ′ΩZ)−1Z ′X]−1X ′Z(Z ′ΩZ)−1Z ′y. (2.5)

Note that for Ω = I the latter formula simplifies to β̂IV . When L = K both β̂GMM and
β̂IV simplify to (2.3) or (Z ′X)−1Z ′y.

When Ω is unknown and therefore (2.5) is unfeasible, one should use an informed

guess Ω(0) to obtain the 1-step estimator β̂
(1)
GMM , which is sub-optimal when Ω(0) 6= Ω,

though consistent under the assumptions made. Then the residuals

û(1) = y −Xβ̂(1)
GMM (2.6)

are consistent for u, thus from them it should be possible to obtain an expression Ω̂(1)

such that plimn−1(Z ′Ω̂(1)Z − Z ′ΩZ) = O. Substituting in (2.5) yields the 2-step esti-
mator

β̂
(2)
GMM = [X ′Z(Z ′Ω̂(1)Z)−1Z ′X]−1X ′Z(Z ′Ω̂(1)Z)−1Z ′y, (2.7)

which is asymptotically equivalent to β̂GMM and thus asymptotically optimal, given the
L instruments used.

2.2 Some algebraic peculiarities

Defining PZ = Z(Z ′Z)−1Z ′ and X̂ = PZX one finds β̂IV = (X̂ ′X̂)−1X̂ ′y, which high-
lights its two-stage least-squares character. Now suppose that X = (X1 X2) and Z = (Z1
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Z2) with Z2 = X2 whereas Xβ = X1β1+X2β2, where β1 and β2 have K1 and K2 elements
respectively. Standard results on partitioned regression yields

β̂1,IV = (X̂ ′1MX̂2
X̂1)−1X̂ ′1MX̂2

y = (X ′1PMX2
Z1X1)−1X ′1PMX2

Z1y, (2.8)

which is the IV estimator in the regression of y on just X1 using the L−K2 instruments
MX2Z1. This result is known as partialling out the predetermined regressors X2. It
follows from X̂2 = PZX2 = X2 which yields

MX̂2
X̂1 = MX2PZX1 = MX2(PX2 + PMX2

Z1)X1 = PMX2
Z1X1.

A similar result is not straight-forwardly available for GMM because of the following.
Let positive definite matrix Ω be factorized as follows

Ω−1 = Ψ′Ψ, so Ω = Ψ−1(Ψ′)−1. (2.9)

Now define
y∗ = Ψy, X∗ = ΨX, Z† = (Ψ′)−1Z, (2.10)

then

β̂GMM = [X∗′Z†(Z†′Z†)−1Z†′X∗]−1X∗′Z†(Z†′Z†)−1Z†′y∗

= (X∗′PZ†X
∗)−1X∗′PZ†y

∗,

so GMM is equivalent to IV using transformed variables, but where Z has been trans-
formed differently. Therefore, if X2 is such that X∗2 establishes valid instruments in the
transformed model y∗ = X∗β + u∗, where u∗ ∼ (0, σ2

uI), the regressors X∗2 are not used
as instruments in GMM in its IV interpretation. They would, though, if one would
deliberately choose Z2 = Ω−1X2.

As is well-known and easily verified, linear transformations of the matrix of instru-
ments of the form Z� = ZC, where C is a full rank L×L matrix, have no effect on β̂IV
nor on β̂GMM . However, there is not such invariance when the matrix Z is premultiplied
by some transformation matrix, and hence not the columns but the rows of Z are directly
affected. It has been shown in Kiviet and Feng (2014) that such transformations, chosen
in correspondence with the required transformation of the model when Ω 6= I, may lead
to modified GMM estimation achieving higher efficiency levels and better results in finite
samples than standard GMM, provided the validity of the transformed instruments is
maintained. We will examine here the effects of employing transformation Z∗ = ΨZ,
which provides the modified GMM estimator

β̂MGMM = [X ′Ω−1Z(Z ′Ω−1Z)−1Z ′Ω−1X]−1X ′Ω−1Z(Z ′Ω−1Z)−1Z ′Ω−1y. (2.11)

When this can be made feasible, it yields β̂
(2)
MGMM .

2.3 Particular test procedures

Inference on elements of β0 based on β̂
(2)
GMM of (2.7) requires an asymptotic approximation

to its distribution. Under correct specification the standard first-order approximation is

β̂
(2)
GMM

a∼ N(β0, σ̂
2
u[X

′Z(Z ′Ω̂(1)Z)−1Z ′X]−1). (2.12)
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It allows testing general restrictions by Wald-type tests. For an individual coefficient,
say β0k = e′K,kβ0, where eK,k is a K × 1 vector with all elements zero except its kth

element (1 ≤ k ≤ K) which is unity, testing H0 : β0k = β0
k and allowing for one-sided

alternatives, amounts to comparing test statistic

Wβk = (e′K,kβ̂
(2)
GMM − β

0
k)/{σ̂2

ue
′
K,k[X

′Z(Z ′Ω̂(1)Z)−1Z ′X]−1eK,k}1/2 (2.13)

with the appropriate quantile of the standard normal distribution. Note that this test
statistic is actually an asymptotic t-test; in finite samples the type I error probability
may deviate from the chosen nominal level, also depending on whether σ̂2

u has been
obtained from 1-step or from 2-step residuals and any employed loss of degrees of freedom
corrections. In fact it has been observed that the consistent estimator of the variance of
two-step GMM estimators V̂ ar(β̂

(2)
GMM) given in (2.12) often underestimates the finite

sample variance, because in its derivation the randomness of Ω̂(1) is not taken into

account. Windmeijer (2005) provides a corrected formula V̂ arc(β̂
(2)
GMM), see Appendix

A, which can be used in the corrected t-test

W c
βk

= (e′K,kβ̂
(2)
GMM − β

0
k)/{e′K,kV̂ arc(β̂

(2)
GMM)eK,k}1/2. (2.14)

When L > K the overidentification restrictions can be tested by the Sargan-Hansen
statistic

J
(1)
Z = n(û(1)′Z(Z ′Ω̂(1)Z)−1Z ′û(1))/(û(1)′û(1)), (2.15)

which under correct specification and valid instruments Z is distributed as χ2
L−K asymp-

totically. Because Ω̂(1) is based on û(1), which relates to a consistent estimator, but not
to an asymptotically optimal estimator, it seems better to perform at least one further
iteration and use

J
(2)
Z = n(û(2)′Z(Z ′Ω̂(2)Z)−1Z ′û(2))/(û(2)′û(2)), (2.16)

where û(2) = y − Xβ̂(2)
GMM is used to construct Ω̂(2). When Z = (Zm Za), where Zm is

an n × Lm matrix with Lm ≥ K containing the instruments whose validity seems very
likely, then, under the maintained hypothesis E(Z ′mu) = 0, one can test the validity of
the L− Lm additional instruments Za by the incremental test statistic

JI
(2)
Za

= n[û(2)′Z(Z ′Ω̂(2)Z)−1Z ′û(2)/(û(2)′û(2))− û(2)′
m Zm(Z ′mΩ̂(2)

m Zm)−1Z ′mû
(2)
m /(û(2)′

m û(2)
m )],

(2.17)
which under correct specification of the model with valid instruments Z is distributed as
χ2
L−Lm

asymptotically. Of course, û
(2)
m and Ω̂

(2)
m are obtained by just using the instruments

Zm. Note that for m = K we have JI
(2)
Za

= J
(2)
Z because in that case Z ′mû

(2)
m = 0. Hence,

when m = K, explicit specification of component Zm is meaningless.
In the simulations we will also examine unfeasible versions of the above test statistics,

which exploit information that is usually not available in practice. This will produce
evidence on what elements of the feasible asymptotic tests may cause any inaccuracies
in finite samples. So, next to (2.13), (2.16) and (2.17) we will also examine

W
(u)
βk

= (e′K,kβ̂GMM − β0
k)/{σ2

ue
′
K,k[X

′Z(Z ′ΩZ)−1Z ′X]−1eK,k}1/2, (2.18)

J
(u)
Z = û′Z(Z ′ΩZ)−1Z ′û/σ2

u, where û = y −Xβ̂GMM , (2.19)

JI
(u)
Za

= [û′Z(Z ′ΩZ)−1Z ′û− û′mZm(Z ′mΩZm)−1Z ′mûm]/σ2
u. (2.20)
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Similar feasible and unfeasible implementations of t-tests and Sargan-Hansen tests for
MGMM based estimators follow straight-forwardly.

3 Implementations for dynamic micro panel models

3.1 Model and assumptions

We consider the balanced linear dynamic panel data model (i = 1, ..., N ; t = 1, ..., T )

yit = x′itβ + w′itγ + v′itδ + τt + ηi + εit, (3.1)

where xit contains Kx ≥ 0 strictly exogenous regressors (excluding fixed time effects), wit
are Kw ≥ 0 predetermined regressors (probably including lags of the dependent variable
and other variables affected by lagged feedback from yit or just from εit), vit are Kv ≥ 0
endogenous regressors (affected by instantaneous feedback from yit and therefore jointly
dependent with yit), the τt are random or fixed time effects, the ηi are random individual
specific effects (most likely correlated with many of the regressors) such that

ηi ∼ iid(0, σ2
η), (3.2)

whereas
E(εit) = 0
E(ε2

it) = σ2
it

E(εitεjs) = 0
E(ηiεjt) = 0

∀i, j, t 6= s. (3.3)

The classification of the regressors implies

E(xitεis) = 0
E(witεi,t+l) = 0
E(vitεi,t+1+l) = 0

 ∀i, t, s, l ≥ 0. (3.4)

For the sake of simplicity we assume that all regressors are time varying and that the
vectors xit, wit or vit are defined for t = 1, ..., T . However, their elements may contain
observations prior to t = 1 for regressors that are actually the lth order lag of a current
variable. Only these lagged regressors are observed from t = 1− l onwards. This means
that all regressors, be it current variables or lags of them, have exactly T observations.
So, any unbalancedness problems have been defined away; moreover, no internal instru-
mental variables can be constructed involving observations prior to those included in
xi1, wi1 or vi1.

Stacking the T time-series observations of (3.1) the equation in levels can be written

yi = Xiβ +Wiγ + Viδ + τ + ηiιT + εi, (3.5)

where yi = (yi1 · · · yiT )′, Xi = (xi1 · · ·xiT )′, Wi = (wi1 · · ·wiT )′, Vi = (vi1 · · · viT )′, τ =
(τ1 · · · τT )′ and ιT is the T × 1 vector with all its elements equal to unity. Defining the
i-th T × K block of the regressor matrix Ri = (Xi Wi Vi IT ), the K × 1 coefficient
vector α = (β′ γ′ δ′ τ ′)′ and the compound disturbances as ui = ηiιT + εi, the model can
compactly be expressed as

yi = Riα + ui. (3.6)
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We do allow Kx = 0, Kw = 0, Kv = 0, but not all three at the same time, so

K = Kx +Kw +Kv + T > T. (3.7)

The parameter vector τ could be void too, or have all its elements equal though non-zero.
However, it seems better to allow for a general τ, for the same reasons as an ordinary
cross-section regression normally should include an intercept, namely to help underpin
the assumption that both the idiosyncratic disturbances and the individual effects have
expectation zero.

We focus on micro panels, where the number of time-series observations T is usually
very small, possibly a one digit number, and the number of cross-section units N is
large, usually at least several hundreds. Therefore asymptotic approximations will be
for N →∞ and T finite.

3.2 Removing individual effects by first differencing

First we consider estimating the model by GMM following the approach propounded
by Arellano and Bond (1991), see also Holtz-Eakin et al. (1988). This estimates the
equations (i = 1, ..., N ; t = 2, ..., T )

∆yit = ∆x′itβ + ∆w′itγ + ∆v′itδ + ∆τt + ∆εit

= ∆r′itα̃ + ∆εit, (3.8)

where α̃ = (β′ γ′ δ′ τ̃ ′)′ and ∆rit = (∆x′it ∆w′it ∆v′it e
′
T−1,t)

′ are (K−1)×1 vectors. Here
τ̃ is the (T − 1)× 1 vector (∆τ2 · · ·∆τT )′. Stacking the T − 1 time-series observations of
(3.8) yields

ỹi = R̃iα̃ + ε̃i, (3.9)

where ỹ′i = (∆yi2 · · ·∆yiT ), R̃′i = (∆ri2 · · ·∆riT ) and ε̃′i = (∆εi2 · · ·∆εiT ).
To construct a full column rank matrix of instrumental variables Z = (Z ′1 · · ·Z ′N)′,

which expresses as many linearly independent orthogonality conditions as possible for
(3.9), while restricting ourselves to internal variables, i.e. variables occurring in (3.1),
we define the following vectors

xT ′i = (x′i1· · ·x′iT ), wt′i = (w′i1· · ·w′it), vt′i = (v′i1· · · v′it). (3.10)

Without making this explicit in the notation it should be understood that these three
vectors only contain unique elements. Hence, if vector xis (or wis) contains for 1 < s ≤ T
a particular value and also its lag (which is not possible for vit), then this lag should
be taken out since it already appears in xi,s−1. Matrix Zi is of order (T − 1) × L and
consists of four blocks (though some of these may be void)

Zi = (IT−1 Z
x
i Z

w
i Zv

i ). (3.11)

The first block is associated with the fundamental moment conditions E(ε̃i) = 0 and
could therefore form part of Zi even if one imposes τ̃ = 0. For the other blocks we have

Zx
i = IT−1 ⊗ xT ′i , Zw

i =

 w1′
i 0′ 0′

O
. . . O

0′ 0′ wT−1′
i

 , Zv
i =


0′ 0′ 0′

v1′
i 0′ 0′

O
. . . O

0′ 0′ vT−2′
i

 . (3.12)
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The maximum possible order of Zx
i is (T − 1) × KxT (T − 1), of Zw

i it is (T − 1) ×
KwT (T − 1)/2 and Zv

i is (T − 1)×Kv(T − 1)(T − 2)/2, thus

L ≤ (T − 1){T [Kx + (Kw +Kv)/2]−Kv + 1}, (3.13)

whereas MM estimation requires L ≥ K − 1. It follows from (3.3) and (3.4) that
E(Z ′iε̃i) = 0 indeed. In actual estimation one may use a subset of these instruments by
taking the linear transformation Z∗i = ZiC, where C is an L × L∗ matrix (with all its
elements often being either zero, one or minus one) of rank L∗ < L, provided L∗ ≥ K. In
the above we have implicitly assumed that the variables are such that Z = (Z ′1 · · ·Z ′N)′

will have full column rank, so another necessary condition is N(T − 1) ≥ L. Of course,
it is not required that individual blocks Zi have full column rank.

Despite its undesirable effect on the asymptotic variance of method of moments esti-
mators, reducing the number of instruments may improve estimation precision, because
it may at the same time mitigate estimation bias in finite samples, especially when weak
instruments are being removed. So, instead of including the block IT−1 in Zi one could –
when the model has no time-effects – replace it by IT−1ιT−1 = ιT−1. Regarding Zw

i and
Zv
i two alternative instrument reduction methods have been suggested, namely omitting

long lags (see Bowsher 2002, Windmijer 2005 and Bun and Kiviet 2006) and collaps-
ing (see Roodman 2009b, but also suggested in Anderson and Hsiao 1981). Both are
employed in Ziliak (1997); these two methods can also be combined.

Omitting long lags could be achieved by reducing Zw
i to, for instance,

w′i1 0′ 0′ 0′ 0′ 0′ 0′

0′ w′i1 w′i2 0′ 0′ 0′ 0′

0′ 0′ 0′ w′i2 w′i3 0′ 0′

...
...

... O′ O′
. . . O′ O′

0′ 0′ 0′ 0′ 0′ w′i,T−2 w′i,T−1

 (3.14)

and similar for Zv
i . The collapsed versions of Zw

i and of Zv
i can be denoted as

Z∗wi =


w′i1 0′ · · · 0′

w′i2 w′i1
...

...
. . . O

w′i,T−1 w′i,T−2 · · · w′i,1

 , Z∗vi =


0′ 0′ · · · 0′

v′i1 0′ 0′

v′i2 v′i1
...

...
. . . O

v′i,T−2 w′i,T−3 · · · v′i,1

 . (3.15)

Collapsing can be combined with omitting long lags, if one removes all the columns of
Z∗wi and Z∗vi which have at least a certain number of zero elements (say 1 or 2 or more)
in their top rows. In corresponding ways, the column space of Zx

i can be reduced by
including in Zi either a limited number of lags and leads, or the collapsed matrix

Z∗xi =


x′i2 x′i1 0′ · · · 0′

x′i3 x′i2 x′i1
...

...
...

. . . O
x′i,T x′i,T−1 x′i,T−2 · · · x′i,1

 , (3.16)

or just its first two or three columns – or what is often done in practice – simply the
difference between the first two columns, the Kx regressors (∆xi2, ...,∆xiT )′.
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In the simulations we will examine the following specific forms of instrument matrix
reduction of the case where all instruments associated with valid linear moment restric-
tions are being used. The latter case we label as A (all); the reductions are labelled
C (standard collapsing), L0, L1, L2, L3 (which primarily restrict the lag length), and
C0, C1, C2, C3 (which combine the two reduction principles). In all the reductions we
replace IT−1 by ιT−1 when the model does not include time-effects. Regarding Zx

i , Z
w
i

and Zv
i different types of reductions can be taken, which we will distinguish by using for

example the characterization: Av, L2w, C1x etc. The particular reductions that we will
consider are defined as indicated in Table 1.

Table 1. Definition of labels for particular instrument matrix reductions

Ax : Zx
i Aw : Zw

i Av : Zv
i

L0x : diag(x′i2, ..., x
′
iT ) L0w : diag(w′i1, ..., w

′
i,T−1) L0v : [0, diag(vi1, ..., vi,T−2)]′

L1x : diag(∆x′i2, ...,∆x
′
iT ) L1w : diag(w′i1,∆w

′
i2, ...,∆w

′
i,T−1) L1v : [0, diag(vi1,∆vi2, ...,∆vi,T−2)]′

L2x : diag(x′i1, ..., x
′
i,T−1), L0x L2w : [0, diag(wi1, ..., wi,T−2)]′, L0w L2v : [0, 0, diag(vi1, ..., vi,T−3)]′, L0v

L3x : [0, diag(xi1, ..., xi,T−2)]′, L2x L3w : [0, 0, diag(wi1, ..., wi,T−3)]′, L2w L3v : [0, 0, 0, diag(vi1, ..., vi,T−4)]′, L2v

Cx : Z∗xi Cw : Z∗wi Cv : Z∗vi
C0x : (xi2, ..., xiT )′ C0w : (wi1, ..., wi,T−1)′ C0v : (0, vi1, ..., vi,T−2)′

C1x : (∆xi2, ...,∆xiT )′ C1w : (0,∆wi2, ...,∆wi,T−1)′ C1v : (0, 0,∆vi2, ...,∆vi,T−2)′

C2x : C0x, (xi1, ..., xi,T−1)′ C2w : C0w,(0, wi1, ..., wi,T−2)′ C2v : C0v,(0, 0, vi1, ..., vi,T−3)′

C3x : C2x,(0, xi1, ..., xi,T−2)′ C3w : C2w,(0, 0, wi1, ..., wi,T−3)′ C3v : C2v,(0, 0, 0, vi1, ..., vi,T−4)′

Note that for all three types of regressors L2, like L1, uses one extra lag compared to
L0, but does not impose the first-difference restrictions characterizing L1. We skipped a
similar intermediary case between L2 and L3. Self-evidently L2x can also be represented
by combining diag(x′i1, ..., x

′
i,T−1) with L1x, and similar for L2w and L2v. The reductions

C0 and C1, which yield just one instrument per regressor, consitute generalizations of
the classic instruments suggested by Anderson and Hsiao (1981). These may lead to
just identified models where the number of instruments equals the number of regressors
and the occurrence of the non-existence of moments problem. To avoid that, and also
because we suppose that in general some degree of overidentification will have advantages
regarding both estimation precision and the opportunity to test model adequacy, we will
restrict ourselves to the popular C1x and the reductions C and C3 as far as collapsing
is concerned. In C3 just the first three columns of the matrices in (3.15) and (3.16) are
being used as instruments.

3.2.1 Alternative weighting matrices

We assumed in (3.3) that the εit are serially and cross-sectionally uncorrelated but may
be heteroskedastic. Let us define the matrices

Ωi =

 σ2
i1 0′ 0

0
. . . 0

0 0′ σ2
iT

 and D =


−1 1 0 · · · 0

0 −1 1
...

...
. . . . . . 0

0 0 · · · −1 1

 , (3.17)

where εi ∼ (0,Ωi) and D is (T − 1) × T, so ε̃i = Dεi ∼ (0, DΩiD
′). Under standard

regularity we have

N−1/2
∑N

i=1
Z ′iε̃i

d→ N(0, plimN−1
∑N

i=1
Z ′iDΩiD

′Zi). (3.18)
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Hence, the optimal GMM estimator of α̃ of (3.9) should use a weighting matrix such that
its inverse has probability limit proportional to plimN−1

∑N
i=1 Z

′
iDΩiD

′Zi. This can be

achieved by starting with a consistent 1-step GMM estimator ̂̃α(1)
, which, assuming

incorrectly Ωi = σ2
εI, uses the weighting matrix

G(0) =
(∑N

i=1
Z ′iDD

′Zi

)−1

, (3.19)

and then yields, what in the simulations we will call the AB1 estimator,

̂̃α(1)
=
[(∑N

i=1
R̃′iZi

)
G(0)

(∑N

i=1
Z ′iR̃i

)]−1 (∑N

i=1
R̃′iZi

)
G(0)

(∑N

i=1
Z ′iỹi

)
. (3.20)

Next, in a second step, the consistent 1-step residuals ̂̃ε(1)

i = ỹi − R̃i
̂̃α(1)

can be used to
construct the asymptotically optimal weighting matrix

Ĝ(1)
a =

(∑N

i=1
Z ′î̃ε(1)

i
̂̃ε(1)′
i Zi

)−1

. (3.21)

However, an alternative is using

Ĝ
(1)
b =

(∑N

i=1
Z ′iĤ

(1)b
i Zi

)−1

, (3.22)

where Ĥ
(1)b
i is the band matrix

Ĥ
(1)b
i =



̂̃ε(1)

i2
̂̃ε(1)

i2
̂̃ε(1)

i2
̂̃ε(1)

i3 0 · · · 0̂̃ε(1)

i3
̂̃ε(1)

i2
̂̃ε(1)

i3
̂̃ε(1)

i3
̂̃ε(1)

i3
̂̃ε(1)

i4 0

0 ̂̃ε(1)

i4
̂̃ε(1)

i3
̂̃ε(1)

i4
̂̃ε(1)

i4
. . . 0

...
. . . . . . . . .

...

0
. . . ̂̃ε(1)

i,T−1
̂̃ε(1)

i,T−1
̂̃ε(1)

i,T−1
̂̃ε(1)

iT

0 0 0 · · · ̂̃ε(1)

iT
̂̃ε(1)

i,T−1
̂̃ε(1)

iT
̂̃ε(1)

iT


. (3.23)

Note that both (NĜ
(1)
a )−1 and (NĜ

(1)
b )−1 have a probability limit equal to the limiting

variance of (3.18). The latter is less robust, but may converge faster when Ωi is diagonal
indeed. On the other hand (3.22) may not be positive definite, whereas (3.21) is.

For the special case Ωi = σ2
ε,iI of cross-section heteroskedasticity but time-series

homoskedasticity, one could use

Ĝ(1)
c =

(∑N

i=1
Z ′iĤ

(1)c
i Zi

)−1

, (3.24)

with

Ĥ
(1)c
i = σ̂

2(1)
ε,i H = σ̂

2(1)
ε,i



2 −1 0 · · · 0
−1 2 −1 0

0 −1 2
. . . 0

...
. . . . . . . . .

...

0
. . . 2 −1

0 0 0 · · · −1 2


, (3.25)
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where H = DD′ and
σ̂

2(1)
ε,i = ̂̃ε(1)′

i H−1̂̃ε(1)

i /(T − 1), (3.26)

although this estimator is not consistent for T finite.

All these different weighting matrices can be used to calculate alternative ̂̃α(2)

(j) esti-
mators for j ∈ {a, b, c}, to be labelled AB2a, AB2b and AB2c, according to

̂̃α(2)

(j) =
[(∑N

i=1
R̃′iZi

)
Ĝ

(1)
j

(∑N

i=1
Z ′iR̃i

)]−1 (∑N

i=1
R̃′iZi

)
Ĝ

(1)
j

(∑N

i=1
Z ′iỹi

)
. (3.27)

When the employed weighting matrix is asymptotically optimal indeed, the first-order

asymptotic approximation to the variance of ̂̃α(2)

(j) is given by the inverse of the matrix
in square brackets. From this (corrected) t-tests are easily obtained, see Section 3.4.
Matching implementations of Sargan-Hansen statistics follow easily too, see Section 3.5.

3.3 Respecting the equation in levels as well

Since τt = τ1 +
∑t

s=2 τ̃s for t ≥ 2, defining the T × (T − 1) matrix

Q =


0 0 · · · 0
1 0

1 1
. . .

...
...

. . . 0
1 1 · · · 1

 , (3.28)

we may write τ = τ1ιT +Qτ̃. Therefore, we can rewrite model (3.6) as

yi = Xiβ +Wiγ + Viδ +Qτ̃ + τ1ιT + ui

= R̄iα̃ + τ1ιT + ui

= R̄∗i α̈ + ui, (3.29)

where R̄i = (Xi Wi Vi Q), R̄∗i = (R̄i ιT ) and K × 1 vector α̈ = (α̃′ τ1)′, with coefficient
τ1 now being an overall intercept.

A valid instrument for model (3.29) is the (as a regressor possibly redundant) in-
tercept, because this embodies the single orthogonality condition E[

∑T
t=1(ηi + εit)] =

E[
∑T

t=1 uit] = 0 (∀i), which is implied by the T+1 assumptions E(ηi) = 0 and E(εit) = 0
(for t = 1, ..., T ) made in (3.2) and (3.3). These T+1 assumptions can also be represented
(through linear transformation) by (i) E(ηi) = 0, (ii) E(∆εit) = 0 (for t = 2, ..., T ) and
(iii) E(

∑T
t=1 uit) = 0. Because we cannot express ηi exclusively in observed variables

and unknown parameters it is impossible to convert (i) into a separate sample orthog-
onality condition. The T − 1 orthogonality conditions (ii) are already employed by
Arellano-Bond estimation, through including IT−1 in Zi of (3.11) for the equation in
first differences. Orthogonality condition (iii), which is in terms of the level distur-
bance, can be exploited by including the column ιT in the i-th block of an instrument
matrix for level equation (3.29).

Combining the T−1 difference equations and the T level equations in a system yields

ÿi = R̈iα̈ + üi, (3.30)
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for each individual i, where ÿi = (ỹ′i y
′
i)
′, R̈i = (R̃∗′i R̄∗′i )′, with R̃∗i = (R̃i 0), so it

is extended by an extra column of zeros (to annihilate coefficient τ1 in the equation
in first differences), and üi = (ε̃′i u

′
i)
′. We find that E(ε̃iu

′
i) = E(Dεiε

′
i) = DΩi and

E(uiu
′
i) = E[(ηiιT + εi)(ηiιT + εi)

′] = σ2
ηιT ι

′
T + Ωi, so

E(üiü
′
i) =

(
DΩiD

′ DΩi

ΩiD
′ Ωi + σ2

ηιT ι
′
T

)
. (3.31)

Model (3.30) can be estimated by MM using the N(2T − 1) × (L + 1) matrix of
instruments with blocks

Z̈i =

(
Zi 0
O ιT

)
, (3.32)

provided L + 1 ≥ K and N(2T − 1) ≥ L + 1. Since both R̈i and Z̈i contain a column
(0′, ι′T )′, and due to the occurrence of the O-block in Z̈i, by a minor generalization of
result (2.8) the IV estimator of α̈ obtained by using instrument blocks Z̈i in (3.30) will
be equivalent regarding α̃ with the IV estimator of equation (3.9) using instruments with
blocks Zi. That the same holds here for GMM under cross-sectional heteroskedasticity
when using optimal instruments is due to the very special shape of Z̈i and is proved in
Appendix B. Hence, there is no reason to estimate the system, just in order to exploit
the extra valid instrument (0′, ι′T )′.

3.3.1 Effect stationarity

More internal instruments can be found for the equation in levels when some of the
regressors are known to be uncorrelated with the individual effects. We will assume that
after first differencing some of the explanatory variables may be uncorrelated with ηi.
Let r�it = (x�′it w

�′
it v

�′
it )′ contain the K� = K�

x + K�
w + K�

v unique elements of rit which
are effect stationary, by which we mean that E(ritηi) is time-invariant, so that

E(∆r�itηi) = 0, ∀i, t = 2, ..., T.

This implies that for the equation in levels the orthogonality conditions

E[∆x�it(ηi + εis)] = 0
E[∆w�

it(ηi + εi,t+l)] = 0
E[∆v�it(ηi + εi,t+1+l)] = 0

∀i, t > 1, s ≥ 1, l ≥ 0 (3.33)

hold. When w�
it includes yi,t−1, then apparently yit is effect stationary so that the adopted

model (3.1) suggests that all regressors in rit must be effect stationary, resulting in
K� = K.

Like for the T − 1 conditions E(∆εit) = 0 discussed below (3.6), many of the con-
ditions (3.33) are already implied by the orthogonality conditions E(Z ′iε̃i) = 0 for the
equation in first-differences. In Appendix C we demonstrate that a matrix Z̃s

i of in-
struments can be designed for the equation in levels (3.6) just containing instruments
additional to those already exploited by E(Z ′iε̃i) = 0, whilst E[Z̃s′

i (ηiιT + εi)] = 0. This
is the T × L� matrix

Z̃s
i = (ιT Z̃

x
i Z̃

w
i Z̃v

i ), (3.34)

14



where L� = 1 +K�(T − 1)−K�
v , with

Z̃x
i =


0′ 0′ · · · 0′

∆x�′i2 0′ · · · 0′

0′ ∆x�′i3 0′

...
. . .

0′ 0′ ∆x�′iT

 , Z̃w
i =


0′ 0′ · · · 0′

∆w�′
i2 0′ · · · 0′

0′ ∆w�′
i3 0′

...
. . .

0′ 0′ ∆w�′
iT

 ,

Z̃v
i =


0′ · · · 0′

0′ · · · 0′

∆v�′i2 0′

. . .

0′ ∆v�′i,T−1

 .

Under effect stationarity of theK� variables (3.33) the system (3.30) can be estimated
while exploiting the matrix of instruments

Z̈s
i =

(
Zi O

O Z̃s
i

)
. (3.35)

If one decides to collapse the instruments included in Zi, it seems reasonable to collapse
Z̃s
i as well and replace it by

Z̈∗si =


1 0′ 0′ 0′

1 ∆x�′i2 ∆w�′
i2 0′

1 ∆x�′i3 ∆w�′
i3 ∆v�′i2

...
...

...
...

1 ∆x�′iT ∆w�′
iT ∆v�′i,T−1

 . (3.36)

Note that Z̈∗si has L� = 1 +K� columns.

3.3.2 Alternative weighting matrices under effect stationarity

For the above system we have

N−1/2
∑N

i=1
Z̈s′
i üi

d→ N(0, plimN−1
∑N

i=1
Φi), (3.37)

with

Φi =

(
Z ′iDΩiD

′Zi Z ′iDΩiZ̃
s
i

Z̃s′
i ΩiD

′Zi Z̃s′
i (Ωi + σ2

ηιT ι
′
T )Z̃s

i

)
. (3.38)

Hence a feasible initial weighting matrix is given by

S(0)(q) =
(∑N

i=1
Φ

(0)
i (q)

)−1

, (3.39)

where

Φ
(0)
i (q) =

(
Z ′iDD

′Zi Z ′iDZ̃
s
i

Z̃s′
i D

′Zi Z̃s′
i (I + qιT ι

′
T )Z̃s

i

)
,
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with q some nonnegative real value. Weighting matrix S(0)(q) would be optimal if
Ωi = σ2

εI with q = σ2
η/σ

2
ε . The for any q consistent 1-step GMM system estimator

BB1(q) is given by

̂̈α(1)
(q) =

[(∑N

i=1
R̈′iZ̈

s
i

)
S(0)(q)

(∑N

i=1
Z̈s′
i R̈i

)]−1 (∑N

i=1
R̈′iZ̈

s
i

)
S(0)(q)

(∑N

i=1
Z̈s′
i ÿi

)
.

(3.40)

Next, in a second step, the consistent 1-step residuals ̂̈u(1)

i = ÿi − R̈i
̂̈α(1)

(q) can be
used to construct the asymptotically optimal weighting matrix

Ŝ(1)
a =

(∑N

i=1
Z̈s′
i
̂̈u(1)

i
̂̈u(1)′
i Z̈s

i

)−1

, (3.41)

where ̂̈u(1)

i = (̂̃εs(1)′
i û

s(1)′
i )′ with ̂̃εs(1)

i = ỹi−R̃∗i ̂̈α(1)
(q) and û

s(1)
i = yi−R̄∗i ̂̈α(1)

(q). However,
several alternatives are possible. Consider weighting matrix

Ŝ
(1)
b =

[
N∑
i=1

(
Z ′iĤ

s(1)
i Zi Z ′iD̂

s(1)
i Z̃s

i

Z̃s′
i D̂

s(1)′
i Zi Z̃s′

i û
s(1)
i û

s(1)′
i Z̃s

i

)]−1

, (3.42)

where Ĥ
s(1)
i is self-evidently like Ĥ

(1)b
i but on the basis of the residuals ̂̃εs(1)

i , and

D̂
s(1)
i =



̂̃εs(1)

i2 û
s(1)
i1

̂̃εs(1)

i2 û
s(1)
i2 0 · · · 0 0

0 ̂̃εs(1)

i3 û
s(1)
i2

̂̃εs(1)

i3 û
s(1)
i3 0

...
. . . . . . . . .

...
...

. . . . . . . . .
...

0
. . . ̂̃εs(1)

i,T−1û
s(1)
i,T−1

̂̃εs(1)

i,T−1û
s(1)
iT

0 0 0 · · · 0 ̂̃εs(1)

iT û
s(1)
iT


. (3.43)

For the special case σ2
εΩi = σ2

ε,iI of cross-section heteroskedasticity and time-series
homoskedasticity one can use the weighting matrix

Ŝ(1)
c =

[
N∑
i=1

σ̂
2,s(1)
ε,i

(
Z ′iHZi Z ′iDZ̃

s
i

Z̃s′
i D

′Zi Z̃s′
i [I + (σ̂

2(1)
η /σ̂

2,s(1)
ε,i )ιT ι

′
T ]Z̃s

i

)]−1

, (3.44)

where

σ̂
2,s(1)
ε,i = ̂̃εs(1)′

i H−1̂̃εs(1)

i /(T − 1), (3.45)

σ̂2,s(1)
η =

∑N

i=1
[(ι′T û

s(1)
i )2 − ûs(1)′

i û
s(1)
i ]/[NT (T − 1)]. (3.46)

Note that, unlike the former, the latter is consistent, because for t 6= s

plimN−1
∑N

i=1
û
s(1)
it û

s(1)
is = limN−1

∑N

i=1
E(uituis)

= limN−1
∑N

i=1
E(ηi + εit)(ηi + εis) = σ2

η.
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The three alternatives yield 2-step system estimators ̂̈α(2)

(j) for j ∈ {a, b, c}, labelled
BB2a, BB2b and BB2c, where

̂̈α(2)

(j) =
[(∑N

i=1
R̈′iZ̈

s
i

)
Ŝ

(1)
j

(∑N

i=1
Z̈s′
i R̈i

)]−1 (∑N

i=1
R̈′iZ̈

s
i

)
Ŝ

(1)
j

(∑N

i=1
Z̈s′
i ÿi

)
,

(3.47)

and the inverse matrix expression can be used again to estimate the variance of ̂̈α(2)

(j) if
all employed moment conditions are valid.

3.4 Coefficient restriction tests

Simple Student-type coefficient test statistics can be obtained from 1-step and 2-step
AB and BB estimation for the different weighting matrices considered. The 1-step esti-
mators can be used in combination with a robust variance estimate (which takes possible
heteroskedasticity into account). The 2-step estimators can be used in combination with
the standard or a corrected variance estimate.1

When testing particular coefficient values, the relevant element of AB1 estimator ̂̃α(1)

given in (3.20) should under homoskedasticity be scaled by the corresponding diagonal
element of the standard expression for its estimated variance given by

V̂ ar(̂̃α(1)
) = N−1

∑N

i=1
σ̂

2(1)
ε,i Ψ, with Ψ =

[(∑N

i=1
R̃′iZi

)
G(0)

(∑N

i=1
Z ′iR̃i

)]−1

,

(3.48)

where σ̂
2(1)
ε,i is given in (3.26). This test will be indicated as AB1. Its robust version

under cross-sectional heteroskedasticity uses for j ∈ {a, b, c}

V̂ ar(j)(̂̃α(1)
) = Ψ

(∑N

i=1
R̃′iZi

)
G(0)

[
Ĝ

(1)
j

]−1

G(0)
(∑N

i=1
Z ′iR̃i

)
Ψ, (3.49)

which will be indicated as either AB1aR, AB1bR or AB1cR. However, under het-

eroskedasticity the estimators ̂̃α(2)

(j) given in (3.47) are more efficient. The standard
estimator for their variance is

V̂ ar(̂̃α(2)

(j)) =
[(∑N

i=1
R̃′iZi

)
Ĝ

(1)
j

(∑N

i=1
Z ′iR̃i

)]−1

, (3.50)

which yields test statistics AB2a etc. The corrected version V̂ arc(̂̃α(2)

(j)) requires deriva-
tion for k = 1, ..., K− 1 of the actual implementation of matrix ∂Ω(β)/∂βk of Appendix
A which is here N(T − 1) × N(T − 1). We denote its i-th block as ∂Ω̃(j)i(α̃)/∂α̃k.
For the a-type weighting matrix2 the relevant T − 1 × T − 1 matrix ∂ε̃iε̃

′
i/∂α̃k with

ε̃i = ỹi − R̃iα̃, is −(ε̃iR̃
′
ik + R̃ikε̃

′
i), where R̃ik denotes the k-th column of R̃i. For

weighting matrix b it simplifies to the matrix consisting of the main diagonal and
the two first sub-diagonals of −(ε̃iR̃

′
ik + R̃ikε̃

′
i) with all other elements zero. And

∂Ω̃(c)i(α̃)/∂α̃k = −2[ε̃′iH
−1R̃ik/(T − 1)]H. So, we find

V̂ arc(̂̃α(2)

(j)) = V̂ ar(̂̃α(2)

(j)) + F̂(j)V̂ ar(̂̃α(2)

(j)) + V̂ ar(̂̃α(2)

(j))F̂(j) + F̂(j)V̂ ar(j)(̂̃α(1)
)F̂ ′(j), (3.51)

1Many authors and the Stata program confusingly address the corrected 2-step variance as robust.
2This is the only variant considered in Windmeijer (2005).
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with the k-th column of F̂(j) given by

F̂(j)·k = −V̂ ar(̂̃α(2)

(j))
(∑N

i=1
R̃′iZi

)
Ĝ

(1)
j

(∑N

i=1
Z ′i

∂Ω̃(j)i(α̃)

∂α̃k

∣∣∣∣∣̂̃α(1)

Zi

)
Ĝ

(1)
j

(∑N

i=1
Z ′î̃ε(2)

i

)
.

(3.52)
This gives rise to tests indicated as AB2aW etc.

All above expressions become a bit more complex when considering BB estimation
of the K coefficients α̈. The suboptimal 1-step BB estimator (3.40) of α̈ should not be
used for testing, unless in combination with a robust variance estimator, which is

V̂ ar(j)(̂̈α(1)
) = Φ

(∑N

i=1
R̈′iZ̈

s
i

)
S(0)(q)

[
Ŝ

(1)
j

]−1

S(0)(q)
(∑N

i=1
Z̈s′
i R̈i

)
Φ, (3.53)

where Φ =
[(∑N

i=1 R̈
′
iZ̈

s
i

)
S(0)(q)

(∑N
i=1 Z̈

s′
i R̈i

)]−1

. This yields BB1aR, BB1bR and

BB1cR. It seems better of course to use the efficient estimator ̂̈α(2)

(j) of (3.47). The
standard expression for its estimated variance is

V̂ ar(̂̈α(2)

(j)) =
[(∑N

i=1
R̈′iZ̈

s
i

)
Ŝ

(1)
j

(∑N

i=1
Z̈s′
i R̈i

)]−1

, (3.54)

leading to tests BB2a etc. Their corrected versions (BB2aW etc.) can be obtained by a
formula similar to (3.51) upon changing α̃ in α̈ and F̂(j)·k of (3.52) in

F̂(j)·k = −V̂ ar(̂̈α(2)

(j))
(∑N

i=1
R̈′iZ̈

s
i

)
Ŝ

(1)
j

(∑N

i=1
Z̈s′
i

∂Ω̈(j)i(α̈)

∂α̈k

∣∣∣∣∣̂̈α(1)

Z̈s
i

)
Ŝ

(1)
j

(∑N

i=1
Z̈s′
i
̂̈ε(2)

i

)
,

(3.55)
where the block of ∂Ω̈(j)i(α̈)/∂α̈k corresponding to the equation in first differences is
similar as for AB, but with an extra column and row of zeros for the intercept. The
block corresponding to the equation in levels we took for weighting matrices a and b
equal to ∂uiu

′
i/∂α̈k = −(uiR̄

∗′
ik + R̄∗iku

′
i), and for type c

∂{ε̃′iH−1ε̃i/(T − 1) +
∑N

i=1
[(ι′Tui)

2 − u′iui]/[NT (T − 1)]}IT/∂α̈k,

for which the first term yields −2[(ε̃′iH
−1R̃ik)/(T − 1)]IT , and the second gives

−2{
∑N

i=1
(ι′TuiR̄

∗′
ikιT − R̄∗′ikui)/[NT (T − 1)]}IT .

For the nondiagonal upperblock of ∂Ω̈(j)i(α̈)/∂α̈k we took in cases a and b ∂ε̃iu
′
i/∂α̃k =

−(ε̃iR̄
∗′
ik + R̃iku

′
i) and for the derivative with respect to the intercept −ε̃iι′T . In case c

it is −2[(ε̃′iH
−1R̃ik)/(T − 1)]D and a zero matrix for the derivative with respect to the

intercept.

3.5 Tests of overidentification restrictions

Using Arellano-Bond and Blundell-Bond type estimation, many options exist with re-
spect to testing the overidentification restrictions. These options differ in the residuals
and weighting matrices being employed. After 1-step Arellano-Bond estimation, see
(3.20) and (3.26), we have test statistic

18



JAB(1,0) =
(∑N

i=1
̂̃ε(1)′
i Zi

)(∑N

i=1
Z ′iHZi

)−1 (∑N

i=1
Z ′î̃ε(1)

i

)
/
(
N−1

∑N

i=1
σ̂

2(1)
i

)
,

(3.56)
which is only valid in case of homoskedasticity. Alternatively, after 1-step estimation
the heteroskedasticity-robust test statistics

JAB
(1,1)
j =

(∑N

i=1
̂̃ε(1)′
i Zi

)
Ĝ

(1)
j

(∑N

i=1
Z ′î̃ε(1)

i

)
, j ∈ {a, b, c} (3.57)

may be used, where Ĝ
(1)
j is given in (3.21), (3.22) and (3.24). Given the type of weighting

matrix being used, one obtains 2-step residuals ̂̃ε(2)

i(j) = ỹi − R̃∗i ̂̈α(2)

(j), and from these
overidentification restrictions test statistics can be obtained, which may differ depending
on whether the weighting matrix is now obtained still from 1-step or already from 2-step
residuals.3 This leads to

JAB
(2,h)
j =

(∑N

i=1
̂̃ε(2)′
a,i Zi

)
Ĝ

(h)
j

(∑N

i=1
Z ′î̃ε(2)

a,i

)
, for h ∈ {1, 2} (3.58)

where the 2-step weighting matrices are either Ĝ
(2)
a =

(∑N
i=1 Z

′
i
̂̃ε(2)

i(a)
̂̃ε(2)′
i(a)Zi

)−1

, Ĝ
(2)
b =(∑N

i=1 Z
′
iĤ

(2)b
i Zi

)−1

or Ĝ
(2)
c =

(∑N
i=1 σ̂

2(2)
i(c) Z

′
iHZi

)−1

, and Ĥ
(2)b
i is like Ĥ

(1)b
i of (3.23),

though using ̂̃ε(2)

i(b) instead of ̂̃ε(1)

i ; furthermore σ̂
2(2)
i(c) = ̂̃ε(2)′

i(c)H
−1̂̃ε(2)

i(c)/(T − 1).
Exploiting effect stationarity of a subset of the regressors by estimating the Blundell-

Bond system leads to the 1-step test statistics

JBB(1,0) =
(∑N

i=1
̂̈u(1)′
i Z̈s

i

)
S(0)(σ̂2,s(1)

η /σ̂2,s(1)
ε )

(∑N

i=1
Z̈s′
i
̂̈u(1)

i

)
/σ̂2,s(1)

ε , (3.59)

JBB
(1,1)
j =

(∑N

i=1
̂̈u(1)′
i Z̈s

i

)
Ŝ

(1)
j

(∑N

i=1
Z̈s′
i
̂̈u(1)

i

)
, j ∈ {a, b, c} (3.60)

where σ̂
2,s(1)
ε =

∑N
i=1 σ̂

2,s(1)
ε,i /N and S(0)(·) and Ŝ

(1)
j can be found in (3.39), (3.41), (3.42)

and (3.44). Defining the various 2-step residuals and variance estimators as ̂̈u(2)

i(j) = ÿi −
R̈i
̂̈α(2)

(j) = (̂̃εs(2)′
i(j) û

s(2)′
i(j) )′ and σ̂

2,s(2)
ε,i(j) and σ̂

2(2)
η(j) similar to (3.45) and (3.46) though obtained

from the appropriate two-step residuals ̂̃εs(2)

i(j) = ỹi − R̃∗i ̂̈α(2)

(j) and û
s(2)
i(j) = yi − R̄i

̂̈α(2)

(j), the
statistics to be used after 2-step estimation are

JBB
(2,h)
j =

(∑N

i=1
̂̈u(2)′
i(j)Z̈

s
i

)
Ŝ

(h)
j

(∑N

i=1
Z̈s′
i
̂̈u(2)

i(j)

)
, (3.61)

where Ŝ
(2)
a and Ŝ

(2)
b are like Ŝ

(1)
a and Ŝ

(1)
b , except that they use ̂̈u(2)

i(a) and ̂̈u(2)

i(b) instead of̂̈u(1)

i . With respect to Ŝ
(2)
c one can use

3Package xtabond2 for Stata always reports JAB(1,0) after Arellano-Bond estimation, which is in-
appropriate when there is heteroskedasticity. After requesting for robust standard errors in 1-step
estimation it presents also JABa(2,1) instead of JABa(1,1). Requesting 2-step estimation also presents
both JAB(1,0) and JABa(2,1). Blundell-Bond estimation yields JBB(1,0) and JBB(2,1), although a

version of JBB(1,0) is reported that does not use weighting matrix S(0)(σ̂
2,s(1)
η /σ̂

2,s(1)
ε ), but S(0)(0),

which is only valid under homoskedasticity and σ2
η = 0.
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Ŝ(2)
c =

[
N∑
i=1

σ̂
2,s(2)
ε,i(j)

(
Z ′iHZi Z ′iDZ̃

s
i

Z̃s′
i D

′Zi Z̃s′
i [I + (σ̂

2(2)
η(c)/σ̂

2,s(2)
ε,i(c) )ιT ι

′
T ]Z̃s

i

)]−1

.

Under their respective null hypotheses the tests based on Arellano-Bond estimation
follow asymptotically χ2 distributions with L−K + 1 degrees of freedom, whereas the
tests based on Blundell-Bond estimates have L + L� − K degrees of freedom. Self-
evidently tests on the effect stationarity related orthogonality conditions are given by

JES(1,0) = JBB(1,0) − JAB(1,0), (3.62)

JES
(l,h)
j = JBB

(l,h)
j − JAB(l,h)

j , l ≤ h ∈ {1, 2}, j ∈ {a, b, c} (3.63)

and should be compared with a χ2 critical value for L� − 1 degrees of freedom.4

3.6 Modified GMM

In the special case that panel model (3.5) has cross-sectional heteroskedasticity and no
time-series heteroskedasticity, hence

σ2
εΩi = σ2

ε,iI, with
∑N

i=1
σ2
ε,i = σ2

εN, (3.64)

we can easily employ MGMM estimator (2.11). However, because H−1 is not a lower-
triangular matrix, not all instruments σ−2

ε,iH
−1Zi would be valid for the equation in

first-differences. This problem can be avoided by using, instead of first-differencing, the
forward orthogonal deviation (FOD) transformation for removing the individual effects.
Let

B =


T−1
T

0 0 · · · 0
0 T−2

T−1
0 · · · 0

... 0
. . . . . .

...
...

...
. . . 2

3
0

0 0 · · · 0 1
2



1/2 
1 − 1

T−1
· · · · · · − 1

T−1
− 1
T−1

0 1 − 1
T−2

· · · − 1
T−2

− 1
T−2

...
...

. . . . . .
...

...

0 0
. . . 1 −1

2
−1

2

0 0 · · · 0 1 −1

 , (3.65)

and ε̌i = Bεi. Then Bui = ε̌i ∼ (0, σ2
ε,iIT−1) provided (3.64) holds, whereas E(Z ′iε̌i) = 0

for Zi given by (3.11). Hence, estimating model

y̌i = Řiα̃ + ε̌i, (3.66)

where y̌i = Byi and Ři = BRi, by GMM, but using an instrument matrix with com-
ponents σ−2

ε,i Zi yields the unfeasible MABu estimator for the model with cross-sectional
heteroskedasticity, which is

̂̃αMABu =

[(∑N

i=1
σ−2
ε,i Ř

′
iZi

)(∑N

i=1
σ−2
ε,i Z

′
iZi

)−1 (∑N

i=1
σ−2
ε,i Z

′
iŘi

)]−1

×(∑N

i=1
σ−2
ε,i Ř

′
iZi

)(∑N

i=1
σ−2
ε,i Z

′
iZi

)−1 (∑N

i=1
σ−2
ε,i Z

′
iy̌i

)
. (3.67)

4By specifying instruments in separate groups, xtabond2 presents for each separate group the cor-
responding incremental J test. However, not the version as defined in (2.17), but an asymptotically
equivalent one as suggested in Hayashi (2000, p.220) which will never be negative.
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Note that the exploited moment conditions are here E(σ−2
ε,i Z

′
iε̌i) = σ−2

ε,i E(Z ′iε̌i) = 0. For
σ2
ε,i > 0 these are intrinsically equivalent with E(Z ′iε̌i) = 0, but they induce the use of

a different set of instruments yielding a different estimator. That it is most likely that
the unfeasible standard AB estimator ABu, which uses instruments σε,iZi for regressors
σ−1
ε,i Ři, will generally exploit weaker instruments than MABu, which uses σ−1

ε,i Zi for

regressors σ−1
ε,i Ři, should be intuitively obvious.

To convert this into a feasible procedure, one could initially assume that all σ2
ε,i are

equal. Then the first-step MGMM estimator ̂̃α(1)

MAB is numerically equivalent to AB1 of
(3.20), provided all instruments are being used.5 Next, exploiting (3.26), the feasible
2-step MAB2 estimator can be obtained by

̂̃α(2)

MAB2 =

[(∑N

i=1
Ř′iZi/σ̂

2(1)
ε,i

)(∑N

i=1
Z ′iZi/σ̂

2(1)
ε,i

)−1 (∑N

i=1
Z ′iŘi/σ̂

2(1)
ε,i

)]−1

×(∑N

i=1
Ř′iZi/σ̂

2(1)
ε,i

)(∑N

i=1
Z ′iZi/σ̂

2(1)
ε,i

)−1 (∑N

i=1
Z ′iy̌i/σ̂

2(1)
ε,i

)
. (3.68)

Modifying the system estimator is more problematic, primarily because the inverse of
the matrix V ar(ui) = Σi = σ2

ε,iIT +σ2
ηιT ι

′
T , which is Σ−1

i = σ−2
ε,i [IT +(T +σ2

ε,i/σ
2
η)
−1ιT ι

′
T ],

is nondiagonal. So, although E(Z̃s′
i ui) = 0, surely E(Z̃s′

i Σ−1
i ui) 6= 0. However, as an

unfeasible modified system estimator we can combine estimation of the model for y̌i using
instruments σ−2

ε,i Zi with estimation of the model for yi using instruments (σ2
ε,i+σ2

η)
−1Z̃s

i .
So, the system is then given by the model

...
y i =

...
Riα̈ +

...
u i, (3.69)

where
...
y i = (y̌′i y

′
i)
′,

...
Ri = (Ř∗′i R̄∗′i )′, with Ř∗i = (Ři 0), and

...
u i = (ε̌′i u

′
i)
′.

For the 1-step estimator we could again choose some nonnegative value q and calcu-
late the 1-step estimator BB1 given in (3.40) in order to find residuals and obtain the

estimators σ̂
2,s(1)
ε,i and σ̂

2,s(1)
η of (3.45) and (3.46). Building on E(

...
u i

...
u ′i) and instrument

matrix block
...
Z i, given by

E(
...
u i

...
u ′i) = σ2

ε,i

(
IT−1 B
B′ IT + (σ2

η/σ
2
ε,i)ιT ι

′
T

)
and

...
Z i =

(
σ̂
−2,s(1)
ε,i Zi O

O (σ̂
2,s(1)
ε,i + σ̂

2,s(1)
η )−1Z̃s

i

)
,

one obtains weighting matrix

ŜB(1)
c =

[
N∑
i=1

(
σ̂
−2,s(1)
ε,i Z ′iZi (σ̂

2,s(1)
ε,i + σ̂

2,s(1)
η )−1Z ′iBZ̃

s
i

(σ̂
2,s(1)
ε,i + σ̂

2,s(1)
η )−1Z̃s′

i B
′Zi (σ̂

2,s(1)
ε,i + σ̂

2,s(1)
η )−2Z̃s′

i [σ̂
2,s(1)
ε,i I + σ̂

2,s(1)
η ιT ι

′
T ]Z̃s

i

)]−1

,

(3.70)
which can be exploited in the feasible 2-step MGMM system estimator MBB2

̂̈α(2)

MBB =
[(∑N

i=1

...
R
′
i

...
Z i

)
ŜB(1)
c

(∑N

i=1

...
Z
′
i

...
Ri

)]−1 (∑N

i=1

...
R
′
i

...
Z i

)
ŜB(1)
c

(∑N

i=1

...
Z
′
i

...
y i

)
.

(3.71)

For both ̂̃α(2)

MAB and ̂̈α(2)

MBB relevant t-test and Sargan-Hansen test statistics can be
constructed. Regarding the latter we will just examine

JMAB =
(∑N

i=1
̂̌ε(2)′
i Zi/σ̂

2,s(1)
ε,i

)(∑N

i=1
Z ′iZi/σ̂

2,s(1)
ε,i

)−1 (∑N

i=1
Z ′î̌ε(2)

i /σ̂
2,s(1)
ε,i

)
, (3.72)

5Proved in Arellano and Bover (1995).
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where ̂̌ε(2)

i = y̌i − Ři
̂̃α(2)

MGMMch, and

JMBB =
(∑N

i=1

.̂..
u

(2)′
i

...
Z
s
i

)
ŜB(1)
c

(∑N

i=1

...
Z
s′
i

.̂..
u

(2)

i

)
, (3.73)

with
.̂..
u

(2)

i =
...
y i −

...
Ri
̂̈α(2)

MBB = (̂̌εs(2)′
i û

s(2)′
i )′. Under their respective null hypotheses these

follow asymptotically χ2 distributions with L−K+1 and L+L�−K degrees of freedom.
Self-evidently, the test on the effect stationarity related orthogonality conditions is given
by

JESM = JMBB − JMAB. (3.74)

4 Simulation design

We will examine the stable dynamic simultaneous heteroskedastic DGP (i = 1, ..., N,
t = 1, ..., T )

yit = αy + γyi,t−1 + βxit + σηη
◦
i + σεω

1/2
i ε◦it (|γ| < 1). (4.1)

Here β has just one element relating to the for each i stable autoregressive regressor

xit = αx + ξxi,t−1 + πηη
◦
i + πλλ

◦
i + σvω

1/2
i v◦it (|ξ| < 1), (4.2)

where
v◦it = ρvεε

◦
it + (1− ρ2

vε)
1/2ζ◦it. (4.3)

All random drawings η◦i , ε
◦
it, λ

◦
i , ζ

◦
it are IID(0, 1) and mutually independent. Parameter

ρvε indicates the correlation between the disturbances εit = σεω
1/2
i ε◦it and vit = σvω

1/2
i v◦it.

These may have different variances, but have similar cross-sectional heteroskedasticity
pattern, determined by the fixed values ω1, ..., ωN . How we did generate these ωi and
the start-up values xi,0 and yi,0 and chose relevant numerical values for the other eleven
parameters will be discussed extensively below.

Note that in this DGP xit is either strictly exogenous (ρvε = 0) or otherwise en-
dogenous6; the only weakly exogenous regressor is yi,t−1. Regressor xit may be affected
contemporaneously by two independent individual specific effects when πη 6= 0 and
πλ 6= 0, but also with delays if ξ 6= 0. The dependent variable yit may be affected con-
temporaneously by the (standardized) individual effect η◦i , both directly and indirectly;
directly if ση 6= 0, and indirectly via xit when βπη 6= 0. However, η◦i will also have delayed
effects on yit, when γ 6= 0 or ξβπη 6= 0, and so has λ◦i when ξβπλ 6= 0.

For the cross-sectional heteroskedasticity we follow an approach similar to Kiviet and
Feng (2014). It is determined by both η◦i and λ◦i , the two standardized individual effects,
and is thus associated with the regressors xit and yi,t−1. It follows a lognormal pattern
when both η◦i and δ◦i are standard normal, because we take

ωi = ehi(θ), with hi(θ) = −θ2/2 + θ[κ1/2η◦i + (1− κ)1/2λ◦i ] ∼ NID(−θ2/2, θ2), (4.4)

where 0 ≤ κ ≤ 1. This establishes a lognormal distribution with E(ωi) = 1 and
V ar(ωi) = eθ

2 − 1. So, for θ = 0 the εit and vit are homoskedastic. The seriousness

6If we would strictly follow the notation of the earlier sections the coefficient β should actually be
called δ when ρvε 6= 0.
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of the heteroskedasticity increases with the absolute value of θ. Obviously, for κ = 0 the
error components ηi and εit are independent (like η◦i and ε◦it), but not for 0 < κ ≤ 1.

From hi(θ)/2 ∼ NID(−θ2/4, θ2/4) it follows that ω
1/2
i = ehi(θ)/2 is lognormally dis-

tributed too, with E(ω
1/2
i ) = e−θ

2/8. Table 2 presents some quantiles of the distributions

of ωi and ω
1/2
i (taken as the positive square root of ωi) and the expectation of the latter

in order to disclose the effects of parameter θ. It shows that θ ≥ 1 implies pretty serious
heteroskedasticity, whereas it may be qualified mild when θ ≤ 0.3, say.

Table 2. Heteroskedasticity quantiles and E(ω
1/2
i )

|θ| ωi ω
1/2
i

q0.01 q0.5 q0.99 q0.01 q0.5 q0.99 E(ω
1/2
i )

.1 .789 .995 1.256 .888 .998 1.121 .999

.3 .476 .956 1.921 .690 .978 1.386 .999

.5 .276 .883 2.824 .525 .939 1.681 .969

.7 .154 .783 3.989 .391 .885 1.997 .941
1.0 .059 .607 6.211 .243 .779 2.492 .882
1.3 .021 .430 8.840 .145 .655 2.973 .810
1.6 .007 .278 11.498 .082 .527 3.391 .726
2.0 .001 .135 14.192 .036 .368 3.767 .607

Without loss of generality we may chose σε = 1 and αy = αx = 0. Note that
(4.1) implicitly specifies τ̃ = 0. All simulation results refer to estimators where these
T − 1 restrictions have been imposed (there are no time effects), but αy = αx = 0
have not been imposed. Hence, when estimating the model in levels ιT is one of the
regressors. Moreover, we may always include IT−1 in Zi and ιT in Z̃s

i in order to exploit
the fundamental moment conditions E(ε̃it) = 0 (for t = 2, ..., T ) and E[

∑T
t=1(ηi+εit)] =

0 for i = 1, ..., N.
Apart from values for θ and κ, we have to make choices on relevant values for eight

more parameters. We could choose γ ∈ {0.2, 0.5, 0.8}, which covers a broad range of
adjustment processes for dynamic behavioral relationships, and ξ ∈ {0.5, 0.8, 0.95} to
include less and more smooth xit processes. Next, interesting values should be given
to the remaining six parameters, namely β, ση, πη, πλ, σv and ρvε. We will do this
by choosing relevant values for six alternative more meaningful notions, which are all
functions of some of the eight DGP parameters and allow to establish relevant numerical
values for them.

The first three notions will be based on (ratios of) particular variance components
of the long-run stationary path of the process for xit. Using lag-operator notation and
assuming that v◦it′ (and ε◦it′) exist for t′ = −∞, ...., 0, 1, ..., T, we find7 that the long-run
path for xit consists of three mutually independent components, namely

xit =
πη

1− ξ
η◦i +

πλ
1− ξ

λ◦i +
σvω

1/2
i

1− ξL
v◦it. (4.5)

The third component, the accumulated contributions of v◦it, is a stationary AR(1) process
with variance σ2

vωi/(1 − ξ2). Approximating N−1
∑N

i=1 ωi by 1, the average variance is

7Note that (1− ξL)−1 = 1 + ξL+ ξ2L2 + ... and therefore (1− ξL)−1η◦i =
∑∞
j=0 ξ

jη◦i = η◦i /(1− ξ).
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σ2
v/(1 − ξ2). The other two components have variances π2

η/(1 − ξ)2 and π2
λ/(1 − ξ)2

respectively, so the average long-run variance of xit equals

V̄x =
π2
η + π2

λ

(1− ξ)2
+

σ2
v

1− ξ2
. (4.6)

A first characterization of the xit series can be obtained by setting V̄x = 1. This is an
innocuous normalization, because β is still a free parameter. As a second characterization
of the xit series, we can choose what we call the (average) effects variance fraction of xit,
given by

EV Fx =
π2
η + π2

λ

(1− ξ)2
/V̄x, (4.7)

with 0 ≤ EV Fx ≤ 1, for which we could take, say, EV Fx ∈ {0, 0.3, 0.6}. To balance
the two individual effect variances we define for the case EV Fx > 0 what we call the
individual effect fraction of η◦i in xit given by

IEF η
x = π2

η/(π
2
η + π2

λ). (4.8)

So IEF η
x , with 0 ≤ IEF η

x ≤ 1, expresses the fraction due to πλη
◦
i of the (long-run)

variance of xit stemming from the two individual effects. We could take, say, IEF η
x ∈

{0, 0.3, 0.6}.
From these three characterizations we obtain

πλ = (1− ξ)[(1− IEF η
x )EV Fx]

1/2, (4.9)

πη = (1− ξ)[IEF η
xEV Fx]

1/2, (4.10)

σv = [(1− ξ2)(1− EV Fx)]1/2. (4.11)

For all three we will only consider the nonnegative root, because changing the sign would
have no effects on the characteristics of xit, as we will generate the series η◦i , ε

◦
it, λ

◦
i and

ζ◦it from symmetric distributions. The above choices regarding the xit process have the
following implications for the average correlations between xit and its two constituting
effects:

ρ̄xη = πη/(1− ξ) = [(1− IEF η
x )EV Fx]

1/2, (4.12)

ρ̄xλ = πλ/(1− ξ) = [IEF η
xEV Fx]

1/2. (4.13)

Now the xit series can be generated upon choosing a value for ρvε. This we obtain from
E(xitεit) = σεσvρvεωi, which on average is σvρvε. Hence, fixing the average simultaneity8

to ρ̄xε, we should choose
ρvε = ρ̄xε/σv. (4.14)

In order that both correlations are smaller than 1 in absolute value an admissibility
restriction has to be satisfied, namely ρ̄2

xε ≤ σ2
v , giving

ρ̄2
xε ≤ (1− ξ2)(1− EV Fx). (4.15)

8Such control is not exercised in the simulation designs of Blundell et al. (2001) and Bun and
Sarafidis (2013). They do consider simultaneity, but its magnitude has not been mentioned and it is
not kept constant over different designs.
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When choosing EV Fx = 0.6 and ξ = 0.8 we should have |ρ̄xε| ≤ 0.379. That we should
not exclude negative values of ρ̄xε will become obvious in due course. For the moment
it seems interesting to examine, say, ρ̄xε ∈ {−0.3, 0, 0.3}.

The remaining choices concern β and ση which both directly affect the DGP for yit.
Substituting (4.5) and (4.3) in (4.1) we find that the long-run stationary path for yit
entails four mutually independent components, since

yit =
β

1− γL
xit +

ση
1− γ

η◦i +
σεω

1/2
i

1− γL
ε◦it

=
βπη + (1− ξ)ση
(1− γ)(1− ξ)

η◦i +
βπλ

(1− γ)(1− ξ)
λ◦i

+
βσvω

1/2
i

(1− γL)(1− ξL)
v◦it +

σεω
1/2
i

1− γL
ε◦it

=
βπη + (1− ξ)ση
(1− γ)(1− ξ)

η◦i +
βπλ

(1− γ)(1− ξ)
λ◦i

βσv(1− ρ2
vε)

1/2ω
1/2
i

(1− γL)(1− ξL)
ζ◦it +

[βρvεσv + (1− ξL)σε]ω
1/2
i

(1− γL)(1− ξL)
ε◦it (4.16)

The third term of the final expression constitutes for each i an AR(2) process and the
fourth one an ARMA(2,1) process. The variance of each of the four terms is given
(derivations in the Appendix) by

Vη =
[βπη + (1− ξ)ση]2

(1− γ)2(1− ξ)2

Vλ =
β2π2

λ

(1− γ)2(1− ξ)2

Vζ(i) =
β2σ2

v(1− ρ2
vε)(1 + γξ)

(1− γ2)(1− ξ2)(1− γξ)
ωi

Vε(i) =
[(1 + βρvεσv)

2 + ξ2](1 + γξ)− 2ξ(1 + βρvεσv)(γ + ξ)

(1− γ2)(1− ξ2)(1− γξ)
ωi.

Averaging the last two over all i yields V̄ζ and V̄ε. For the average long-run variance of
yit we then can evaluate

V̄y = Vη + Vλ + V̄ζ + V̄ε. (4.17)

When choosing fixed values for ratios involving these components to obtain values
for β and ση we will run into the problem of multiple solutions. On the other hand, the
four components of (4.17) have particular invariance properties regarding the signs of β,
ση and ρvε, since changing the sign of all three yields exactly the same value of V̄y. We
coped with this as follows. Although we note that Vη does depend on βπη, we set ση
simply by fixing the direct cumulated effect impact of η◦i on yit relative to the current
noise σε = 1. This is

DENη
y = ση/(1− γ). (4.18)

Because the direct and indirect (via xit) effects from η◦i may have opposite signs, DENη
y

could be given negative values too, but we restricted ourselves to DENη
y ∈ {1, 4},
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yielding
ση = (1− γ)DENη

y . (4.19)

Finally we fix a signal-noise ratio, which gives a value for β. Because under simultaneity
the noise and current signal conflate, we focus on the case where ρxε = 0. Then we have

V̄ζ =
β2σ2

v(1 + γξ)

(1− γ2)(1− ξ2)(1− γξ)
, V̄ε =

1

1− γ2
.

Leaving the variance due to the effects aside, the average signal variance is V̄ζ + V̄ε − 1,
because the current average noise variance is unity. Hence, we may define a signal-noise
ratio as

SNR = V̄ζ + V̄ε − 1 =
β2(1− EV Rx)(1 + γξ)

(1− γ2)(1− γξ)
+

γ2

(1− γ2)
, (4.20)

where we have substituted (4.11). For this we may choose, say, SNR ∈ {2, 3, 5}, in
order to find

β =

[
1− γξ
1 + γξ

SNR− γ2(SNR + 1)

1− EV Rx

]1/2

. (4.21)

Note that here another admissibility restriction crops up, namely

γ2 ≤ SNR/(SNR + 1). (4.22)

However, for |γ| ≤ 0.8 this is satisfied for SNR ≥ 1.78. From (4.21) we only examined
the positive root.

Instead of fixing SNR another approach would be to fix the total multiplier

TM = β/(1− γ), (4.23)

which would directly lead to a value for β, given γ. However, different TM values will
then lead to different SNR values, because

SNR = TM2(1− EV Fx)
(1− γ)(1 + γξ)

(1 + γ)(1− γξ)
+

γ2

(1− γ2)
. (4.24)

At this stage it is hard to say what would yield more useful information from the Monte
Carlo, fixing TM or SNR. Keeping both constant for different γ and some other char-
acteristics of this DGP is out of the question. We chose to fix SNR = 3. which yields
TM values in the range 1.5-1.8. When comparing with results for TM = 1 we did not
note substantial principle differences.

For all different design parameter combinations considered, which involve sample
size N = 200 and T ∈ {3, 6, 9}, we used the very same realizations of the underlying
standardized random components η◦i , λ

◦
i , ε
◦
it and ζ◦it over the respective 10000 replications

that we performed. At this stage, all these components have been drawn from the
standard normal distribution. To speed-up the convergence of our simulation results, in
each replication we have modified the N drawings η◦i and λ◦i such, that they have sample
mean zero, sample variance 1 and sample correlation zero. This rescaling is achieved by
replacing the N draws η◦i first by [η◦i −N−1

∑N
i=1 η

◦
i ] and next by η◦i /[N

−1
∑N

i=1(η◦i )
2]1/2,

and by replacing the λ◦i by the residuals obtained after regressing λ◦i on η◦i and an
intercept, and next scaling them by taking λ◦i /[N

−1
∑N

i=1(λ◦i )
2]1/2. In addition, we have
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rescaled in each replication the ωi by dividing them by N−1
∑N

i=1 ωi, so that the resulting
ωi have sum N as they should in order to avoid that presence of heteroskedasticity is
conflated with larger or smaller average disturbance variance.

In the simulation experiments we will start-up the processes for xit and yit at pre-
sample period s < 0 by taking xis = 0 and yi,s = 0 and next generate xit and yit
for the indices t = s + 1, ..., T. The data with time-indices s, ...,−1 will be discarded
when estimating the model. We suppose that for s = −50 both series will be on their
stationary track from t = 0 onwards. When taking s = −1 or−2 the initial values yi0 and
xi1 will be such that effect-stationarity has not yet been achieved. Due to the fixed zero
startups (which are equal to the unconditional expectations) the (cross-)autocorrelations
of the xit and yit series have a very peculiar start then too, so our results regarding effect
nonstationarity will certainly not be fully general, but in a way for s close to zero we
mimic the situation that a process only started very recently.

Another simple way to mimic a situation in which lagged first-differenced variables
are invalid instruments for the model in levels can be designed as follows. Equations
(4.5) and (4.16) highlight that in the long-run ∆xit and ∆yit are uncorrelated with the
effects η◦i and λ◦i . This can be undermined by perturbing xi0 and yi0 as obtained from
s = −50 in such a way that we add to them the values

(φ− 1)

[
πη

1− ξ
η◦i +

πλ
1− ξ

λ◦i

]
and (φ− 1)

[
βπη + (1− ξ)ση
(1− γ)(1− ξ)

η◦i +
βπλ

(1− γ)(1− ξ)
λ◦i

]
(4.25)

respectively. Note that for φ = 1 effect stationarity is maintained, whereas for 0 ≤ φ < 1
the dependence of xi0 and yi0 on the effects is mitigated in comparison to the stationary
track (upon maintaining stationarity regarding ε◦it and ζ◦it), whereas for φ > 1 this
dependence is inflated. Note that this is a straight-forward generalization of the approach
followed in Kiviet (2007) for the panel AR(1) model.

5 Simulation results

To limit the number of tables we proceed as follows. Often we will first produce results
on unfeasible implementations of the various inference techniques in relatively simple
DGPs. These exploit the true values of ω1, ..., ωN , σ

2
ε and σ2

η instead of their estimates.
Although this information is generally not available in practice, only when such unfea-
sible techniques behave reasonably well in finite samples it seems useful to examine in
more detail the performance of feasible implementations. Results for the unfeasible Arel-
lano Bond (1991) and Blundell Bond (1998) GMM estimators are denoted as ABu and
BBu respectively. As indicated before, their feasible counterparts are denoted as AB1
and BB1 for the 1-step (which under homoskedasticity are equivalent to their unfeasible
counterparts) and AB2 and BB2 for the 2-step estimators. For 2-step estimators the
lower case letters a, b or c are used (as in for instance AB2c) to indicate which type
of weighting matrix has been exploited, as discussed in sections 3.2.1 and 3.3.2. For
corresponding MGMM implementations these acronyms are preceded by the letter M.
Under homoskedasticity their unfeasible implementation has been omitted when this is
equivalent to GMM. In BB estimation we have always used q = 1.

First we will discuss the results for DGPs in which the initial conditions are such
that BB estimation will be consistent and more efficient than AB, and subsequently
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in a separate subsection the situation where BB is inconsistent is examined. Within
these two subsections (5.1 and 5.2) we will in separate subsections examine different
parameter value combinations for the DGP. We will start by presenting results for a
reference parametrization (indicated P0) which has been chosen such that the model has
in fact four parameters less, by choosing ρ̄xε = 0 (xit is strictly exogenous), EV Fx = 0
(hence πλ = πη = 0, so xit is neither correlated with λi nor with ηi) and κ = 0 (any cross-
sectional heteroskedasticity is just related with λi). These choices (implying that any
heteroskedasticity will be unrelated to the regressor xit) may (hopefully) lead to results
where little difference between unfeasible and feasible estimation will be found and where
test sizes are relatively close to the nominal level of 5%. Next we will discuss the effects
of settings (to be labelled P1, P2 etc.) which deviate from this reference parametrization
P0 in one or more aspects regarding the various correlations and variance fractions and
ratios. In P0 the relationship for yit will be characterized by DENη

y = 1 (the impact on
yit of the individual effect ηi and of the idiosyncratic disturbance εit have equal variance).
The two remaining parameters are fixed over all cases examined (including P0). The
xit series has autoregressive coefficient ξ = 0.8 and regarding yit we take SNR = 3
(excluding the impacts of the individual effects, the variance of the explanatory part of
yit is three times as large as σ2

ε).
In section 3.2 we already indicated that we will examine implementations of GMM

where all internal instruments associated with linear moment conditions will be employed
(A), but also particular reductions based either on collapsing (C) or omitting long lags
(L3, etc.), or a combination (C3, etc.). On top of this we will also distinguish situations
that may lead to reductions of the instruments that are being used, because the regressor
xit in model (4.1), which will either be strictly exogenous or endogenous with respect to
εit, might be rightly or wrongly treated as either strictly exogenous, or as predetermined
(weakly exogenous), or as endogenous. These three distinct situations will be indicated
by the letters X, W and E respectively. So, in parametrization P0, where xit is strictly
exogenous, the instruments used by either A, C or, say, L2, are not the same under the
situations X, W and E. This is hopefully clarified in the next paragraph.

Since we assume that for estimation just the observations yi0, ..., yiT and xi1, ..., xiT
are available, the number of internal instruments that are used under XA (all instru-
ments, xit treated as strictly exogenous) for estimation of the equation in first differences
is: T − 1 (time-dummies) + T (T − 1)/2 (lags of yit) + (T − 1)T (lags and leads of xit).
This yields {11, 50, 116} instruments for T = {3, 6, 9}. Under WA this is {8, 35, 80} and
under EA {6, 30, 72}. From section 3.3.1 it follows that for BB estimation this number
of instruments increases with 1 (intercept) + T − 1 (when yi,t−1 is supposed to be effect
stationary) + T−1 (when xi,t is supposed to be effect stationary) −1 (when xit is treated
as endogenous). This implies for T = {3, 6, 9} a total of {5, 11, 17} extra instruments
under XA and WA, and of {4, 10, 16} under EA, whereas these extra instruments will
be valid in section 5.1 and invalid in section 5.2.

In the tables to follow we always examine the three values T ∈ {3, 6, 9}, while
N = 200 (as in the classic Arellano and Bond, 1991 study) and the three values γ ∈
{0.2, 0.5, 0.8} for the dynamic adjustment coefficient. This is done for both θ = 0
(homoskedasticity) and θ = 1 (substantial cross-sectional heteroskedasticity). Tables
have a code which starts by the design parametrization, followed by the character u or f,
indicating whether the table contains unfeasible or feasible results. Because of the many
feasible variants not all results can be combined in just one table. Therefore, the f is
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followed by c, t or J, where c indicates that the table just contains results on coefficient
estimates, which are estimated bias, standard deviation (Stdv) and RMSE (root mean
squared error; below often loosely addressed as precision); t refers to estimates of the
actual rejection probabilities of tests on true coefficient values; and J indicates that the
table only contains results on Sargan-Hansen tests. Next, after a bar (-), the earlier
discussed code for how regressor xit is actually treated when selecting the instruments
is given, followed by the type of instrument reduction.

5.1 DGPs under effect stationarity

Here we focus on the case where BB is consistent and more efficient than AB (s = −50,
φ = 1).

5.1.1 Results for the reference parametrization P0

Table 3, with code P0u-XA, gives results for unfeasible GMM coefficient estimators, un-
feasible single coefficient tests, and for unfeasible Sargan-Hansen tests for the reference
parametrization P0 when xit is (correctly) treated as strictly exogenous and all available
instruments are being used. Table 4 (P0fc-XA) presents a selection of feasible coun-
terparts regarding the coefficient estimators. Under homoskedasticity we see that for
γ̂ABu = γ̂AB1 its bias (which is negative), stdv and thus its RMSE increase with γ and
decrease with T, whereas the bias of β̂ABu = β̂AB1 is moderate and its RMSE, although
decreasing in T, is almost invariant with respect to β. The BBu coefficient estimates
are superior indeed, the more so for larger γ values (as is already well-known), but
less so for β. As already conjectured in section 3.6 under cross-sectional heteroskedas-
ticity both ABu and BBu are substantially less precise than under homoskedasticity.
However, modifying the instruments under cross-sectional heteroskedasticity as is done
by MABu and MBBu yields considerable improvements in performance both in terms
of bias and RMSE. In fact, the precision of the unfeasible modified estimators under
heteroskedasticity comes very close to their counterparts under homoskedasticity.

The simulation results for feasible estimation do not contain the b variant of the
weighting matrix9 because it is so bad, whereas both the a and c variants yield RMSE
values very close to their unfeasible counterparts, under homoskedasticity as well as
heteroskedasticity. Although the best unfeasible results under heteroskedasticity are
obtained by MBBu, this does not fully carry over to MBB, because for T small and also
for moderate T and large γ, BB2c performs much better. The performance of MAB
and AB2c is rather similar, whereas we established that their unfeasible variants differ
a lot when γ is large. Apparently, the modified estimators can be much more vulnerable
when the variances of the error components, σ2

ε,i and σ2
η, are unknown, probably because

their estimates have to be inverted in (3.68) and (3.70).
From the type I error estimates for unfeasible single coefficient tests in Table 3 we see

that the standard test procedures work pretty well for all techniques regarding β, but
with respect to γ ABu fails for larger γ. This gets even worse under heteroskedasticity,
but less so for MABu. For BBu and MBBu the results are reasonable. Here the test
seems to benefit from the small bias of BBu. For the feasible variants we find in Table 5

9The b variant differs from a only for T > 3 and may then be not positive definite. For T = 6, 9 it
proved to be so bad for both AB and BB that we discarded it completely from the presented tables.
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Table 5. P0ft-XA∗

Feasible t-test Arellano-Bond: actual significance level
θ = 0 θ = 1

ρ̄xε = 0.0
L γ AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW MAB

T = 3 11 0.20 0.062 0.064 0.057 0.084 0.062 0.065 0.059 0.213 0.088 0.070 0.134 0.074 0.082 0.067 0.556
0.50 0.072 0.072 0.065 0.093 0.071 0.073 0.069 0.237 0.104 0.086 0.150 0.083 0.101 0.083 0.584
0.80 0.120 0.119 0.114 0.144 0.104 0.121 0.114 0.348 0.190 0.172 0.248 0.146 0.192 0.166 0.697

T = 6 50 0.20 0.061 0.063 0.052 0.159 0.061 0.058 0.053 0.246 0.091 0.067 0.354 0.077 0.078 0.066 0.201
0.50 0.078 0.078 0.071 0.182 0.071 0.076 0.071 0.299 0.123 0.098 0.395 0.096 0.108 0.091 0.241
0.80 0.191 0.183 0.176 0.317 0.142 0.182 0.174 0.547 0.329 0.285 0.617 0.234 0.299 0.267 0.465

T = 9 116 0.20 0.073 0.074 0.062 0.324 0.070 0.069 0.064 0.272 0.101 0.075 0.689 0.095 0.087 0.075 0.154
0.50 0.098 0.096 0.090 0.358 0.084 0.096 0.090 0.344 0.149 0.117 0.728 0.139 0.130 0.115 0.198
0.80 0.255 0.242 0.239 0.552 0.192 0.246 0.235 0.653 0.411 0.367 0.893 0.376 0.396 0.366 0.460

L β AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW MAB

T = 3 11 1.43 0.052 0.052 0.051 0.073 0.053 0.057 0.052 0.216 0.070 0.065 0.117 0.062 0.071 0.056 0.586
0.93 0.051 0.052 0.051 0.073 0.053 0.057 0.051 0.215 0.073 0.065 0.118 0.062 0.072 0.055 0.582
0.31 0.050 0.051 0.050 0.072 0.052 0.055 0.050 0.214 0.068 0.062 0.116 0.061 0.072 0.057 0.581

T = 6 50 1.43 0.051 0.055 0.050 0.145 0.055 0.056 0.051 0.222 0.068 0.059 0.315 0.060 0.068 0.057 0.210
0.93 0.054 0.054 0.052 0.145 0.055 0.058 0.053 0.225 0.069 0.061 0.315 0.062 0.069 0.058 0.216
0.31 0.054 0.054 0.054 0.144 0.052 0.059 0.054 0.232 0.066 0.064 0.317 0.058 0.070 0.058 0.229

T = 9 116 1.43 0.050 0.052 0.048 0.296 0.057 0.054 0.051 0.232 0.068 0.057 0.652 0.067 0.067 0.055 0.138
0.93 0.053 0.055 0.052 0.298 0.057 0.058 0.054 0.241 0.072 0.064 0.657 0.071 0.070 0.059 0.145
0.31 0.057 0.056 0.058 0.297 0.057 0.061 0.057 0.241 0.069 0.069 0.654 0.066 0.071 0.061 0.153

Feasible t-test Blundell-Bond: actual significance level
θ = 0 θ = 1

ρ̄xε = 0.0
L γ BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW MBB

T = 3 16 0.20 0.051 0.056 0.041 0.093 0.059 0.058 0.050 0.196 0.076 0.051 0.158 0.064 0.073 0.058 0.494
0.50 0.056 0.057 0.046 0.098 0.057 0.062 0.053 0.209 0.079 0.056 0.165 0.067 0.080 0.063 0.502
0.80 0.066 0.065 0.048 0.103 0.057 0.057 0.040 0.252 0.100 0.071 0.208 0.073 0.087 0.060 0.559

T = 6 61 0.20 0.042 0.052 0.034 0.178 0.056 0.045 0.041 0.206 0.074 0.048 0.389 0.067 0.059 0.051 0.160
0.50 0.053 0.060 0.044 0.184 0.054 0.052 0.044 0.248 0.092 0.064 0.413 0.073 0.069 0.055 0.167
0.80 0.116 0.122 0.100 0.217 0.061 0.064 0.042 0.424 0.218 0.161 0.562 0.129 0.080 0.050 0.255

T = 9 133 0.20 0.049 0.056 0.041 0.364 0.054 0.050 0.046 0.221 0.076 0.051 0.735 0.072 0.057 0.049 0.119
0.50 0.063 0.070 0.056 0.381 0.058 0.056 0.050 0.279 0.108 0.078 0.767 0.101 0.063 0.054 0.121
0.80 0.173 0.176 0.156 0.506 0.109 0.066 0.043 0.552 0.313 0.249 0.894 0.282 0.074 0.046 0.166

L β BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW MBB

T = 3 16 1.43 0.051 0.054 0.052 0.083 0.056 0.058 0.058 0.210 0.070 0.061 0.147 0.064 0.073 0.068 0.571
0.93 0.050 0.053 0.051 0.084 0.055 0.057 0.057 0.214 0.070 0.061 0.148 0.064 0.073 0.068 0.565
0.31 0.048 0.051 0.049 0.087 0.056 0.059 0.059 0.217 0.072 0.062 0.155 0.065 0.078 0.072 0.616

T = 6 61 1.43 0.048 0.052 0.047 0.166 0.055 0.053 0.054 0.216 0.069 0.053 0.371 0.059 0.064 0.067 0.200
0.93 0.051 0.055 0.050 0.166 0.053 0.054 0.057 0.223 0.069 0.058 0.376 0.063 0.064 0.068 0.205
0.31 0.053 0.055 0.053 0.169 0.055 0.053 0.057 0.229 0.068 0.060 0.388 0.064 0.065 0.068 0.228

T = 9 133 1.43 0.047 0.051 0.046 0.342 0.052 0.051 0.053 0.220 0.067 0.054 0.717 0.064 0.060 0.066 0.128
0.93 0.050 0.052 0.049 0.349 0.053 0.053 0.058 0.232 0.070 0.060 0.718 0.067 0.061 0.069 0.132
0.31 0.055 0.055 0.055 0.356 0.056 0.056 0.060 0.234 0.070 0.066 0.730 0.066 0.064 0.068 0.146

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EV Fx = 0.0, ρ̄xε = 0.0, ξ = 0.8, κ = 0.00,
σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60, ση = 1.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

(P0ft-XA) that under homoskedasticity AB1 has reasonable actual significance level for
β, but for γ only when it is small. The same holds for AB2c. Under heteroskedasticity
σ2
ε,i has to be estimated and then AB2c overrejects, especially for γ or T large, but only

mildly so for tests on β. Both AB2a and MAB overreject enormously. Employing the
Windmeijer correction mitigates the overrejection probabilities in many cases, but not in
all. AB2cW has appropriate size for tests on β, but for tests on γ the size increases both
with γ and with T from 7% to 37% over the grid examined. Since the test based on ABu
shows a similar pattern, it is self-evident that a correction which takes into account the
randomness of AB1 cannot be fully effective. Oddly enough the Windmeijer correction
is occasionally more effective for the heavily oversized AB2a than for the less oversized
AB2c. Under homoskedasticity both BB2c and BB2cW behave very reasonable, both
for tests on β and on γ. Under heteroskedasticity BB2cW is still very reasonable, but
all other implementations fail in some instances, especially for tests on γ when γ or T
are large.

Regarding the unfeasible J tests Table 3 shows reasonable size properties under
homoskedasticity, especially for JBBu, but less so for the incremental test on effect
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stationarity when γ is large. Under heteroskedasticity this problem is more serious,
though less so for the unfeasible modified procedure. Heteroskedasticity and γ large
lead to underrejection of the JABu test, especially when T is large too. Turning now
to some of the many variants of feasible J tests, of which some10 are presented in Table
6 (P0fJ-XA), we first focus on JAB. Under homoskedasticity JAB(1,0) behaves reason-
able, though when applied when θ = 1 it rejects with high probability (thus detecting
heteroskedasticity instead of instrument invalidity, probably due to underestimation of
the variance of the still valid moment conditions). Of the JAB(1,1) tests, both for θ = 0
and θ = 1, the c variant severely underrejects when T = 9 (when there is an abundance
of instruments), but less so than the a version. Such severe underrejection had already
been noted by Bowsher (2002). An almost similar pattern we note for JAB(2,1) and
JAB(2,2). Test JMAB(2,1) overrejects severely for T = 3 and underrejects otherwise,
whereas JMAB(2,2) is fine for T = 3 but underrejects for larger values of T. Turning
now to feasible JBB tests we find that JBB(1,0) underrejects when θ = 0 and, like
JAB(1,0), rejects with high probability when θ = 1. Both the a and c variants of test
JBB(1,1), like JAB(1,1), have rejection probabilities that are not invariant with respect
to T, γ and θ. The c variants seem the least vulnerable, and therefore also yield an
almost reasonable incremental test JES(1,1), although it underrejects when θ = 0 and
overrejects when θ = 1 for γ = 0.8. For JBB(2,1) and JBB(2,2) too the c variant has
rejection probabilities which vary the least with T, γ and θ, but they are systematically
below the nominal significance level, which is also the case for the resulting incremental
tests. Oddly enough, the incremental tests resulting from the a variants have type I
error probabilities reasonably close to 5%, despite the serious underrejection of both the
JAB and JBB tests from which they result.

When treating regressor xit as predetermined (P0-WA), whereas it is strictly exoge-

Table 6. P0fJ-XA∗

Feasible Sargan-Hansen test: rejection probability
df θ = 0

ρ̄xε = 0.0
AB BB Inc γ JAB

(2,1)
a JBB

(2,1)
a JES

(2,1)
a JAB

(2,1)
c JBB

(2,1)
c JES

(2,1)
c JMAB JMBB JESM

T = 3 9 13 4 0.20 0.047 0.050 0.053 0.043 0.033 0.030 0.244 0.304 0.306
0.50 0.050 0.051 0.052 0.044 0.034 0.025 0.246 0.328 0.327
0.80 0.061 0.055 0.047 0.055 0.035 0.022 0.251 0.369 0.365

T = 6 48 58 10 0.20 0.034 0.038 0.068 0.026 0.025 0.030 0.032 0.386 0.439
0.50 0.037 0.039 0.062 0.027 0.023 0.023 0.033 0.391 0.442
0.80 0.046 0.042 0.056 0.031 0.022 0.013 0.039 0.405 0.453

T = 9 114 130 16 0.20 0.007 0.002 0.056 0.021 0.023 0.033 0.022 0.409 0.466
0.50 0.007 0.002 0.053 0.021 0.021 0.026 0.022 0.411 0.467
0.80 0.009 0.002 0.048 0.025 0.019 0.014 0.026 0.416 0.471

df θ = 1
ρ̄xε = 0.0

AB BB Inc γ JAB
(2,1)
a JBB

(2,1)
a JES

(2,1)
a JAB

(2,1)
c JBB

(2,1)
c JES

(2,1)
c JMAB JMBB JESM

T = 3 9 13 4 0.20 0.036 0.035 0.047 0.037 0.034 0.041 0.278 0.569 0.557
0.50 0.041 0.035 0.045 0.042 0.038 0.042 0.280 0.593 0.580
0.80 0.057 0.041 0.045 0.061 0.047 0.048 0.300 0.604 0.591

T = 6 48 58 10 0.20 0.016 0.015 0.054 0.020 0.022 0.028 0.037 0.727 0.754
0.50 0.018 0.016 0.051 0.023 0.020 0.027 0.036 0.730 0.756
0.80 0.024 0.017 0.048 0.033 0.028 0.028 0.042 0.737 0.760

T = 9 114 130 16 0.20 0.001 0.000 0.046 0.015 0.017 0.032 0.024 0.764 0.788
0.50 0.001 0.000 0.044 0.017 0.015 0.025 0.023 0.766 0.788
0.80 0.001 0.000 0.038 0.025 0.019 0.020 0.027 0.770 0.791

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EV Fx = 0.0,
ρ̄xε = 0.0, ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00,
σv = 0.60, ση = 1.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

10A full set of Monte Carlo results can be obtained from the authors upon request. Below various
results will be discussed in the text without referring to a table presented here, simply because we did
not find it worthwhile to include it in the paper respecting reasonable space limitations.
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nous, fewer instruments are being used. Since the ones that are now abstained from are
most probably the strongest ones regarding ∆xit, it is no surprise that in the simulation
results (not tabulated here) we note that especially the standard deviation of the β
coefficient suffers. Also the rejection probabilities of the various tests differ slightly
between implementations WA and XA, but not in a very systematic way as it seems.
When treating xit as endogenous (P0-EA) the precision of the estimators gets worse, with
again no striking effects on the performance of test procedures under their respective null
hypotheses. Upon comparing for P0 the instrument set A (and set C) with the one where
Ax (Cx) is replaced by C1x it has been found that the in practice quite popular choice
C1x yields often slightly less efficient estimates for β, but much less efficient estimates
for γ.

When xit is again treated as strictly exogenous, but the number of instruments is
reduced by collapsing the instruments stemming from both yit and xit, then we note
from Table 7 (P0fc-XC) a mixed picture regarding the coefficient estimates. Although
any substantial bias always reduces by collapsing, standard errors always increase at the
same time, leading either to an increase or a decrease in RMSE. Decreases occur for the
AB estimators of γ, especially when γ is large; for β just increases occur. A noteworthy
reduction in RMSE does show up for BB2a when γ is large, T = 9 and θ = 1, but then
the RMSE of BB2c using all instruments is in fact smaller. However, Table 8 (P0ft-
XC) shows that collapsing is certainly found to be very beneficial for the type I error
probability of coefficient tests, especially in cases where collapsing yields substantially
reduced coefficient bias. The AB tests benefit a lot from collapsing, especially the c
variant, leaving only little room for further improvement by employing the Windmeijer
correction. After collapsing AB1 works well under homoskedasticity, and also under
heteroskedasticity provided robust standard errors are being used, where the c version
is clearly superior to the a version. AB2c has appropriate type I error probabilities,
except for testing γ when it is 0.8 at T = 3 and θ = 1 (which is not repaired by a
Windmeijer correction either), and is for most cases superior to AB2aW. After collapsing
BB2a shows overrejection which is not completely repaired by BB2aW when θ = 1.
BB2c and BB2cW generally show lower rejection probabilities, with occasionally some
underrejection. Tests based on MAB and MBB still heavily overreject. Table 9 (P0fJ-
XC) shows that by collapsing JAB and JBB tests suffer much less from underrejection
when T is larger than 3. However, both the a and c versions of the J (2,1) and J (2,2) tests
usually still underreject, mostly by about 1 or 2 percentage points. Good performance
is shown by JES

(2,1)
a and JES

(2,1)
c .

When xit is still correctly treated as strictly exogenous but for the level instruments
just a few lags or first differences are being used (XL0 ... XL3) for both yit and xit then
we find the following. Regarding feasible AB and BB estimation collapsing (XC) always
gives smaller RMSE values than XL0 and XL1 (which is much worse than XL0), but
this is not the case for XL2 and XL3. Whereas XC yields smaller bias, XL2 and XL3
often reach smaller Stdv and RMSE. Especially regarding β XL3 performs better than
XL2. Probably due to the smaller bias of XC it is more successful in mitigating size
problems of coefficient tests than XL0 through XL3. The effects on J tests is less clear-
cut. Combining collapsing with restricting the lag length we find that XC2 and XC3
are in some aspects slightly worse but in others occasionally better than XC for P0. We
also examined the hybrid instrumentation which seems popular amongst practitioners
where Cw is combined with L1x. Especially for γ this leads to loss of estimator precision
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Table 8. P0ft-XC∗

Feasible t-test Arellano-Bond: actual significance level
θ = 0 θ = 1

ρ̄xε = 0.0
L γ AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW MAB

T = 3 6 0.20 0.055 0.059 0.044 0.068 0.058 0.047 0.045 0.192 0.073 0.051 0.097 0.071 0.059 0.055 0.502
0.50 0.058 0.060 0.047 0.069 0.059 0.051 0.050 0.198 0.079 0.058 0.100 0.072 0.066 0.061 0.511
0.80 0.071 0.072 0.064 0.079 0.067 0.066 0.064 0.230 0.110 0.091 0.132 0.094 0.102 0.095 0.556

T = 6 12 0.20 0.046 0.050 0.036 0.068 0.052 0.041 0.039 0.208 0.070 0.047 0.120 0.062 0.048 0.046 0.157
0.50 0.049 0.051 0.039 0.070 0.051 0.043 0.042 0.206 0.069 0.049 0.121 0.061 0.050 0.048 0.147
0.80 0.061 0.062 0.053 0.081 0.058 0.055 0.053 0.239 0.090 0.067 0.139 0.071 0.072 0.069 0.151

T = 9 18 0.20 0.053 0.056 0.045 0.079 0.056 0.046 0.046 0.216 0.070 0.047 0.148 0.064 0.051 0.048 0.111
0.50 0.052 0.055 0.045 0.081 0.053 0.047 0.047 0.216 0.071 0.049 0.144 0.064 0.054 0.053 0.108
0.80 0.059 0.058 0.051 0.088 0.056 0.052 0.052 0.233 0.090 0.068 0.165 0.068 0.068 0.066 0.107

L β AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW MAB

T = 3 6 1.43 0.051 0.055 0.053 0.061 0.054 0.054 0.051 0.212 0.069 0.063 0.091 0.068 0.068 0.061 0.586
0.93 0.051 0.055 0.053 0.061 0.054 0.054 0.051 0.211 0.066 0.061 0.089 0.067 0.066 0.059 0.584
0.31 0.050 0.053 0.050 0.059 0.052 0.052 0.050 0.206 0.066 0.059 0.089 0.064 0.061 0.054 0.572

T = 6 12 1.43 0.047 0.050 0.048 0.065 0.051 0.050 0.049 0.215 0.064 0.054 0.114 0.062 0.058 0.055 0.208
0.93 0.048 0.050 0.048 0.065 0.052 0.051 0.050 0.217 0.065 0.054 0.114 0.062 0.056 0.055 0.206
0.31 0.049 0.052 0.049 0.068 0.051 0.051 0.050 0.214 0.065 0.052 0.116 0.064 0.055 0.053 0.209

T = 9 18 1.43 0.051 0.052 0.050 0.078 0.054 0.052 0.051 0.221 0.064 0.051 0.135 0.058 0.055 0.054 0.138
0.93 0.052 0.052 0.052 0.078 0.053 0.053 0.052 0.222 0.063 0.052 0.138 0.059 0.054 0.053 0.137
0.31 0.051 0.053 0.050 0.076 0.052 0.053 0.053 0.219 0.063 0.052 0.139 0.057 0.053 0.051 0.139

Feasible t-test Blundell-Bond: actual significance level
θ = 0 θ = 1

ρ̄xε = 0.0
L γ BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW MBB

T = 3 9 0.20 0.054 0.054 0.041 0.072 0.057 0.047 0.043 0.196 0.070 0.046 0.110 0.066 0.058 0.050 0.472
0.50 0.055 0.055 0.037 0.072 0.057 0.047 0.041 0.201 0.071 0.046 0.109 0.067 0.064 0.054 0.480
0.80 0.057 0.058 0.034 0.076 0.056 0.041 0.034 0.219 0.079 0.046 0.131 0.071 0.064 0.053 0.533

T = 6 15 0.20 0.047 0.051 0.034 0.070 0.050 0.038 0.036 0.203 0.066 0.043 0.129 0.060 0.048 0.046 0.143
0.50 0.046 0.050 0.034 0.069 0.048 0.038 0.037 0.203 0.067 0.043 0.127 0.058 0.048 0.045 0.142
0.80 0.054 0.056 0.038 0.073 0.049 0.038 0.035 0.225 0.081 0.050 0.135 0.062 0.049 0.045 0.198

T = 9 21 0.20 0.049 0.053 0.040 0.081 0.054 0.043 0.042 0.208 0.067 0.047 0.153 0.063 0.050 0.048 0.102
0.50 0.052 0.056 0.043 0.079 0.051 0.044 0.043 0.209 0.069 0.047 0.155 0.059 0.049 0.047 0.101
0.80 0.052 0.056 0.042 0.081 0.051 0.041 0.040 0.225 0.078 0.054 0.160 0.058 0.049 0.045 0.108

L β BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW MBB

T = 3 9 1.43 0.050 0.053 0.050 0.065 0.054 0.053 0.053 0.210 0.068 0.062 0.104 0.066 0.069 0.068 0.581
0.93 0.050 0.053 0.048 0.064 0.053 0.051 0.051 0.213 0.068 0.061 0.105 0.068 0.068 0.067 0.586
0.31 0.051 0.054 0.050 0.066 0.055 0.053 0.051 0.215 0.070 0.062 0.111 0.073 0.072 0.072 0.639

T = 6 15 1.43 0.048 0.050 0.048 0.071 0.052 0.050 0.051 0.214 0.065 0.056 0.124 0.063 0.062 0.063 0.213
0.93 0.049 0.050 0.049 0.071 0.054 0.050 0.051 0.216 0.066 0.056 0.125 0.064 0.062 0.063 0.212
0.31 0.050 0.051 0.050 0.073 0.053 0.051 0.052 0.217 0.068 0.054 0.128 0.065 0.060 0.063 0.241

T = 9 21 1.43 0.050 0.052 0.050 0.084 0.055 0.051 0.051 0.220 0.065 0.052 0.147 0.059 0.056 0.059 0.140
0.93 0.050 0.052 0.050 0.083 0.053 0.051 0.051 0.219 0.063 0.052 0.149 0.059 0.055 0.059 0.138
0.31 0.051 0.053 0.050 0.080 0.054 0.051 0.051 0.221 0.064 0.053 0.150 0.057 0.056 0.055 0.148

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EV Fx = 0.0, ρ̄xε = 0.0, ξ = 0.8, κ = 0.00,
σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60, ση = 1.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

without any other clear advantages, so it does not outperform the XC results for P0.
From examining P0-WC (and P0-EC) we find that in comparison to P0-WA (P0-EA)
there is often some increase in RMSE, but the size control of especially the t-tests is
much better.

Summarizing the results for P0 on feasible estimators and tests we note that when
choosing between different possible instrument sets a trade off has to be made between
estimator precision and test size control. For both some form of reduction of the in-
strument set is often but not always beneficial. Not one single method seems superior
irrespective of the actual values of γ, β and T. Using all instruments is not necessarily
a bad choice; also XC, XL3 and XC3 often work well. To mitigate estimator bias and
foster test size control while not sacrificing too much estimator precision using collapsing
(C) for all regressors seems a reasonable compromise, as far as P0 is concerned. Coeffi-
cient and J tests based on the feasible modified estimator behave so poorly, that in the
remainder we no longer mention its results.
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Table 9. P0fJ-XC∗

Feasible Sargan-Hansen test: rejection probability
df θ = 0

ρ̄xε = 0.0
AB BB Inc γ JAB

(2,1)
a JBB

(2,1)
a JES

(2,1)
a JAB

(2,1)
c JBB

(2,1)
c JES

(2,1)
c JMAB JMBB JESM

T = 3 4 6 2 0.20 0.044 0.047 0.047 0.045 0.043 0.040 0.268 0.254 0.250
0.50 0.045 0.045 0.045 0.045 0.039 0.033 0.262 0.278 0.272
0.80 0.048 0.046 0.044 0.046 0.040 0.032 0.268 0.356 0.347

T = 6 10 12 2 0.20 0.045 0.045 0.052 0.040 0.040 0.048 0.049 0.294 0.371
0.50 0.048 0.046 0.047 0.040 0.039 0.042 0.048 0.301 0.376
0.80 0.050 0.049 0.047 0.043 0.041 0.040 0.051 0.331 0.407

T = 9 16 18 2 0.20 0.041 0.042 0.051 0.037 0.038 0.048 0.042 0.299 0.400
0.50 0.042 0.042 0.052 0.038 0.040 0.047 0.037 0.305 0.405
0.80 0.046 0.044 0.050 0.039 0.039 0.047 0.042 0.312 0.411

df θ = 1
ρ̄xε = 0.0

AB BB Inc γ JAB
(2,1)
a JBB

(2,1)
a JES

(2,1)
a JAB

(2,1)
c JBB

(2,1)
c JES

(2,1)
c JMAB JMBB JESM

T = 3 4 6 2 0.20 0.037 0.037 0.045 0.042 0.040 0.044 0.300 0.491 0.471
0.50 0.040 0.037 0.042 0.045 0.042 0.042 0.298 0.515 0.501
0.80 0.048 0.040 0.041 0.054 0.048 0.046 0.308 0.538 0.522

T = 6 10 12 2 0.20 0.032 0.030 0.048 0.036 0.035 0.042 0.054 0.655 0.699
0.50 0.031 0.029 0.046 0.037 0.037 0.044 0.053 0.661 0.703
0.80 0.037 0.035 0.047 0.040 0.040 0.054 0.056 0.672 0.712

T = 9 16 18 2 0.20 0.027 0.027 0.047 0.033 0.034 0.050 0.046 0.701 0.745
0.50 0.029 0.028 0.046 0.034 0.032 0.049 0.044 0.705 0.746
0.80 0.032 0.030 0.051 0.035 0.036 0.054 0.046 0.710 0.748

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EV Fx = 0.0,
ρ̄xε = 0.0, ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00,
σv = 0.60, ση = 1.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

5.1.2 Results for alternative parametrizations

Next we examine a series of alternative parametrizations where each time we just change
one of the parameter values of one of the already examined cases. In P1 we increase
DENη

y from 1 to 4 (hence, substantially increasing the relative variance of the individual
effects). We note that for P1-XA (not tabulated here) all estimators regarding γ are
more biased and dispersed than for P0-XA, but there is little or no effect on the β
estimates. For both T and γ large this leads to serious overrejection for the unfeasible
coefficient tests regarding γ, in particular for ABu. Self-evidently, this carries over
to the feasible tests and, although a Windmeijer correction has a mitigating effect,
the overrejection remains often serious for both AB and BB based tests. Tests on β
based on AB behave reasonable, apart from not robustified AB1 and AB2a. For the
latter a Windmeijer correction proves reasonably effective. When exploiting the effect
stationarity the BB2c implementation seems preferable. The unfeasible J tests show a
similar though slightly more extreme pattern as for P0-XA. Among the feasible tests
both serious underrejection and overrejection occurs. As far as the incremental tests
concerns JES

(2,2)
c behaves remarkably well.

In Tables 10, 11 and 12 (P1fj-XC, j = c,t,J) we find that collapsing leads again
to reduced bias, slightly deteriorated precision though improved size control (here all
unfeasible tests behave reasonably well). All feasible AB1R and AB2W tests have rea-
sonable size control, apart from tests on γ when T is small and γ large. These give actual
significance levels close to 10%. BB2cW seems slightly better than BB2aW. The 1-step
J tests show some serious overrejection whereas the 2-step J tests behave quite satis-
factorily. For C3 reasonably similar results are obtained, but those for L3 are generally
slightly less attractive.

In P2 we increase EV Fx from 0 to 0.6, upon having again IEF η
x = 0 (hence, xit is

still uncorrelated with effect ηi though correlated with effect λi, which determines any
heteroskedasticity). This leads to increased β values. Results for P2-XA show larger
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Table 11. P1ft-XC∗

Feasible t-test Arellano-Bond: actual significance level
θ = 0 θ = 1

ρ̄xε = 0.0
L γ AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW MAB

T = 3 6 0.20 0.054 0.058 0.053 0.069 0.059 0.057 0.054 0.165 0.075 0.064 0.099 0.072 0.068 0.063 0.558
0.50 0.062 0.064 0.062 0.073 0.062 0.064 0.062 0.179 0.082 0.073 0.106 0.076 0.080 0.073 0.571
0.80 0.095 0.092 0.096 0.106 0.086 0.099 0.097 0.236 0.134 0.130 0.165 0.111 0.137 0.130 0.623

T = 6 12 0.20 0.049 0.049 0.045 0.069 0.053 0.045 0.045 0.192 0.070 0.053 0.115 0.060 0.052 0.050 0.172
0.50 0.050 0.052 0.048 0.071 0.053 0.049 0.047 0.192 0.072 0.058 0.117 0.059 0.056 0.054 0.176
0.80 0.072 0.065 0.068 0.094 0.064 0.070 0.069 0.215 0.099 0.086 0.155 0.076 0.088 0.085 0.188

T = 9 18 0.20 0.054 0.053 0.050 0.079 0.055 0.051 0.050 0.201 0.070 0.054 0.140 0.063 0.055 0.053 0.116
0.50 0.054 0.055 0.051 0.081 0.053 0.053 0.052 0.201 0.071 0.057 0.140 0.063 0.058 0.055 0.120
0.80 0.069 0.065 0.066 0.100 0.060 0.066 0.065 0.225 0.095 0.084 0.174 0.067 0.078 0.076 0.132

L β AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW MAB

T = 3 6 1.43 0.050 0.054 0.050 0.060 0.052 0.054 0.051 0.207 0.066 0.060 0.086 0.065 0.065 0.058 0.582
0.93 0.049 0.054 0.051 0.060 0.052 0.054 0.052 0.204 0.064 0.057 0.086 0.065 0.061 0.055 0.576
0.31 0.045 0.049 0.046 0.057 0.050 0.047 0.045 0.195 0.061 0.051 0.083 0.061 0.057 0.050 0.564

T = 6 12 1.43 0.047 0.049 0.048 0.067 0.050 0.050 0.049 0.213 0.065 0.053 0.111 0.064 0.056 0.053 0.206
0.93 0.049 0.051 0.049 0.065 0.051 0.051 0.050 0.215 0.066 0.053 0.112 0.062 0.057 0.053 0.207
0.31 0.048 0.051 0.048 0.066 0.051 0.049 0.049 0.211 0.064 0.051 0.114 0.062 0.055 0.052 0.206

T = 9 18 1.43 0.050 0.051 0.050 0.080 0.053 0.051 0.050 0.219 0.063 0.051 0.131 0.060 0.053 0.052 0.134
0.93 0.051 0.052 0.052 0.078 0.052 0.052 0.052 0.219 0.063 0.051 0.131 0.057 0.054 0.052 0.136
0.31 0.051 0.053 0.051 0.076 0.052 0.052 0.051 0.215 0.063 0.050 0.130 0.056 0.052 0.051 0.137

Feasible t-test Blundell-Bond: actual significance level
θ = 0 θ = 1

ρ̄xε = 0.0
L γ BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW MBB

T = 3 9 0.20 0.085 0.087 0.079 0.098 0.070 0.076 0.057 0.118 0.087 0.068 0.132 0.080 0.085 0.062 0.551
0.50 0.088 0.089 0.077 0.118 0.091 0.092 0.075 0.138 0.083 0.063 0.146 0.093 0.097 0.073 0.497
0.80 0.062 0.064 0.039 0.120 0.091 0.089 0.064 0.144 0.063 0.034 0.141 0.088 0.088 0.065 0.502

T = 6 15 0.20 0.055 0.063 0.051 0.077 0.052 0.046 0.042 0.124 0.071 0.048 0.127 0.062 0.052 0.047 0.170
0.50 0.057 0.063 0.050 0.083 0.056 0.051 0.041 0.141 0.065 0.045 0.133 0.065 0.059 0.049 0.150
0.80 0.049 0.053 0.037 0.092 0.063 0.058 0.044 0.161 0.065 0.038 0.138 0.069 0.058 0.045 0.181

T = 9 21 0.20 0.053 0.059 0.050 0.089 0.055 0.045 0.044 0.138 0.064 0.047 0.150 0.062 0.052 0.049 0.106
0.50 0.053 0.060 0.048 0.085 0.054 0.048 0.044 0.155 0.065 0.045 0.153 0.060 0.051 0.047 0.104
0.80 0.050 0.055 0.040 0.092 0.058 0.052 0.043 0.175 0.068 0.042 0.157 0.061 0.053 0.043 0.106

L β BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW MBB

T = 3 9 1.43 0.051 0.053 0.050 0.064 0.052 0.051 0.053 0.176 0.068 0.058 0.097 0.065 0.065 0.067 0.591
0.93 0.049 0.052 0.049 0.065 0.054 0.052 0.055 0.191 0.066 0.056 0.097 0.066 0.066 0.069 0.580
0.31 0.048 0.051 0.048 0.064 0.053 0.051 0.055 0.208 0.069 0.057 0.103 0.068 0.067 0.068 0.597

T = 6 15 1.43 0.050 0.052 0.050 0.069 0.049 0.050 0.051 0.196 0.065 0.055 0.119 0.061 0.058 0.061 0.216
0.93 0.049 0.052 0.048 0.071 0.051 0.050 0.053 0.205 0.064 0.053 0.119 0.062 0.059 0.061 0.218
0.31 0.050 0.052 0.049 0.070 0.053 0.051 0.053 0.214 0.067 0.053 0.124 0.063 0.059 0.063 0.218

T = 9 21 1.43 0.052 0.055 0.052 0.084 0.053 0.051 0.053 0.200 0.063 0.053 0.139 0.061 0.056 0.059 0.142
0.93 0.051 0.054 0.051 0.081 0.051 0.053 0.054 0.207 0.064 0.054 0.141 0.061 0.055 0.059 0.141
0.31 0.052 0.053 0.052 0.079 0.053 0.052 0.054 0.217 0.063 0.054 0.141 0.060 0.054 0.056 0.141

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 4.0, EV Fx = 0.0, ρ̄xε = 0.0, ξ = 0.8, κ = 0.00,
σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60, ση = 4.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

absolute values for the standard deviations of the β estimates than for P0-XA, but they
are almost similar in relative terms. The patterns in the rejection probabilities under
the respective null hypotheses are hardly affected, and P2-XC shows again improved
behavior of the test statistics due to reduced estimator bias, whereas the RMSE values
have slightly increased.

In P3 we change IEF η
x from 0 to 0.3, while keeping EV Fx = 0.6 (hence, realizing

now dependence between regressor xit and the individual effect ηi). Comparing the
results for P3-XA with those for P2-XA (which have the same β values) we find that all
patterns are pretty similar. Also P3-XC follows the P2-XC picture closely.

P4 differs from P3 because κ = 0.25, thus now the heteroskedasticity is determined
by ηi too. This has a noteworthy effect on MBB estimation and a minor effect on JBB
(and thus on JES) testing only.

P5 differs from P0 just in having ρ̄xε = 0.3, so xit is now endogenous with respect
to εit. P5-EA uses all instruments available when correctly taking the endogeneity into
account. This leads to very unsatisfactory results. The coefficient estimates of γ have
serious negative bias, and those for β positive bias, whereas the standard deviation
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Table 12. P1ft-XC∗

Feasible Sargan-Hansen test: rejection probability
df θ = 0

ρ̄xε = 0.0
AB BB Inc γ JAB

(2,1)
a JBB

(2,1)
a JES

(2,1)
a JAB

(2,1)
c JBB

(2,1)
c JES

(2,1)
c JMAB JMBB JESM

T = 3 4 6 2 0.20 0.043 0.053 0.071 0.045 0.054 0.067 0.281 0.255 0.249
0.50 0.047 0.048 0.063 0.049 0.047 0.055 0.280 0.249 0.245
0.80 0.054 0.045 0.052 0.056 0.040 0.036 0.282 0.301 0.294

T = 6 10 12 2 0.20 0.043 0.046 0.059 0.043 0.049 0.061 0.053 0.291 0.367
0.50 0.045 0.048 0.057 0.044 0.050 0.058 0.051 0.288 0.364
0.80 0.048 0.047 0.048 0.049 0.046 0.044 0.055 0.295 0.369

T = 9 16 18 2 0.20 0.041 0.043 0.056 0.040 0.044 0.057 0.045 0.289 0.388
0.50 0.041 0.043 0.055 0.041 0.045 0.058 0.043 0.290 0.389
0.80 0.045 0.042 0.049 0.045 0.045 0.050 0.045 0.296 0.391

df θ = 1
ρ̄xε = 0.0

AB BB Inc γ JAB
(2,1)
a JBB

(2,1)
a JES

(2,1)
a JAB

(2,1)
c JBB

(2,1)
c JES

(2,1)
c JMAB JMBB JESM

T = 3 4 6 2 0.20 0.039 0.043 0.061 0.043 0.047 0.054 0.305 0.432 0.418
0.50 0.042 0.043 0.055 0.048 0.042 0.046 0.313 0.438 0.425
0.80 0.053 0.036 0.042 0.059 0.038 0.036 0.321 0.493 0.475

T = 6 10 12 2 0.20 0.035 0.036 0.055 0.039 0.041 0.053 0.057 0.594 0.639
0.50 0.034 0.035 0.052 0.039 0.042 0.054 0.056 0.597 0.644
0.80 0.043 0.035 0.044 0.045 0.042 0.044 0.064 0.613 0.661

T = 9 16 18 2 0.20 0.029 0.029 0.056 0.037 0.039 0.054 0.048 0.646 0.696
0.50 0.029 0.028 0.053 0.037 0.039 0.054 0.048 0.647 0.697
0.80 0.031 0.026 0.049 0.040 0.039 0.046 0.053 0.658 0.703

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 4.0, EV Fx = 0.0,
ρ̄xε = 0.0, ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00,
σv = 0.60, ση = 4.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

is slightly larger than for P0-EA, which are substantially larger than for P0-XA. All
coefficient tests are very seriously oversized, also after a Windmeijer correction, both for
AB and BB. Tests JABu and JBBu show underrejection, whereas the matching JES
tests show serious overrejection when T is large, but the feasible 2-step variants are not all
that bad. From Tables 13, 14 and 15 (P5fj-EC, j = c,t,J) we see that most results which
correctly handle the simultaneity of xit are still bad after collapsing, especially for T small
(where collapsing can only lead to a minor reduction of the instrument set), although not
as bad as those for P5-EA and larger values of T . For P5-EC the rejection probabilities
of the corrected coefficient tests are usually in the 10-20% range, but those of the 2-step
J tests are often close to 5%. Both AB and BB are inconsistent when treating xit either
as predetermined or as exogenous. For P5-WA and P5-XA the coefficient bias is almost
similar but much more serious than for P5-EA. For the inconsistent estimators the bias
does not reduce when collapsing the instruments. Because the inconsistent estimators
have a much smaller standard deviation than the consistent estimators practitioners
should be warned never to select an estimator simply because of its attractive estimated
standard error. The consistency of AB and BB should be tested with the Sargan-Hansen
test. In this study we did not examine the particular incremental test which focusses
on the validity of the extra instruments when comparing E with W or E with X. Here
we just examine the rejection probabilities of the overall overidentification J tests for
case P5 using all instruments and can compare the rejection frequencies when treating
xit correctly as endogenous, or incorrectly as either predetermined or exogenous.

From the Tables 16, 17 and 18 (P5fJ-jA, j = E,W,X) we find that the detection of
inconsistency in this way has often a higher probability when the null hypothesis is W
than when it is X. The probability generally increases with T and with γ and is often
better for the c variant than for the a variant and slightly better for BB implementa-
tions than for AB implementations, whereas in general heteroskedasticity mitigates the
rejection probability. In the situation where all instruments have been collapsed, where
we already established that the J tests do have reasonable size control, we find the fol-
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Table 14. P5ft-EC∗

Feasible t-test Arellano-Bond: actual significance level
θ = 0 θ = 1

ρ̄xε = 0.3
L γ AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW MAB

T = 3 4 0.20 0.118 0.129 0.112 0.134 0.134 0.115 0.116 0.252 0.155 0.118 0.175 0.164 0.134 0.134 0.706
0.50 0.135 0.138 0.129 0.144 0.137 0.135 0.125 0.283 0.173 0.140 0.195 0.175 0.161 0.154 0.685
0.80 0.126 0.128 0.124 0.132 0.123 0.127 0.119 0.274 0.170 0.146 0.191 0.166 0.168 0.158 0.632

T = 6 10 0.20 0.154 0.161 0.137 0.181 0.148 0.145 0.140 0.420 0.250 0.196 0.316 0.203 0.225 0.211 0.400
0.50 0.142 0.140 0.135 0.162 0.128 0.133 0.127 0.404 0.231 0.204 0.289 0.177 0.203 0.187 0.343
0.80 0.104 0.101 0.099 0.119 0.091 0.098 0.095 0.340 0.173 0.157 0.220 0.127 0.154 0.147 0.248

T = 9 16 0.20 0.152 0.152 0.132 0.188 0.141 0.139 0.136 0.453 0.258 0.218 0.359 0.201 0.237 0.224 0.297
0.50 0.141 0.138 0.130 0.173 0.124 0.129 0.124 0.440 0.245 0.215 0.327 0.177 0.206 0.194 0.261
0.80 0.103 0.102 0.097 0.130 0.089 0.095 0.094 0.353 0.175 0.161 0.247 0.118 0.145 0.140 0.181

L β AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW MAB

T = 3 4 1.43 0.115 0.127 0.112 0.130 0.131 0.115 0.112 0.253 0.154 0.114 0.175 0.167 0.132 0.128 0.788
0.93 0.130 0.141 0.129 0.142 0.141 0.130 0.122 0.274 0.173 0.135 0.196 0.183 0.155 0.147 0.758
0.31 0.110 0.118 0.109 0.121 0.118 0.110 0.107 0.259 0.154 0.130 0.176 0.159 0.148 0.139 0.701

T = 6 10 1.43 0.165 0.166 0.157 0.191 0.153 0.163 0.155 0.429 0.255 0.217 0.336 0.219 0.243 0.227 0.445
0.93 0.141 0.141 0.138 0.166 0.134 0.136 0.131 0.413 0.234 0.207 0.305 0.195 0.218 0.202 0.409
0.31 0.093 0.096 0.089 0.114 0.096 0.090 0.089 0.319 0.154 0.136 0.213 0.138 0.149 0.140 0.308

T = 9 16 1.43 0.156 0.158 0.148 0.193 0.144 0.151 0.145 0.463 0.270 0.238 0.375 0.215 0.262 0.248 0.324
0.93 0.142 0.141 0.139 0.179 0.132 0.137 0.132 0.443 0.244 0.226 0.350 0.193 0.226 0.214 0.302
0.31 0.096 0.098 0.096 0.126 0.097 0.094 0.093 0.348 0.161 0.147 0.249 0.129 0.149 0.145 0.226

Feasible t-test Blundell-Bond: actual significance level
θ = 0 θ = 1

ρ̄xε = 0.3
L γ BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW MBB

T = 3 7 0.20 0.100 0.101 0.083 0.126 0.112 0.109 0.146 0.263 0.149 0.113 0.198 0.147 0.146 0.154 0.640
0.50 0.116 0.112 0.100 0.127 0.104 0.113 0.132 0.301 0.166 0.142 0.210 0.150 0.165 0.168 0.622
0.80 0.104 0.098 0.091 0.103 0.079 0.089 0.089 0.297 0.145 0.135 0.188 0.127 0.147 0.139 0.587

T = 6 13 0.20 0.111 0.115 0.086 0.130 0.098 0.099 0.108 0.359 0.195 0.140 0.247 0.141 0.159 0.160 0.265
0.50 0.113 0.111 0.098 0.116 0.087 0.092 0.101 0.367 0.193 0.163 0.236 0.129 0.149 0.154 0.240
0.80 0.094 0.092 0.083 0.096 0.073 0.074 0.075 0.332 0.153 0.130 0.185 0.098 0.109 0.110 0.205

T = 9 19 0.20 0.115 0.118 0.095 0.145 0.100 0.102 0.104 0.399 0.215 0.165 0.294 0.149 0.169 0.168 0.206
0.50 0.115 0.115 0.101 0.132 0.091 0.092 0.098 0.405 0.209 0.176 0.279 0.135 0.152 0.155 0.189
0.80 0.095 0.093 0.085 0.105 0.070 0.075 0.077 0.339 0.155 0.138 0.216 0.098 0.102 0.105 0.140

L β BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW MBB

T = 3 7 1.43 0.097 0.095 0.086 0.122 0.101 0.110 0.198 0.265 0.151 0.130 0.205 0.152 0.162 0.216 0.709
0.93 0.111 0.118 0.109 0.126 0.102 0.115 0.172 0.304 0.180 0.164 0.223 0.160 0.185 0.221 0.709
0.31 0.101 0.111 0.098 0.111 0.089 0.092 0.131 0.288 0.158 0.151 0.195 0.140 0.163 0.197 0.744

T = 6 13 1.43 0.123 0.128 0.112 0.142 0.109 0.117 0.142 0.381 0.215 0.179 0.280 0.165 0.194 0.223 0.330
0.93 0.118 0.120 0.115 0.131 0.100 0.108 0.124 0.387 0.213 0.192 0.266 0.157 0.185 0.212 0.319
0.31 0.089 0.094 0.085 0.107 0.085 0.079 0.091 0.330 0.165 0.146 0.226 0.135 0.146 0.163 0.319

T = 9 19 1.43 0.127 0.127 0.117 0.158 0.113 0.121 0.126 0.423 0.239 0.203 0.323 0.173 0.206 0.213 0.252
0.93 0.124 0.126 0.121 0.146 0.107 0.112 0.121 0.425 0.228 0.211 0.318 0.166 0.196 0.213 0.246
0.31 0.095 0.097 0.094 0.127 0.094 0.086 0.093 0.355 0.167 0.153 0.262 0.135 0.150 0.165 0.226

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EV Fx = 0.0, ρ̄xε = 0.3, ξ = 0.8, κ = 0.00,
σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60, ση = 1.0 ∗ (1− γ), ρvε = 0.5 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

lowing. For T = 3 and γ = 0.2 the rejection probability of the JAB and JBB tests
does not rise very much when ρ̄xε moves from 0 to 0.3, whereas for T = 9, ρ̄xε = 0.3 this
rejection probability is often larger than 0.7 when γ ≥ 0.5 and often larger than 0.9 for
γ = 0.8. Hence, only for particular T, γ and θ parametrizations the probability to detect
inconsistency seems reasonable, whereas the major consequence of inconsistency, which
is serious estimator bias, is relatively invariant regarding T, γ and θ.

Summarizing our results for effect stationary models we note the following. We estab-
lished that finite sample inaccuracies of the asymptotic techniques seriously aggravate
when either ση/(1−γ)� σε or under simultaneity. For both problems it helps to collapse
instruments, and the first problem is mitigated and the second problem detected with
higher probability by instrumenting according to W rather than X. Neglected simul-
taneity leads to seemingly accurate but seriously biased coefficient estimators, whereas
asymptotically valid inference on simultaneous dynamic relationships if often not very
accurate either. Even when the more efficient BB estimator is used with Windmeijer
corrected standard errors, the bias in both γ and β is very substantial and test sizes are
seriously distorted. Some further pilot simulations disclosed that N should be much and
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Table 15. P5fJ-EC∗

Feasible Sargan-Hansen test: rejection probability
df θ = 0

ρ̄xε = 0.3
AB BB Inc γ JAB

(2,1)
a JBB

(2,1)
a JES

(2,1)
a JAB

(2,1)
c JBB

(2,1)
c JES

(2,1)
c JMAB JMBB JESM

T = 3 2 4 2 0.20 0.047 0.046 0.060 0.044 0.041 0.056 0.316 0.247 0.235
0.50 0.060 0.055 0.059 0.054 0.048 0.055 0.319 0.312 0.293
0.80 0.074 0.063 0.059 0.071 0.057 0.051 0.305 0.406 0.385

T = 6 8 10 2 0.20 0.069 0.065 0.058 0.057 0.054 0.053 0.065 0.295 0.368
0.50 0.071 0.064 0.058 0.061 0.054 0.048 0.065 0.308 0.383
0.80 0.065 0.061 0.054 0.053 0.053 0.051 0.057 0.354 0.432

T = 9 14 16 2 0.20 0.065 0.060 0.053 0.052 0.051 0.048 0.059 0.302 0.400
0.50 0.065 0.059 0.056 0.050 0.050 0.051 0.052 0.308 0.405
0.80 0.054 0.053 0.054 0.045 0.046 0.051 0.046 0.317 0.413

df θ = 1
ρ̄xε = 0.3

AB BB Inc γ JAB
(2,1)
a JBB

(2,1)
a JES

(2,1)
a JAB

(2,1)
c JBB

(2,1)
c JES

(2,1)
c JMAB JMBB JESM

T = 3 2 4 2 0.20 0.036 0.042 0.068 0.032 0.045 0.072 0.339 0.454 0.422
0.50 0.044 0.050 0.074 0.038 0.055 0.077 0.344 0.505 0.475
0.80 0.067 0.057 0.069 0.061 0.064 0.074 0.345 0.566 0.530

T = 6 8 10 2 0.20 0.065 0.064 0.072 0.056 0.057 0.074 0.090 0.649 0.691
0.50 0.071 0.066 0.067 0.066 0.063 0.070 0.088 0.663 0.704
0.80 0.060 0.058 0.064 0.063 0.063 0.065 0.071 0.671 0.711

T = 9 14 16 2 0.20 0.063 0.058 0.063 0.053 0.058 0.072 0.065 0.701 0.748
0.50 0.063 0.056 0.066 0.060 0.062 0.072 0.060 0.707 0.750
0.80 0.053 0.048 0.061 0.053 0.056 0.066 0.051 0.710 0.753

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EV Fx = 0.0,
ρ̄xε = 0.3, ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00,
σv = 0.60, ση = 1.0 ∗ (1− γ), ρvε = 0.5 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

much larger than 200 in order to find much more reasonable asymptotic approximation
errors.

5.2 Nonstationarity

Next we examine the effects of a value of φ different from unity while s = −50. We
will just consider setting φ = 0.5 and perturbing xi0 and yi0 according to (4.25), so
that their dependence on the effects is initially 50% away from stationarity so that BB
estimation is inconsistent. That this occurred we will indicate in the parametrization
code by changing P into Pφ. Comparing the results for Pφ0-XA with those for P0-XA,
where φ = 1 (effect stationarity), we note from Table 19 (Pφ0fc-XA) a rather moderate
positive bias in the BB estimators for both γ and β when both T and γ are small.
Despite the inconsistency of BB the bias is very mild for larger T and for smaller γ. This
can be explained, because convergence towards effect stationarity does occur when time
proceeds, while this convergence is faster for smaller γ. In fact, we note that the RMSE
of inconsistent BB1, BB2a and BB2c is often smaller than that for consistent AB1, AB2a
and AB2c when T and γ are not both small. With respect to the AB estimators we find
little to no difference compared to the results under stationarity. Table 20 (Pφ0ft-XA)
shows that when γ = 0.8 the BB2cW coefficient test on γ yields very mild overrejection,
while AB2aW and AB2cW seriously overreject. For smaller values of γ it is the other
way around. After collapsing (not tabulated here) similar but more moderate patterns
are found, due to the mitigated bias which goes again with slightly increased standard
errors. Hence, for this case we find that if T is not too small and γ not very large we
should not worry too much when applying BB even if effect stationarity does not strictly
hold for the initial observations. As it happens, we note from Table 21 (Pφ0fJ-XA) that
the rejection probabilities of the JES tests are such that they are relatively low when BB
inference is preferable to AB inference, and relatively high when either T or γ are low
and φ = 0.5. This pattern is much more pronounced for the JES tests than for the JBB

43



Table 16. P5fJ-EA∗

Feasible Sargan-Hansen test: rejection probability
df θ = 0

ρ̄xε = 0.3
AB BB Inc γ JAB

(2,1)
a JBB

(2,1)
a JES

(2,1)
a JAB

(2,1)
c JBB

(2,1)
c JES

(2,1)
c JMAB JMBB JESM

T = 3 4 7 3 0.20 0.067 0.053 0.052 0.047 0.034 0.036 0.315 0.287 0.271
0.50 0.078 0.065 0.055 0.055 0.041 0.038 0.324 0.331 0.313
0.80 0.096 0.074 0.062 0.077 0.049 0.039 0.324 0.396 0.376

T = 6 28 37 9 0.20 0.082 0.074 0.058 0.047 0.041 0.037 0.061 0.389 0.436
0.50 0.089 0.081 0.058 0.057 0.043 0.035 0.059 0.396 0.444
0.80 0.088 0.076 0.057 0.061 0.041 0.028 0.053 0.418 0.467

T = 9 70 85 15 0.20 0.057 0.044 0.057 0.045 0.044 0.035 0.056 0.420 0.475
0.50 0.057 0.050 0.062 0.050 0.049 0.037 0.057 0.423 0.480
0.80 0.057 0.045 0.057 0.049 0.039 0.027 0.046 0.426 0.484

df θ = 1
ρ̄xε = 0.3

AB BB Inc γ JAB
(2,1)
a JBB

(2,1)
a JES

(2,1)
a JAB

(2,1)
c JBB

(2,1)
c JES

(2,1)
c JMAB JMBB JESM

T = 3 4 7 3 0.20 0.052 0.047 0.059 0.039 0.040 0.053 0.342 0.513 0.483
0.50 0.065 0.057 0.064 0.043 0.048 0.063 0.343 0.555 0.523
0.80 0.083 0.065 0.068 0.058 0.055 0.069 0.342 0.597 0.573

T = 6 28 37 9 0.20 0.065 0.056 0.062 0.042 0.048 0.057 0.075 0.721 0.743
0.50 0.074 0.062 0.062 0.055 0.059 0.063 0.076 0.728 0.750
0.80 0.081 0.059 0.057 0.071 0.065 0.062 0.071 0.739 0.760

T = 9 70 85 15 0.20 0.030 0.018 0.049 0.046 0.054 0.060 0.054 0.767 0.787
0.50 0.032 0.021 0.048 0.060 0.070 0.073 0.057 0.771 0.789
0.80 0.032 0.016 0.043 0.070 0.078 0.067 0.048 0.775 0.794

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EV Fx = 0.0,
ρ̄xε = 0.3, ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00,
σv = 0.60, ση = 1.0 ∗ (1− γ), ρvε = 0.5 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

tests. However, it is also the case in Pφ0 that collapsing mitigates this welcome quality
of the JES tests to warn against unfavorable consequences of effect nonstationarity on
BB inference.

From Pφ1-XA, in which the individual effects are much more prominent, we find
that φ = 0.5 has curious effects on AB and BB results. For effect stationarity (φ = 1)
we already noted more bias for AB than under P0. For γ large, this bias is even more
serious when φ = 0.5, despite the consistency of AB. For BB estimation the reduction
of φ leads to much larger bias and much smaller stdv, with the effect that RMSE values
for inconsistent BB are usually much worse than for AB, but are often slightly better,
except for BB2c, when γ = 0.8. All BB coefficient tests for γ have size close or equal
to 1 under Pφ1-XA and the AB tests for γ = 0.8 overreject very seriously as well.
Under Pφ1-XC the bias of AB is reasonable except for γ = 0.8. The bias of BB has
decreased but is still enormous, although it still has preferable RMSE when γ = 0.8.
Especially regarding tests on γ BB fails. For both the a and c versions the JES test has
high rejection probability to detect φ 6= 1, except when γ is large. The relatively low
rejection probability of JES tests obtained after collapsing when γ = 0.8 and φ = 0.5
again indicates that despite its inconsistency BB has similar or smaller RMSE than AB
for that specific case.

Next we consider the simultaneous model again. In case Pφ5-EA estimator AB is
consistent and BB again inconsistent. Nevertheless, for all γ and T values examined in
Table 22 (Pφ5fc-EA), AB has a more severe bias than BB, whereas BB has smaller stdv
values at the same time and thus has smaller RMSE for all γ and T values examined.
The size control of coefficient tests is worse for AB, but for BB it is appalling too,
where BB2aW, with estimated type I error probabilities ranging from 5% to 70%, is
often preferable to BB2cW. The 2-step JAB tests behave reasonably (wrongly indicate
inconsistency with a probability rather close to 5%), whereas the JBB tests reject with
probabilities in the 3-38% range, and JES in the 3-69% range. By collapsing the RMSE
of AB generally reduces when T ≥ 6 and for BB especially when γ = 0.8. BB has again
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Table 17. P5fJ-WA∗

Feasible Sargan-Hansen test: rejection probability
df θ = 0

ρ̄xε = 0.3
AB BB Inc γ JAB

(2,1)
a JBB

(2,1)
a JES

(2,1)
a JAB

(2,1)
c JBB

(2,1)
c JES

(2,1)
c JMAB JMBB JESM

T = 3 6 10 4 0.20 0.206 0.247 0.137 0.135 0.151 0.105 0.325 0.331 0.313
0.50 0.228 0.303 0.175 0.185 0.218 0.130 0.333 0.344 0.326
0.80 0.414 0.537 0.286 0.402 0.467 0.223 0.370 0.388 0.363

T = 6 33 43 10 0.20 0.555 0.743 0.355 0.512 0.594 0.232 0.291 0.538 0.534
0.50 0.578 0.821 0.478 0.614 0.758 0.372 0.335 0.543 0.530
0.80 0.879 0.983 0.592 0.963 0.994 0.637 0.724 0.622 0.554

T = 9 78 94 16 0.20 0.536 0.633 0.145 0.796 0.857 0.297 0.621 0.598 0.553
0.50 0.549 0.728 0.233 0.860 0.947 0.518 0.667 0.602 0.552
0.80 0.877 0.963 0.215 0.999 1.000 0.797 0.975 0.702 0.573

df θ = 1
ρ̄xε = 0.3

AB BB Inc γ JAB
(2,1)
a JBB

(2,1)
a JES

(2,1)
a JAB

(2,1)
c JBB

(2,1)
c JES

(2,1)
c JMAB JMBB JESM

T = 3 6 10 4 0.20 0.110 0.130 0.099 0.077 0.111 0.112 0.339 0.555 0.531
0.50 0.120 0.155 0.115 0.095 0.142 0.133 0.359 0.572 0.543
0.80 0.182 0.252 0.178 0.171 0.278 0.235 0.391 0.622 0.588

T = 6 33 43 10 0.20 0.217 0.316 0.189 0.184 0.270 0.199 0.284 0.758 0.755
0.50 0.233 0.382 0.237 0.244 0.395 0.293 0.271 0.755 0.754
0.80 0.465 0.670 0.319 0.580 0.824 0.580 0.625 0.788 0.766

T = 9 78 94 16 0.20 0.141 0.138 0.093 0.303 0.416 0.255 0.597 0.793 0.780
0.50 0.138 0.171 0.125 0.382 0.589 0.411 0.569 0.792 0.780
0.80 0.349 0.401 0.122 0.835 0.968 0.731 0.923 0.816 0.784

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EV Fx = 0.0,
ρ̄xε = 0.3, ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00,
σv = 0.60, ση = 1.0 ∗ (1− γ), ρvε = 0.5 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

Table 18. P5fJ-XA∗

Feasible Sargan-Hansen test: rejection probability
df θ = 0

ρ̄xε = 0.3
AB BB Inc γ JAB

(2,1)
a JBB

(2,1)
a JES

(2,1)
a JAB

(2,1)
c JBB

(2,1)
c JES

(2,1)
c JMAB JMBB JESM

T = 3 9 13 4 0.20 0.199 0.248 0.150 0.156 0.188 0.123 0.290 0.353 0.347
0.50 0.199 0.266 0.161 0.176 0.214 0.124 0.297 0.354 0.346
0.80 0.380 0.479 0.233 0.399 0.444 0.182 0.339 0.388 0.373

T = 6 48 58 10 0.20 0.436 0.604 0.295 0.494 0.570 0.218 0.294 0.530 0.527
0.50 0.424 0.669 0.409 0.547 0.673 0.322 0.303 0.516 0.515
0.80 0.769 0.922 0.459 0.947 0.983 0.516 0.710 0.590 0.534

T = 9 114 130 16 0.20 0.154 0.110 0.063 0.754 0.811 0.261 0.588 0.575 0.542
0.50 0.144 0.135 0.104 0.783 0.885 0.440 0.590 0.569 0.538
0.80 0.388 0.368 0.069 0.998 1.000 0.660 0.968 0.648 0.552

df θ = 1
ρ̄xε = 0.3

AB BB Inc γ JAB
(2,1)
a JBB

(2,1)
a JES

(2,1)
a JAB

(2,1)
c JBB

(2,1)
c JES

(2,1)
c JMAB JMBB JESM

T = 3 9 13 4 0.20 0.103 0.128 0.103 0.088 0.133 0.124 0.312 0.587 0.574
0.50 0.108 0.136 0.103 0.098 0.149 0.131 0.313 0.591 0.577
0.80 0.175 0.220 0.141 0.187 0.291 0.219 0.359 0.631 0.607

T = 6 48 58 10 0.20 0.148 0.215 0.169 0.183 0.250 0.164 0.278 0.763 0.763
0.50 0.145 0.248 0.218 0.223 0.336 0.243 0.246 0.757 0.760
0.80 0.324 0.488 0.251 0.576 0.771 0.507 0.624 0.783 0.765

T = 9 114 130 16 0.20 0.013 0.004 0.049 0.290 0.368 0.189 0.561 0.795 0.787
0.50 0.011 0.006 0.069 0.339 0.484 0.319 0.492 0.792 0.785
0.80 0.033 0.016 0.052 0.815 0.940 0.619 0.924 0.811 0.784

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EV Fx = 0.0,
ρ̄xε = 0.3, ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00,
σv = 0.60, ση = 1.0 ∗ (1− γ), ρvε = 0.5 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

smaller RMSE than AB. The rejection rates of the JBB and JES tests are substantially
lower now, which seems bad because the invalid (first-differenced) instruments are less
often detected, but this may nevertheless be appreciated because it induces to prefer
less inaccurate BB inference to AB inference. After collapsing the size distortions of
BB2aW and BB2cW are less extreme too, now ranging from 5-33%, but the RMSE
values for BB may suffer due to collapsing, especially when γ and T are small. The
RMSE values for BB under Pφ5-WA and Pφ5-XA are usually much worse than those for
AB under Pφ5-EA. Hence, although the invalid instruments for the level equation are
not necessarily a curse when endogeneity of xit is respected, they should not be used
when they are invalid for two reasons (φ 6= 1, ρxε 6= 0). That neither AB nor BB should
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Table 20. Pφ0ft-XA∗

Feasible t-test Arellano-Bond: actual significance level
θ = 0 θ = 1

ρ̄xε = 0.0
L γ AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW MAB

T = 3 11 0.20 0.063 0.066 0.059 0.085 0.065 0.066 0.061 0.225 0.088 0.073 0.140 0.075 0.086 0.069 0.570
0.50 0.070 0.073 0.066 0.092 0.068 0.073 0.068 0.250 0.103 0.088 0.159 0.087 0.106 0.086 0.600
0.80 0.117 0.116 0.112 0.139 0.103 0.118 0.109 0.353 0.191 0.170 0.254 0.147 0.196 0.171 0.699

T = 6 50 0.20 0.062 0.064 0.054 0.164 0.061 0.060 0.056 0.250 0.092 0.067 0.361 0.079 0.077 0.065 0.206
0.50 0.076 0.078 0.070 0.182 0.072 0.077 0.072 0.307 0.125 0.101 0.411 0.099 0.114 0.096 0.251
0.80 0.188 0.182 0.176 0.319 0.142 0.182 0.172 0.549 0.322 0.282 0.624 0.236 0.312 0.277 0.479

T = 9 116 0.20 0.071 0.073 0.063 0.324 0.067 0.069 0.065 0.274 0.101 0.074 0.693 0.093 0.088 0.077 0.154
0.50 0.099 0.097 0.091 0.361 0.084 0.097 0.092 0.349 0.148 0.117 0.734 0.138 0.134 0.116 0.202
0.80 0.255 0.243 0.241 0.552 0.196 0.247 0.234 0.655 0.404 0.363 0.893 0.376 0.412 0.379 0.478

L β AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW MAB

T = 3 11 1.43 0.052 0.052 0.052 0.071 0.053 0.056 0.052 0.215 0.070 0.064 0.117 0.063 0.071 0.056 0.583
0.93 0.050 0.052 0.050 0.073 0.053 0.056 0.051 0.216 0.072 0.064 0.118 0.063 0.071 0.054 0.584
0.31 0.050 0.050 0.050 0.072 0.052 0.055 0.050 0.215 0.069 0.063 0.117 0.061 0.072 0.056 0.580

T = 6 50 1.43 0.051 0.054 0.050 0.146 0.055 0.056 0.052 0.221 0.068 0.059 0.315 0.060 0.068 0.058 0.211
0.93 0.053 0.055 0.053 0.148 0.055 0.058 0.053 0.227 0.070 0.061 0.314 0.064 0.069 0.059 0.215
0.31 0.054 0.054 0.054 0.143 0.052 0.058 0.054 0.232 0.066 0.064 0.315 0.057 0.069 0.058 0.227

T = 9 116 1.43 0.050 0.053 0.048 0.294 0.056 0.054 0.051 0.232 0.067 0.056 0.654 0.068 0.065 0.056 0.137
0.93 0.053 0.055 0.052 0.299 0.059 0.058 0.054 0.241 0.073 0.065 0.657 0.071 0.070 0.060 0.148
0.31 0.058 0.056 0.059 0.299 0.057 0.062 0.057 0.242 0.068 0.069 0.657 0.066 0.072 0.061 0.154

Feasible t-test Blundell-Bond: actual significance level
θ = 0 θ = 1

ρ̄xε = 0.0
L γ BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW MBB

T = 3 16 0.20 0.166 0.170 0.144 0.258 0.163 0.236 0.207 0.257 0.118 0.087 0.322 0.165 0.213 0.182 0.659
0.50 0.084 0.089 0.070 0.191 0.131 0.140 0.131 0.219 0.083 0.061 0.245 0.120 0.135 0.120 0.635
0.80 0.058 0.059 0.040 0.103 0.061 0.057 0.045 0.240 0.090 0.060 0.196 0.071 0.085 0.064 0.615

T = 6 61 0.20 0.092 0.102 0.079 0.255 0.091 0.176 0.153 0.219 0.080 0.049 0.445 0.090 0.205 0.171 0.317
0.50 0.053 0.060 0.046 0.252 0.092 0.196 0.166 0.212 0.068 0.045 0.435 0.074 0.184 0.157 0.419
0.80 0.083 0.087 0.071 0.199 0.055 0.080 0.061 0.382 0.176 0.127 0.499 0.088 0.085 0.060 0.399

T = 9 133 0.20 0.068 0.076 0.057 0.403 0.066 0.127 0.116 0.210 0.067 0.044 0.730 0.064 0.164 0.143 0.186
0.50 0.049 0.055 0.042 0.380 0.057 0.174 0.155 0.233 0.075 0.054 0.729 0.067 0.182 0.154 0.283
0.80 0.133 0.136 0.118 0.450 0.075 0.094 0.069 0.511 0.267 0.209 0.866 0.217 0.085 0.059 0.287

L β BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW MBB

T = 3 16 1.43 0.065 0.069 0.066 0.133 0.085 0.081 0.070 0.230 0.083 0.073 0.214 0.106 0.106 0.098 0.600
0.93 0.058 0.061 0.058 0.117 0.080 0.075 0.067 0.226 0.077 0.067 0.190 0.089 0.097 0.088 0.605
0.31 0.049 0.052 0.050 0.089 0.059 0.061 0.059 0.220 0.073 0.062 0.163 0.069 0.083 0.077 0.632

T = 6 61 1.43 0.050 0.054 0.049 0.177 0.051 0.057 0.056 0.219 0.070 0.054 0.387 0.065 0.070 0.073 0.211
0.93 0.052 0.055 0.051 0.179 0.056 0.056 0.056 0.227 0.070 0.058 0.395 0.070 0.072 0.074 0.215
0.31 0.054 0.054 0.053 0.172 0.055 0.056 0.059 0.230 0.069 0.060 0.395 0.066 0.069 0.069 0.239

T = 9 133 1.43 0.047 0.051 0.046 0.342 0.048 0.054 0.058 0.221 0.065 0.052 0.719 0.063 0.066 0.074 0.137
0.93 0.050 0.052 0.049 0.347 0.052 0.052 0.057 0.229 0.069 0.059 0.721 0.067 0.066 0.074 0.136
0.31 0.055 0.055 0.055 0.357 0.057 0.057 0.060 0.236 0.070 0.065 0.734 0.067 0.067 0.069 0.146

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EV Fx = 0.0, ρ̄xε = 0.0, ξ = 0.8, κ = 0.00,
σε = 1, q = 1, φ = 0.5. These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60, ση = 1.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

be used in P5 under W and X will be indicated with highest probability under WC, and
then this probability is larger than 0.8 for JBB

(2,1)
a only when T is high and for JAB

(2,1)
a

only when both T and γ are high.
Summarizing our findings regarding effect nonstationarity, we have established that

although φ 6= 1 renders BB estimators inconsistent, especially when T is not small and γ
not large BB inference nevertheless beats consistent AB, provided possible endogeneity
of xit is respected. The JES test seems to have the remarkable property to be able to
guide towards the technique with smallest RMSE instead of the technique exploiting the
valid instruments.

6 Empirical results

The above findings will be employed now in a re-analysis of the data and some of the
techniques studied in Ziliak (1997). The main purpose of that article was to expose the
downward bias in GMM as the number of moment conditions expands. This is done by
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Table 21. Pφ0fJ-XA∗

Feasible Sargan-Hansen test: rejection probability
df θ = 0

ρ̄xε = 0.0
AB BB Inc γ JAB

(2,1)
a JBB

(2,1)
a JES

(2,1)
a JAB

(2,1)
c JBB

(2,1)
c JES

(2,1)
c JMAB JMBB JESM

T = 3 9 13 4 0.20 0.046 0.317 0.548 0.044 0.281 0.503 0.248 0.374 0.371
0.50 0.050 0.116 0.185 0.045 0.091 0.140 0.249 0.349 0.347
0.80 0.061 0.062 0.057 0.055 0.043 0.033 0.257 0.389 0.383

T = 6 48 58 10 0.20 0.035 0.160 0.474 0.027 0.204 0.643 0.032 0.429 0.485
0.50 0.036 0.082 0.222 0.028 0.072 0.216 0.032 0.409 0.463
0.80 0.044 0.045 0.069 0.030 0.026 0.020 0.039 0.411 0.459

T = 9 114 130 16 0.20 0.007 0.006 0.179 0.021 0.129 0.634 0.022 0.440 0.502
0.50 0.006 0.004 0.116 0.022 0.062 0.264 0.021 0.428 0.486
0.80 0.009 0.003 0.053 0.025 0.023 0.021 0.025 0.418 0.474

df θ = 1
ρ̄xε = 0.0

AB BB Inc γ JAB
(2,1)
a JBB

(2,1)
a JES

(2,1)
a JAB

(2,1)
c JBB

(2,1)
c JES

(2,1)
c JMAB JMBB JESM

T = 3 9 13 4 0.20 0.036 0.289 0.505 0.037 0.240 0.412 0.294 0.622 0.605
0.50 0.039 0.101 0.169 0.041 0.101 0.146 0.299 0.611 0.601
0.80 0.056 0.048 0.060 0.060 0.057 0.063 0.296 0.614 0.605

T = 6 48 58 10 0.20 0.017 0.224 0.660 0.020 0.192 0.596 0.037 0.742 0.769
0.50 0.019 0.082 0.327 0.022 0.071 0.201 0.035 0.739 0.764
0.80 0.023 0.024 0.074 0.032 0.035 0.046 0.043 0.744 0.766

T = 9 114 130 16 0.20 0.001 0.004 0.350 0.016 0.134 0.642 0.025 0.771 0.793
0.50 0.001 0.002 0.219 0.016 0.056 0.264 0.023 0.769 0.791
0.80 0.000 0.001 0.068 0.024 0.025 0.039 0.028 0.772 0.793

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EV Fx = 0.0,
ρ̄xε = 0.0, ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 0.5. These yield the DGP parameter values: πλ = 0.00, πη = 0.00,
σv = 0.60, ση = 1.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

estimating a static life-cycle labor-supply model for a ten year balanced panel of males,
and comparing for various implementations of 2SLS and GMM the coefficient estimates
and their estimated standard errors when exploiting expanding sets of instruments. We
find this approach rather naive for various reasons: (a) the difference between empirical
coefficient estimates will at best provide a very poor proxy to any underlying difference in
bias; (b) standard asymptotic variance estimates of IV estimators are known to be very
poor representations of true estimator uncertainty;11 (c) the whole analysis is based on
just one sample and possibly the model is seriously misspecified.12 The latter issue also
undermines conclusions drawn in Ziliak (1997) on overrejection by the J test, because it is
of course unknown in which if any of his empirical models the null hypothesis is true. To
avoid such criticism we designed the controlled experiments in the two foregoing sections
on the effects of different sets of instruments on various relevant inference techniques.
And now we will examine how these simulation results can be exploited to underpin
actual inference from the data set used by Ziliak.

This data set originates from waves XII-XXI and the years 1979-1988 of the PSID.
The subjects are N = 532 continuously married working men aged 22-51 in 1979. Ziliak
(1997) employs the static model13

lnhit = β lnwit + z′itγ + ηi + εit, (6.1)

where hit is the observed annual hours of work, wit the hourly real wage rate, zit a vector
of four characteristics (kids, disabled, age, age-squared), ηi an individual effect and εit
the idiosyncratic error term. It is assumed that lnwit may be an endogenous regressor
and that all variables included in zit are predetermined. The parameter of interest is
β and its GMM estimates range from approximately 0.07 to 0.52, depending on the

11See findings in Kiviet (2013) and in many of its references.
12Baltagi et al. (2005) study a similar life-cycle labor-supply model for physicians in Norway. They

consider a dynamic model, and this rejects the static specification used by Ziliak (1997).
13This static model is also used extensively for illustrative purposes in Cameron and Trivedi (2005).
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number of instruments employed.
After some experimentation we inferred that lagged reactions play a significant role

in this relationship and that in fact a general second-order linear dynamic specification is
required in order to pass the diagnostic tests which are provided by default in the Stata
package xtabond2, see Roodman (2009a). This model, also allowing for time-effects, is
given by

lnhit =
∑2

l=1
γl lnhi,t−l +

∑2

l=0
(βwl lnwi,t−l + βkl kidsi,t−l + βdl disabi,t−l)

+βaagei,t + βaaage2
i,t + τt + ηi + εit. (6.2)

Note that lags of age and its square would lead to multicollinearity problems. The
inclusion of second-order lags yields T = 7 in estimating the first-differenced model.

Table 23 presents estimation and test results for model (6.2) obtained by employing
various of the techniques examined in the earlier sections. All results have been ob-
tained by Stata/SE11.2 and xtabond2, supplemented with code for calculating σ̂2

η and
σ̂2
ε . In column (1) 2-step Arellano-Bond GMM estimators are presented (omitting the

time-effect results) in which all instruments are being used that follow from assuming
that all regressors are predetermined, which gives 170 instruments. For the AR and J
tests given in the bottom lines the p-values are presented. Hence, in column (1) the
(first-differenced) residuals do exhibit 1st order serial correlation (as they should) but

no significant 2nd order problems emerge. The presented J test is JAB
(2,1)
a , which ac-

cording to the simulations may have a tendency to underreject, and to have moderate
rejection probability when a regressor has incorrectly not been categorized as endoge-
nous, especially under heteroskedasticity. Therefore its high p-value is not necessarily
reassuring regarding validity of the instruments. When abstaining from 7 instruments
such that wage is treated as endogenous, while still using as weighting matrix a subma-
trix of the weights under predeterminedness, the p-value of JAB

(2,1)
a is still 0.577 and

the resulting incremental J test for wage being predetermined is 7.13, which has p-value
0.416. Hence, from the pure asymptotic point of view these coefficient estimates and
their Windmeijer-corrected standard errors could be taken serious, because yet no alarm-
ing signs of misspecifcation have been detected. All coefficient estimates with a t-ratio
above 2 are indicated with a double asterix, and a single asterix when between 1 and
2; estimated standard errors are given between parentheses. Half of the time-dummies
have a t-ratio around 1 and the others much smaller. Different though asymptotically
equivalent tests for their joint significance (not presented here) yield χ2(7) statistics be-
tween 8 and 9. So, although not significantly different from zero, simply removing them
from the model seems a bit rash.

Next, we will examine the effects of the Windmeijer correction in column (2) and of
treating wage not as predetermined, but as endogenous, in column (3). For the squared
(not first-differenced) residuals of results (1) and (3) we also ran informal auxiliary
regressions (with and without individual effects) on all the predetermined regressors of
model (6.2). Due to several highly significant regressors these make obviously clear that
εit is heteroskedastic and not of the simple cross-sectional type. Hence, 1-step estimates
which follow in columns (4) through (7) should be judged on the basis of robust standard
errors only.

Column (2) presents crude asymptotic standard errors, which are as expected much
smaller for all coefficients. From the simulations we know that especially under het-
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Table 23. Empirical findings for (restricted versions of) model (6.2) by AB estimation

(1) (2) (3) (4) (5) (6) (7) (8)
AB2aW AB2a AB2aW AB1aR AB1aR AB1aR AB1aR AB2aW

WA WA EA WA EA WC EC EC
γ1 0.178** 0.178** 0.199** 0.177** 0.206** 0.237** 0.238** 0.242**

(0.057) (0.012) (0.061) (0.064) (0.069) (0.096) (0.101) (0.078)
γ2 0.050* 0.050** 0.080** 0.033* 0.068* 0.062** 0.055* 0.056*

(0.032) (0.009) (0.027) (0.031) (0.028) (0.026) (0.028) (0.030)
βw0 0.403** 0.403** 0.462** 0.566** 0.607** 0.254* 0.131 0.203

(0.157) (0.041) (0.153) (0.174) (0.172) (0.179) (0.253) (0.284)
βw1 0.121* 0.121** -0.053 0.154* -0.012 0.009 0.045 0.124*

(0.062) (0.024) (0.100) (0.073) (0.116) (0.106) (0.115) (0.110)
βw2 0.001 0.001 -0.063* -0.003 -0.077* -0.058 -0.049 0.002

(0.035) (0.016) (0.050) (0.044) (0.062) (0.068) (0.068) (0.071)
βk0 -0.037* -0.037** -0.033* -0.051** -0.049** -0.044* -0.040 -0.024*

(0.020) (0.011) (0.017) (0.024) (0.023) (0.023) (0.024) (0.023)
βk1 -0.002 -0.002 0.000 0.007 0.010 -0.004 -0.006 0.004

(0.009) (0.007) (0.009) (0.011) (0.011) (0.012) (0.013) (0.011)
βk2 0.009 0.009* 0.008 0.008 0.006 0.010 0.010 0.005

(0.009) (0.006) (0.010) (0.012) (0.012) (0.021) (0.014) (0.011)
βd0 0.027 0.027* 0.027 -0.005 0.000 0.049 0.047 -0.039

(0.043) (0.021) (0.044) (0.047) (0.045) (0.077) (0.077) (0.061)
βd1 0.027 0.027* 0.027 0.011 0.016 0.059 0.061 -0.036

(0.042) (0.017) (0.042) (0.050) (0.051) (0.074) (0.078) (0.050)
βd2 0.038* 0.038** 0.046 0.042* 0.054* 0.087** 0.083** 0.046*

(0.025) (0.011) (0.027) (0.030) (0.033) (0.031) (0.029) (0.024)
βa -0.001 -0.001 0.003 -0.007 -0.003 0.006 0.008 -0.016

(0.019) (0.012) (0.019) (0.021) (0.020) (0.021) (0.021) (0.018)
βaa -0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

K 20 20 20 20 20 20 20 20
L 170 170 163 170 163 44 43 43

AR(1) 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001
AR(2) 0.549 0.479 0.515 0.255 0.167 0.239 0.218 0.617
J 0.573 0.573 0.656 0.573 0.656 0.295 0.221 0.221
σ̂2
η 0.048 0.048 0.027 0.079 0.048 0.017 0.015 0.026
σ̂2
ε 0.054 0.054 0.056 0.056 0.058 0.055 0.055 0.056

TMw 0.680 0.680 0.480 0.908 0.713 0.292 0.173 0.452

eroskedasticity we should distrust the uncorrected estimated standard errors of column
(2). Column (3) shows that although some estimated standard errors substantially in-
crease also many remain almost the same or even decrease when we treat log wage as
endogenous. Especially the findings in column (3) on the coefficients γ1 and γ2 strongly
reject the static specifications maintained in Ziliak (1997) and in Cameron and Trivedi
(2005) for the same data. On the other hand the estimated values are such that the
simulation results on large γ values do not seem relevant here. Testing the endogeneity
by the difference between the two obtained JAB

(2,1)
a statistics yields 10.52 (with p-value

0.161) leaving us still in doubt whether we should simply accept predeterminedness of
wage, or err on the side of caution and treat it as endogenous. The rather indeterminate
test results on endogeneity are in agreement with the finding that the coefficient esti-
mates in columns (1) and (3) are only slightly different. They imply an immediate wage
elasticity of hours worked (β̂w0 ) of 0.40 and 0.46 respectively, and an estimated long-run
elasticity TMw = (β̂w0 + β̂w1 + β̂w2 )/(1 − γ̂1 − γ̂2) of 0.68 and (assuming endogeneity
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of wage) 0.48. A static model self-evidently would produce equivalent point-estimates
for the immediate and the long-run wage elasticity of hours worked. The estimates in
columns (1) and (3) suggest a value of DENη

y of about 1.22 or 0.96 respectively, which
we interpret such that the relatively unfavorable simulation results for case P1 where it
is 4 do not apply here.

Next we estimate the same model again, but now by robust 1-step Arellano-Bond,
assuming all variables to be predetermined in column (4) and wage to be endogenous in
column (5). Most AB1aR standard errors are a bit larger than those for the correspond-
ing AB2aW. This is in agreement with the differences between true standard deviations
that we noted within simulations for P0 and P5. Although these simulations did not
produce a serious difference between the coefficient bias of AB2 and AB1 the results in
column (4) yield a much larger estimated TMw of 0.908. The test on overidentification

provided by xtabond214 (after estimating by AB1aR) is again JAB
(2,1)
a and not JAB

(1,1)
a .

Next we re-estimate the models of columns (4) and (5) by AB1aR, though employing
substantially fewer instruments by collapsing. The results in columns (6) and (7) show
some remarkable changes, both regarding coefficient estimates (yielding substantially
lower TMw) and regarding standard errors, which are often larger (as expected) but
sometimes much lower. According to the simulation results both (6) and (7) will produce
seriously biased coefficient estimates in the presence of a genuinely endogenous regressor,
and both virtually unbiased estimators if all regressors are actually predetermined. The
two versions of the incremental test (with 1 degree of freedom) on endogeneity give here
p-values of 0.100 and 0.078 respectively. The collapsed AB2aW results in column (8)
are less extreme and more in line with those of column (3). An unpleasant finding in
columns (7) and (8) is that they lead to rejection by the incremental J test of validity
as instruments of the time dummies. Since these are exogenous by nature this raises
doubts on the adequacy of the model specification. Such doubts may also be fed by
the fact that all columns, except (8), suggest that a disability leads to increased labor
supply, although this might perhaps be realistic in the US.

We also employed BB2aW estimation, for E and W, and for A and C. When using
all instruments we found p-values for the incremental test on effect stationarity of 0.061
and 0.045. However, after collapsing these are 0.314 and 0.252. This is a pattern that
we noted in our simulations and gives reasons to believe that we should reject effect
stationarity and take this test outcome as a warning that BB inference may be here less
accurate than AB inference. The BB coefficient estimates imply an insignificant but
positive immediate wage elasticity, whereas the long-run elasticity for all four is close to
zero or even negative. This could well be due to the huge coefficient bias that we noted
in our experiments with φ = 0.5, especially those with an endogenous regressor.

Hence, supposing that for these data wage is endogenous indeed, that the effects
are nonstationary and heteroskedasticity is present, our cases Pφ5-EA and Pφ5-EC with
moderate γ, T = 6 and θ = 1 seem most relevant. For these we learned that collapsing
has some advantages, but otherwise there is little to choose between AB1a and AB2a,
because both yield substantial negative bias (about -50%) for γ and huge positive bias
(about +30%) for β with actual test size of corrected t-tests close to 25%, although in

14From our simulations we found that JAB(1,0), which is the test addressed as Sargan by xtabond2,
has a rejection probability close to 1 under heteroskedasticity. So, it is useless after AB2 estimation
and even misleading due to the comment ”Not robust, but not weakened by many instruments”.
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this data set N is actually larger than 200. Nevertheless it seems a truism to conclude
that there is great urge for developing more refined inference procedures for structural
dynamic panel data models.

7 Major findings

In social science the quantitative analysis of many highly relevant problems requires
structural dynamic panel data methods. These allow the observed data to have at best
a quasi-experimental nature, whereas the causal structure and the dynamic interactions
in the presence of unobserved heterogeneity have yet to be unraveled. When the cross-
section dimension of the sample is not very small, employing GMM techniques seems
most appropriate in such circumstances. This is also practical since corresponding soft-
ware packages are widely available. However, not too much is known yet about the
actual accuracy in practical situations on the abundance of different not always asymp-
totically equivalent implementations of estimators and test procedures. This study aims
to demarcate the areas in the parameter space where the asymptotic approximations to
the properties of the relevant inference techniques in this context have either shown to
be reliable beacons or are actually often misguiding marsh fires.

In this context we provide a rather rigorous treatment of many major variants of
GMM implementations as well as for the inference techniques on testing the validity
of particular orthogonality assumptions and restrictions on individual coefficient val-
ues. Special attention is given to the consequences of the joint presence in the model
of time-constant and individual-constant unobserved effects, covariates that may be
strictly exogenous, predetermined or endogenous, and disturbances that may show par-
ticular forms of heteroskedasticity. Also the implications regarding initial conditions for
separate regressors with respect to individual effect stationarity are analyzed in great
detail, and various popular options that aim to mitigate bias by reducing the number of
exploited internal instruments are elucidated. In addition, as alternatives to those used
in current standard software, less robust weighting matrices and additional variants of
Sargan-Hansen test implementations are considered, as well as the effects of particular
modifications of the instruments under heteroskedasticity.

Next, a simulation study is designed in which all the above variants and details are
being parametrized and categorized, which leads to a data generating process involving
10 parameters, for which, under 6 different settings regarding sample size and initial
conditions, 60 different grid points are examined. For each setting and various of the grid
points 13 different choices regarding the set of instruments have been used to examine
12 different implementations of GMM coefficient estimates, giving rise to 24 different
implementations of t-tests and 27 different implementations of Sargan-Hansen tests.
From all this only a pragmatically selected subset of results is actually presented in this
paper.

The major conclusion from the simulations is that, even when the cross-section sam-
ple size is several hundreds, the quality of this type of inference depends heavily on a
great number of aspects of which many are usually beyond the control of the investigator,
such as: magnitude of the time-dimension sample size, speed of dynamic adjustment,
presence of any endogenous regressors, type and severity of heteroskedasticity, relative
prominence of the individual effects and (non)stationarity of the effect impact of any
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of the explanatory variables. The quality of inference also depends seriously on choices
made by the investigator, such as: type and severity of any reductions applied regarding
the set of instruments, choice between (robust) 1-step or (corrected) 2-step estimation,
employing a modified GMM estimator, the chosen degree of robustness of the adopted
weighting matrix, the employed variant of coefficient tests and of (incremental) Sargan-
Hansen tests in deciding on the endogeneity of regressors, the validity of instruments
and on the (dynamic) specification of the relationship in general.

Our findings regarding the alternative approaches of modifying instruments and
exploiting different weighting matrices are as follows for the examined case of cross-
sectional heteroskedasticity. Although the unfeasible form of modification does yield
very substantial reductions in both bias and variance, for the straight-forward feasible
implementation examined here the potential efficiency gains do not materialize. The
robust weighting matrix, which also allows for possible time-series heteroskedasticity,
performs often as well as (and sometimes even better than) a specially designed less ro-
bust version, although the latter occasionally demonstrates some benefits for incremental
Sargan-Hansen tests.

Furthermore we can report to practitioners: (a) when the effect-noise-ratio is large,
the performance of all GMM inference deteriorates; (b) the same occurs in the pres-
ence of a genuine (or a supervacaneously treated as) endogenous regressor; (c) in many
settings the coefficient restrictions tests show serious size problems which usually can
be mitigated by a Windmeijer correction, although for γ large or under simultaneity
serious overrejection remains unless N is very much larger than 200; (d) the limited
effectiveness of the Windmeijer correction is due to the fact that the positive or negative
bias in coefficient estimates is often more serious than the negative bias in the variance
estimate; (e) limiting to some degree the number of instruments usually reduces bias
and therefore improves size properties of coefficient tests, though at the potential cost of
power loss because efficiency usually suffers; (f ) for the case of an autoregressive strictly
exogenous regressor we noted that it is better to not just instrument it by itself, but also
by some of its lags because this improves inference, especially regarding the lagged de-
pendent variable coefficient; (g) to mitigate size problems of the overall Sargan-Hansen
overidentification tests the set of instruments should be reduced, possibly by collapsing,
and then, after 2-step estimation, none of the examined alternative variants did sys-
tematically beat the one using the standard robust weighting matrix based on 1-step
residuals; (h) collapsing also reduces size problems of the incremental Sargan-Hansen ef-
fect stationarity test; (i) except under simultaneity, the GMM estimator which exploits
instruments which are invalid under effect nonstationarity may nevertheless perform bet-
ter than the estimator abstaining from these instruments; (j ) the rejection probability of
the incremental Sargan-Hansen test for effect stationarity is such that it tends to direct
the researcher towards applying the most accurate estimator, even if this is inconsistent.

When re-analyzing a popular empirical data set in the light of the above simulation
findings we note in particular that actual dynamic feedbacks may be much more subtile
than those that can be captured by just including a lagged dependent variable regressor,
which at present seems the most common approach to model dynamics in panels. In
theory the omission of further lagged regressor variables should result in rejections by
Sargan-Hansen test statistics, but their power suffers when many valid and some invalid
orthogonality conditions are tested jointly, instead of by deliberately chosen sequences of
incremental tests or direct variable addition tests. Hopefully tests for serial correlation,
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which we intentionally left out of this already overloaded study, provide an extra help
to practitioners in guiding them towards well-specified models.

References
Ahn, S.C., Schmidt, P., 1995. Efficient estimation of models for dynamic panel data.

Journal of Econometrics 58, 3-29.
Anderson, T.W., Hsiao, C., 1981. Estimation of dynamic models with error compo-

nents. Journal of the American Statistical Association 76, 598-606.
Arellano, M., Bond, S.R., 1991. Some tests of specification for panel data: Monte

Carlo evidence and an application to employment equations. The Review of Economic
Studies 58, 277-297.

Arellano, M., Bover, O., 1995. Another look at the instrumental variable estimation
of error-component models. Journal of Econometrics 68, 29-51.
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Appendices

A Corrected variance estimation for 2-step GMM

Windmeijer (2005) provides a correction to the standard expression for the estimated
variance of the 2-step GMM estimator in general nonlinear models and next specializes
his results for models with linear moment conditions and finally for linear (panel data)
models. Here we apply his approach directly to the standard linear model of section 2.1
where β̂(2) is based on weighting matrix Z ′Ω̂(1)Z, where Ω̂(1) depends on û(1) and thus
on β̂(1).

The nonlinear dependence of β̂(2) on β̂(1) can be made explicit by a linear approx-
imation obtained by employing the well-known ‘delta-method’ to the vector function
f(β) = {X ′Z[Z ′Ω(β)Z]−1Z ′X}−1X ′Z[Z ′Ω(β)Z]−1Z ′u. Note that β̂(2) = β0 + f(β̂(1)).
Expanding the second term around β0 yields

β̂(2) − β0 ≈ f(β0) +
∂f(β)

∂β′

∣∣∣∣
β=β0

(β̂(1) − β0), (A.1)

where under sufficient regularity the omitted terms will be of small order. For k =
1, ..., K we find

∂f(β)

∂βk
=

∂{X ′Z[Z ′Ω(β)Z]−1Z ′X}−1

∂βk
X ′Z[Z ′Ω(β)Z]−1Z ′u

+{X ′Z[Z ′Ω(β)Z]−1Z ′X}−1∂X
′Z[Z ′Ω(β)Z]−1Z ′u

∂βk
,

where

∂{X ′Z[Z ′Ω(β)Z]−1Z ′X}−1

∂βk
= −{X ′Z[Z ′Ω(β)Z]−1Z ′X}−1X ′Z

∂[Z ′Ω(β)Z]−1

∂βk
Z ′X

×{X ′Z[Z ′Ω(β)Z]−1Z ′X}−1,

with
∂[Z ′Ω(β)Z]−1

∂βk
= −[Z ′Ω(β)Z]−1Z ′

∂Ω(β)

∂βk
Z[Z ′Ω(β)Z]−1,

and
∂{X ′Z[Z ′Ω(β)Z]−1Z ′u}

∂βk
= X ′Z

∂[Z ′Ω(β)Z]−1

∂βk
Z ′u.
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In the latter we omit an extra term in ∂u/∂βk = ∂(y−Xβ)/∂βk simply because we just
want to extract the dependence of β̂(2) on the operational weighting matrix.

Using the short-hand notation A(β) = Z[Z ′Ω(β)Z]−1Z ′ and Ωk(β) = ∂Ω(β)/∂βk we
can establish from the above that

∂f(β)/∂βk = −[X ′A(β)X]−1X ′A(β)Ωk(β){I − A(β)X[X ′A(β)X]−1X ′}A(β)u.

This is the k-th column of the matrix F (β) = ∂f(β)/∂β′ in (A.1). The latter can now
be expressed as

β̂(2) − β0 ≈ {[X ′A(β0)X]−1X ′A(β0) + F (β0)(X ′PZX)−1X ′PZ}u. (A.2)

Because F (β0) = Op(n
−1/2) the second term is of smaller order.

This approximation to the estimation errors of β̂(2) can be used to obtain a finite
sample corrected variance estimate of β̂(2). This is relatively easy if one conditions on
some value for F (β0), say F̂ . Windmeijer chooses for the k-th column of F̂ the vector

−[X ′A(β̂(1))X]−1X ′A(β̂(1))Ωk(β̂
(1)){I − A(β̂(1))X[X ′A(β̂(1))X]−1X ′}A(β̂(1))û(2).

Taking û(2) instead of the asymptotically equivalent û(1) leads to substantial simplifica-
tion, because X ′A(β̂(1))û(2) = X ′Z[Z ′Ω(β(1))Z]−1Z ′(y −Xβ̂(2)) = 0, giving

F̂ = (F̂·1, ..., F̂·K), with F̂·k = −[X ′A(β̂(1))X]−1X ′A(β̂(1))Ωk(β̂
(1))A(β̂(1))û(2). (A.3)

Note that when L = K we have F̂ = O, because Z ′û(1) = Z ′û(2) = 0.
This all then yields for L > K the corrected variance estimator

V̂ arc(β̂(2)) = V̂ ar(β̂(2)) + F̂ V̂ ar(β̂(2)) + V̂ ar(β̂(2))F̂ + F̂ V̂ ar(β̂(1))F̂ ′, (A.4)

where
V̂ ar(β̂(1)) = σ̂2

u(X
′PZX)−1X ′PZΩ̂PZX(X ′PZX)−1.

Note that in case Ω(β) = diag(u2
1, ..., u

2
n) one has Ωk(β̂

(1)) = −2β̂
(1)
k diag(û

(1)
1 x1k, ..., û

(1)
n xnk).

B Partialling out and GMM

The IV/2SLS result on partialling out directly generalizes for the MGMM estimator,
provided this uses all the (transformed) predetermined regressors as instruments. In
standard GMM the equivalence of predetermined regressors and a block of the instru-
ments gets lost. Using the notation of (2.10) and considering the partitioned model
leading to (2.8), we easily find its counterpart

β̂1,GMM = (X̂†∗′1 MX̂†∗2
X̂†∗1 )−1X̂†∗′1 MX̂†∗2

y∗, (B.1)

where
X̂†∗ = (X̂†∗1 X̂†∗2 ) = PZ†(X

∗
1 X

∗
2 ) = P(Ψ′)−1Z(ΨX1 ΨX2).

In the special case of system (3.30) with instruments (3.32) we have X2 = Z2 = (0′, ι′T )′

and Z ′1Z2 = 0, whereas under cross-sectional heteroskedasticity, due to DιT = 0, the
optimal weighting matrix is block-diagonal, hence Z ′1ΩZ2 = 0. Therefore Z†′1 Z

†
2 = 0
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too, giving PZ† = PZ†1
+ PZ†2

. Now we find X̂†∗1 = PZ†X
∗
1 = (PZ†1

+ PZ†2
)X∗1 and X̂†∗2 =

(PZ†1
+ PZ†2

)ΨZ2 = PZ†2
ΨZ2 = (Ψ′)−1Z2(Z ′2ΩZ2)−1Z ′2Z2 = cZ†2, with c some scalar,

because Z2 has just one column. Therefore, MX̂†∗2
X̂†∗1 = MZ†2

(PZ†1
+ PZ†2

)X∗1 = PZ†1
X∗1 .

Thus, in this particular case (when using an appropriate weighting matrix), we find

β̂1,GMM = (X̂∗′1 MX̂∗2
X̂∗1 )−1X̂∗′1 MX̂∗2

y∗ = (X̂∗′1 PZ†1
X∗1 )−1X̂∗′1 PZ†1

y.

Due to the block of zeros in Z1 this is just the GMM estimator of the model in first
differences.

C Extracting redundant moment conditions

Through linear transformation15 we demonstrate that the sets of moment condions
for the equation in levels and for the equation in first-differences have a non empty
intersection. First we consider the moment conditions associated with the strictly
exogenous regressors. For the equation in first differences these are E(xTi ∆εit) =
E[∆εit(x

′
i1...x

′
iT )′] = 0, for t = 2, ..., T. They can also be represented16 by the com-

bination E[∆εit(∆x
′
i2...∆x

′
iT )′] = 0 and E(xit∆εit) = 0. However, by a similar transfor-

mation17 (here of the disturbances instead of the instruments), the conditions for the
equation in levels E[∆x�ith(ηiιT + εi)] = 0, where h = 1, ..., K�

x (and again t = 2, ..., T ),
can be represented by E(∆x�ithε̃i) = 0 and E[∆x�ith(ηi + εit)] = 0. So, just the K�

x (T − 1)
orthogonality conditions E[∆x�it(ηi + εit)] = 0 for t = 2, ..., T are additional due to effect
stationarity of K�

x of the strictly exogenous regressors.
Similarly, the orthogonality conditions E(wt−1

i ∆εit) = 0, or E(wis∆εit) = 0 for
s = 1, ..., t− 1 with t = 2, ..., T, can be represented by E(wi,t−1∆εit) = 0 for t = 2, ..., T
and E(∆wis∆εit) = 0 for t = 3, ..., T and s = 2, ..., t − 1. On the other hand, the
conditions E[∆w�

it(ηi + εi,t+l)] = 0 for t > 1 and l > 0 are actually E[∆w�
is(ηi + εit)] = 0

for t = 2, ..., T and s = 2, ..., t, whereas these can be represented by E(∆w�
is∆εit) = 0

for t = 3, ..., T and s = 2, ..., t− 1 and E[∆w�
it(ηi + εit)] = 0 for t = 2, ..., T. Thus, only

the K�
w(T − 1) conditions E[∆w�

it(ηi + εit)] = 0 for t = 2, ..., T are additional.
Using the same logic, the orthogonality conditions E(vt−2

i ∆εit) = 0 for t = 3, ..., T,
which are actually E(vis∆εit) = 0 for t = 3, ..., T and s = 1, ..., t − 2, can also be
represented by E(vi,t−2∆εit) = 0 for t = 3, ..., T and E(∆vis∆εit) = 0 for t = 4, ..., T and
s = 2, ..., t−2. However, the conditions E[∆v�it(ηi+εi,t+1+l)] = 0 for t > 1 and l > 0 are in
fact E[∆v�is(ηi+εit)] = 0 for t = 3, ..., T and s = 2, ..., t−1, which can also be represented
as E(∆v�is∆εit) = 0 for t = 4, ..., T and s = 2, ..., t − 2 and E[∆v�i,t−2(ηi + εit)] = 0 for

t = 3, ..., T. Thus, we find that only the K�
v (T − 2) conditions E[∆v�i,t−2(ηi + εit)] = 0

for t = 3, ..., T are additional.

15In this Appendix we repeatedly use the result that the p conditions E(aCb) = 0, where a is a
random scalar, b a p× 1 random vector and C a deterministic nonsingular p× p matrix, are equivalent
with the p conditions E(ab) = 0, because E(ab) = 0⇔ CE(ab) = 0⇔ E(aCb) = 0.

16Here C = (D′ eT,t)
′ ⊗ IKx

.
17Now C = (D′ eT,t)

′.
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D Derivations for (4.17)

The results for Vη and Vλ are obvious. Those for Vζ(i) and Vε(i) are obtained as follows.
We use the standard result (reference ??) that the variance of a general stationary
ARMA(2,1) process

zt =
ψ(1− φL)

(1− γL)(1− ξL)
ut, (D.1)

where ut ∼ IID(0, 1), is given by

V ar(zt) = ψ2 (1 + γξ)(1 + φ2)− 2φ(γ + ξ)

(1− γξ)(1− γ2)(1− ξ2)
. (D.2)

Because we can rewrite (using σε = 1)

[βρvεσv + (1− ξL)]ω
1/2
i = (1 + βρvεσv)ω

1/2
i

(
1− ξ

1 + βρvεσv
L

)
,

the result for Vε(i) follows upon substituting ψ = (1+βρvεσv)ω
1/2
i and φ = ξ/(1+βρvεσv).

For Vζ(i) simply take φ = 0 and ψ = βσv(1− ρ2
vε)

1/2ω1/2.
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