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Abstract

We analyze the finite sample properties of maximum likelihood estimators for dynamic

panel data models. In particular, we consider Transformed Maximum Likelihood (TML)

and Random effects Maximum Likelihood (RML) estimation. We show that TML and

RML estimators are solutions to a cubic first-order condition in the autoregressive param-

eter. Furthermore, in finite samples both likelihood estimators might lead to a negative

estimate of the variance of the individual specific effects. We consider different approaches

taking into account the non-negativity restriction for the variance. We show that these ap-

proaches may lead to a boundary solution different from the unique global unconstrained

maximum. In an extensive Monte Carlo study we find that this boundary solution is-

sue is non-negligible for small values of T and that different approaches might lead to

substantially different finite sample properties. Furthermore, we find that the Likelihood

Ratio statistic provides size control in small samples, albeit with low power due to the

flatness of the log-likelihood function. We illustrate these issues modeling U.S. state level

unemployment dynamics.
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1. Introduction

Dynamic panel data models have a prominent place in applied research and at the

same time form a challenging field in econometric theory. Many panel data applications

have a relatively small number of time periods T , whereas the cross sectional dimension N

is sizeable. It is therefore common to consider the semi-asymptotic behavior of estimators

and corresponding test statistics with T fixed and only N tending to infinity.

A central theme in linear dynamic panel data analysis is the fact that the Fixed Effects

(FE) estimator is inconsistent for fixed T and N large. This inconsistency is referred to

as the Nickell (1981) bias, and is an example of the incidental parameters problem. It

has therefore become common practice to estimate the parameters of dynamic panel data

models by the Generalized Method of Moments (GMM), see Arellano and Bond (1991) and

Blundell and Bond (1998). A main reason for using GMM is that it provides asymptotically

efficient inference exploiting a minimal set of statistical assumptions. GMM inference

has not been without its own problems, however. These include small sample biases in

both coefficient and variance estimators, sensitivity to important nuisance parameters and

choices regarding the type and number of moment conditions. A large literature has been

devoted to adapting the GMM approach to limit the impact of these inherent drawbacks,

see Bun and Sarafidis (2015) for a recent overview.

This again has led to an interest in likelihood based methods that correct for the

incidental parameters problem. Some of these methods are based on modifications of the

profile likelihood, see Lancaster (2002) and Dhaene and Jochmans (2012). Other methods

start from the likelihood function of the first differences, see Hsiao et al. (2002) and

Binder et al. (2005). Essentially these methods treat the incidental parameters as fixed in

estimation. The alternative approach is to assume random effects, but in dynamic models

it is then necessary to be explicit about the non-zero correlation between individual specific

effects and initial conditions (Anderson and Hsiao (1982), Alvarez and Arellano (2003)).

Random effects type ML estimators therefore typically exploit Chamberlain (1982) type of

projections to model the dependence between individual specific effects, initial observations

and additional covariates.

In this study we consider the Transformed Maximum Likelihood approach (TML) as
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in Hsiao et al. (2002) and the Random effects Maximum Likelihood estimator (RML) as in

Alvarez and Arellano (2003).1 There is a close connection between TML and RML in the

sense that TML can be expressed as a restricted version of RML. Under suitable regularity

conditions ML estimators are consistent and asymptotically normally distributed. Monte

Carlo evidence provided in both studies, suggest that these likelihood based approaches

can serve as viable alternatives to the usual GMM estimators. Just like for GMM, however,

the application of ML estimators is not without its own problems.

In this study we address two important issues when implementing ML for dynamic

panel data models. First, we show that in the simple setup without time-series het-

eroscedasticity both the TML and RML estimators give rise to a cubic first-order condi-

tion in the autoregressive parameter. We therefore have either one or three solutions to

the first-order conditions. As a result even asymptotically the log-likelihood function can

be bimodal. This result is different from Kruiniger (2008) and Han and Phillips (2013),

who find a quartic equation assuming covariance stationarity.

Second, because both TML and RML can be seen as random effect ML estimators,

we address the issue of negative variance estimates as mentioned in Maddala (1971),

Alvarez and Arellano (2003) and Han and Phillips (2013). An important consequence

of bimodality is that unconstrained maximization of the log-likelihood may lead to ML

estimates which do not satisfy the restriction of non-negative variances. We show that

when there are three solutions to the first-order condition, the left solution almost always

satisfies the non-negativity restriction, while the right solution violates it. Enforcing the

non-negativity constraint may furthermore lead to a boundary solution (Maddala (1971),

Alvarez and Arellano (2003)).

We further investigate the impact of multiple roots and boundary conditions in finite

samples in a Monte Carlo study. We consider finite sample bias and RMSE of coefficient

estimators as well as size and power of corresponding t and LR statistics. We find that,

despite the robustness of the TML and RML to initial conditions, the finite sample prop-

1Because the former is derived conditional on the initial observations and individual specific effects,

it is also referred to as fixed effects ML in Kruiniger (2013).

3



erties of both estimators for small values of T depend heavily on the initial condition. A

partial explanation is that the behavior of the initial condition has direct effect on the

bimodality of the log-likelihood function. Estimators taking into account non-negativity

constraints perform much better than unconstrained counterparts. Furthermore, we find

that inference based on the LR statistic is size correct, while t statistics show large size

distortions. Using the dataset in Bun and Carree (2005) we show how these theoretical

results can influence empirical estimates of U.S. state level unemployment dynamics.

Throughout the analysis we limit ourselves to an asymptotic analysis in which T is

fixed and N →∞. When T is large the influence of initial conditions becomes negligible,

hence our main results become less relevant. For results with T large, see e.g. Bai (2013).

Furthermore, we do not analyze the unit root case. Distribution theory becomes rather

different in this case, see Ahn and Thomas (2006) and Kruiniger (2013).

The plan of this study is as follows. In Section 2 we introduce the Maximum Likelihood

estimators for the panel AR(1) model including the cubic first-order condition for the

autoregressive parameter. Section 3 deals with the possibility of multiple solutions and

proposes bounded estimation as a solution. Section 4 contains the extension to dynamic

models with additional covariates. Section 5 reports the results from the Monte Carlo

study, while Section 6 shows the empirical results. Section 7 concludes.

2. ML estimation for the panel AR(1) model

We consider the following simple AR(1) specification without exogenous regressors:2

yi,t = ηi + φyi,t−1 + εi,t, E[εi,t|yi,0, ηi] = 0, (1)

for i = 1, . . . , N, t = 1, . . . , T . We assume that the idiosyncratic errors εi,t are i.i.d. (0, σ2)

and that initial conditions yi,0 are observed. Stacking the observations over time, we can

write the AR(1) model for each individual as:

yi = φyi− + ıTηi + εi, εi = (εi,1, . . . , εi,T )′, (2)

2Time-specific effects can be accommodated by taking the variables in deviations from the cross-

sectional mean.
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with yi and yi− defined accordingly and ıT a vector of ones. We follow Kruiniger (2013)

to derive the log-likelihood function(s), but final results are identical to those in Hsiao

et al. (2002), Alvarez and Arellano (2003) or Binder et al. (2005).

We continue by using the Chamberlain (1982) type of projection for ηi:
3

ηi = πyi,0 + vi, E[viyi,0] = 0, vi ∼ i.i.d.(0, σ2
v). (3)

Note that this projection is only necessary for the RML estimator. When we set π = 1−φ

the projection corresponds exactly to the TML framework as in this case ∆yi,1 does not

depend on yi,0. In the TML approach the variance of vi = ∆yi,1 − εi,1 is a parameter

to be estimated.4 We therefore only exploit the projection in (3) to show the algebraic

comparison between RML and TML. The model can be represented as:5

Ryi = (e1φ+ ıTπ)yi,0 + (ıTvi + εi), (4)

where R = IT − LTφ and e1 is the first column of the IT matrix. Thus conditionally on

yi,0:

E[Ryi|yi,0] = (e1φ+ ıTπ)yi,0, var[Ryi|yi,0] = Σ = σ2
vıT ı

′
T + σ2IT . (5)

The variance-covariance structure of Σ is of the usual random effects form. Using the

matrix inversion and determinant lemmas, we obtain:

Σ−1 =
1

σ2
IT −

1

σ2

σ2
v

σ2 + Tσ2
v

ıT ı
′
T , |Σ|= (σ2)T−1(σ2 + Tσ2

v). (6)

Denote by WT ≡ IT − 1
T
ıT ı
′
T the usual fixed effects projection matrix, then we can write:

Σ−1 =
1

σ2
WT +

1

Tθ2
ıT ı
′
T , |Σ|= (σ2)T−1θ2, (7)

θ2 ≡ σ2 + Tσ2
v . (8)

Hence, instead of estimating σ2 and σ2
v we rather estimate σ2 and θ2. By doing so we do

not restrict σ2
v to be positive. This parametrization, in one form or the other, has been

3For simplicity we do not include a constant term in the projection as it would serve as a restricted

time effect.
4Alternatively, following Hsiao et al. (2002) one can estimate ω ≡ 1 + σ2

v/σ
2 = var (∆yi,1)/σ2.

5Bai (2013) considers a similar conditional maximum likelihood estimator with a possible factor struc-

ture in the error term εi.
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used in Hsiao et al. (2002), Alvarez and Arellano (2003), Ahn and Thomas (2006) and

Kruiniger (2008) inter alia.

Now we define the quasi log-likelihood function for some individual i (up to a constant):

`i(κ) = −1

2

(
(T − 1) log(σ2) + log(θ2) +

[
(yi − φyi− − ıTπyi,0)′Σ−1(yi − φyi− − ıTπyi,0)

])
,

(9)

where κ = (φ, π, σ2, θ2)′. This function is the true likelihood function if (ıTvi + εi) are

jointly normal.6 Now using the fact that WT ıT = 0T , we can write:

(10)
`i(κ) = −1

2

(
(T − 1) log(σ2) + log(θ2) +

1

σ2
[(yi − φyi−)′WT (yi − φyi−)]

+
T

θ2
(ȳi − φȳi− − πyi,0)2

)
,

where ȳi ≡ (1/T )
∑T

t=1 yi,t and ȳi− ≡ (1/T )
∑T

t=1 yi,t−1. Furthermore, we define ỹi,t ≡

yi,t − ȳi, ỹi,t−1 ≡ yi,t−1 − ȳi−, ÿi ≡ ȳi − yi,0, ÿi− ≡ ȳi− − yi,0 and ρ ≡ π − (1 − φ). This

implies the following final expression for the log-likelihood function (after summing over

all individual log-likelihood functions):

(11)

`(κ) = −N
2

(
(T − 1) log(σ2) + log(θ2) +

1

Nσ2

N∑
i=1

T∑
t=1

(ỹi,t − φỹi,t−1)2

+
T

Nθ2

N∑
i=1

(ÿi − φÿi− − ρyi,0)2

)
.

The concentrated log-likelihood function for observations in first-differences (also known

as Transformed log-likelihood in Hsiao et al. (2002) and Juodis (2014)) is obtained by

setting ρ = 0. Thus both RML and TML estimators provide an in-built bias-correction

term for the usual fixed effects log-likelihood function.

The parameters σ2, θ2 (and ρ for RML) can be concentrated out, resulting in (up to a

constant):

`c(φ) = −N
2

(
(T − 1) log σ̂2(φ) + log θ̂2(φ)

)
, (12)

6This parametrization ensures that θ2 > 0 or equivalently ω > 1− 1
T as in Hsiao et al. (2002).
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where:

σ̂2(φ) =
1

N(T − 1)

N∑
i=1

T∑
t=1

(ỹi,t − φỹi,t−1)2, θ̂2(φ) =
T

N

N∑
i=1

(ẏi − φẏi−)2. (13)

Here for the random effects log-likelihood function we defined ẏi and ẏi−:

ẏi ≡ ÿi − yi,0
∑N

i=1 ÿiyi,0∑N
i=1 y

2
i,0

, ẏi− ≡ ÿi− − yi,0
∑N

i=1 ÿi−yi,0∑N
i=1 y

2
i,0

, (14)

while for the log-likelihood in first differences ẏi ≡ ÿi and ẏi− ≡ ÿi−.

The likelihood function in (12) is defined for all values of φ ∈ R, hence from theoretical

and computational point of view there are no reasons to consider a restricted parameter

space for estimation. Nevertheless, some studies (Hsiao et al. (2002); Hayakawa and

Pesaran (2014)) restrict φ ∈ (−1; 1). This may have consequences for the finite sample

properties of the resulting estimators, as we shall see below. Furthermore, the fact that

the likelihood function is defined over the whole real line, is in contrast with the likelihood

function in Kruiniger (2008) and Han and Phillips (2013). In these studies stationarity

has been assumed, hence the likelihood function is naturally defined only for −1 < φ ≤ 1.

The FOC (first order condition) for the autoregressive parameter φ can now be ex-

pressed in the following way:

d`c(φ)

dφ
=

1

σ̂2(φ)

N∑
i=1

T∑
t=1

ỹi,t−1(ỹi,t − φỹi,t−1) +
T

θ̂2(φ)

N∑
i=1

ẏi−(ẏi − φẏi−) = 0, (15)

or alternatively:

θ̂2(φ)
N∑
i=1

T∑
t=1

ỹi,t−1(ỹi,t − φỹi,t−1) + σ̂2(φ)T
N∑
i=1

ẏi−(ẏi − φẏi−) = 0. (16)

Given that σ̂2(φ) and θ̂2(φ) are quadratic in φ it is not difficult to see that the FOC is

cubic in φ. Thus for any value of T and any realization of {yi}Ni=1 there will be at least

one and at most three solutions to (16). For general value of T there is no easy formula

for the solutions, but in the next section we will obtain interesting analytical results for

three-wave panels. In any case the solutions of the cubic equation can be found without

any need of explicit numerical maximization. One can simply use root finder algorithms

based on the eigenvalues of the companion matrix.
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For some reason the fact of possible multiple solutions is mostly forgotten when dis-

cussing both maximum likelihood estimators. An exemption is Hayakawa and Pesaran

(2014) who observe that the TML log-likelihood function can have more than one solution

asymptotically. Here we show that also in finite samples this is possible, and that both

the TML and RML log-likelihood functions have one or two local maxima. More impor-

tantly, this result is unaffected if strictly exogenous regressors are added to the model as

in Section 4.

Given the structure of the log-likelihood function we can easily specify the interval for

all solutions φ̂. In particular, we have:

Corollary 1. For any N and T all solutions of (16) lie in the following interval:

φ̂ ∈ (φ̂W , φ̂B) =

(∑N
i=1

∑T
t=1 ỹi,tỹi,t−1∑N

i=1

∑T
t=1 ỹ

2
i,t−1

,

∑N
i=1 ẏiẏi−∑N
i=1 ẏ

2
i−

)
. (17)

Furthermore, this result continues to hold if N →∞.

The proof of this corollary follows directly from the fact that the log-likelihood function

is a sum of two quasi-concave functions with different maxima. The lower bound of this

interval is the fixed effects ML estimator (also known as Within Group or LSDV estimator).

The upper bound can be interpreted as a quasi-between estimator. It is well known that

plimN,T→∞ φ̂W = φ, but that for fixed T the within estimator has a negative bias, see

Nickell (1981). Furthermore, it is straightforward to show that plimN,T→∞ φ̂B = 1 because

ȳi and ȳi− converge to the same value as T goes to infinity.

Next, we investigate the asymptotic behavior of the interval in Corollary 1. As the

lower bound (φ̂W ) is the same for both estimators we are primarily interested in the

upper bound (φ̂B), which is different between estimators. The result is summarized in the

following Proposition.

Proposition 1. The probability limits of the quasi-between estimators from Corollary 1

are:

plim
N→∞

φ̂RML
B ≤ plim

N→∞
φ̂TML
B . (18)
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Thus the upper bound for RML is no larger than for TML. The interval for possible

values for φ̂RML is narrower than the corresponding interval for TML. This result can

be expected given that the RML estimator is found to be more efficient than TML, see

Kruiniger (2013).

3. Multiple solutions and bounded estimation

The possibility of having one or three solutions to the cubic equation (16) has important

consequences. We first characterize the solutions for the case in which analytical results

can be derived, that of three-wave panels and TML. We then proceed to the case of general

T . Finally, we suggest a procedure of bounded estimation as in Maddala (1971).

3.1. Three-wave panel and the Transformed ML estimator

For general values of T we can only specify in which interval the solutions of the cubic

equation lie, as described in Corollary 1. For T = 2 and the Transformed log-likelihood

function (i.e. ρ = 0), this result can be sharpened and a simple analytic expression for

the ML estimator can be derived. Observe that for T = 2 we have for σ̂2(φ) and θ̂2(φ) as

defined in (13):

σ̂2(φ) =
1

2N

N∑
i=1

(∆yi,2 − φ∆yi,1)2 , θ̂2(φ) =
1

2N

N∑
i=1

(∆yi,2 − (φ− 2)∆yi,1)2 . (19)

We have then the following expression for the TML log-likelihood function:

Proposition 2. For T = 2 the log-likelihood function for the TML estimator is given by:

`c(φ) = −N
2

log

(σ̂2(φ) +

(
1

N

N∑
i=1

∆yi,1∆yi,2 − φ
1

N

N∑
i=1

(∆yi,1)2

))2

+ d

 , (20)

where d does not depend on φ but only on data.

The polynomial inside the log(·) expression in Proposition 2 is symmetric around the

point φ̃ = φ̂W + 1. The FOC is:

1

2σ̂2θ̂2

(
N∑
i=1

(∆yi,2 − φ∆yi,1)(∆yi,2 − (φ− 2)∆yi,1)

)(
N∑
i=1

(∆yi,2 − (φ− 1)∆yi,1)∆yi,1

)
= 0.
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The solutions are given by φ̃ = φ̂W + 1 and for D > 0:

φ̂(l) = φ̃−
√
D, φ̂(r) = φ̃+

√
D,

where D ≡ 1 + φ̂2
W −

∑N
i=1(∆yi,2)2∑N
i=1(∆yi,1)2

is the discriminant of the quadratic part of the score.

The first derivative of the concentrated likelihood consists of a linear and quadratic part.

The latter implies either zero or two more solutions for φ on top of the intermediate case

φ̃ = φ̂W+1. Furthermore, setting this quadratic part equal to zero can be recognized as the

FOC of the bias corrected FE estimator as in Bun and Carree (2005). Consistency7 of φ̂(l)

follows directly from plimN→∞ φ̂W = φ0 − σ2
0

var (∆yi,1)
and plimN→∞D =

(
1− σ2

0

var (∆yi,1)

)2

.

The solutions φ̃ and φ̂(r) are inconsistent unless var(∆yi,1) = σ2
0, i.e. σ2

v = 0.

The relationships between the solutions to FOC can be further summarized as follows:

Corollary 2. For T = 2 and TML the following holds:

`c(φ̂(l)) = `c(φ̂(r)), (21)

σ̂2
v(φ̂

(l)) > 0 > σ̂2
v(φ̂

(r)), (22)

θ̂2(φ̃) = σ̂2(φ̃), (23)

φ̂B = φ̂W + 2. (24)

However, this result does not hold in general for RML and/or T > 2.

Corollary 2 states that, if the cubic equation has only one solution, it is a corner

solution as the estimate for σ2
v(φ̃) = 0 in this case.8 The equality of the likelihood for φ̂(l)

and φ̂(r) would imply that both can be considered “maximum likelihood”. However, the

second is inconsistent and leads to a negative estimate of σ2
v . To illustrate the relevance

7From now on, where necessary to avoid confusion, we will use the subscript 0 to denote the true

value of the parameters, e.g. φ0, σ
2
0 .

8While discussing the properties of the panel VAR estimator, Juodis (2014) observed that for the

AR(1) with T = 2 case the results of the previous Corollary hold asymptotically. In this paper, we show

that this result is exact if the quadratic equation has a positive discriminant. Furthermore, Juodis (2014)

investigates the location of the second mode asymptotically and shows that the location of it depends on

initialization of yi,0.
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of the occurrence of three solutions we derived the probability of a positive discriminant

by assuming normality.

Corollary 3. For T = 2 and under joint normality of the data, the probability of D > 0

(two maxima) is given by:

Pr (D > 0) = F

 N

N − 1

(
2

σ2
0

var (∆yi,1)
−
(

σ2
0

var (∆yi,1)

)2
)−1


(N−1,N)

, (25)

where F (·)(N−1,N) is the CDF of the F distributed variable with (N − 1, N) degrees of

freedom.

The term inside F (·)(N−1,N) is always larger than 1 and consecutively Pr (D > 0) ≥ 0.5

as var (∆yi,1) ≥ σ2
0. If the initial observation is generated from a stationary process then

σ2
0

var (∆yi,1)
= (1 + φ0)/2. To allow for unrestricted initial condition we define the following

relative variance ratio α0 :

α0 ≡
1− φ2

0

σ2
0

var

(
yi,0 −

ηi
(1− φ0)

)
,⇒ var (∆yi,1) = σ2

0

(
α0

1− φ0

1 + φ0

+ 1

)
, (26)

such that α0 = 1 if the initial observation is covariance stationary. Pr (D > 0) then

depends on N , φ0 and α0. It can be easily seen that Pr (D > 0) is a decreasing function

of φ0 and a increasing function of α0. Below we provide two graphs to illustrate how this

probability depends on the population parameters.

Figure 1: Probability of D > 0 with N = 50 on the left and N = 250 on the right. φ0 ∈ [0; 0.95] and

α0 ∈ [0.0; 1.05]
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3.2. Further Asymptotic Results for T > 2 and TML

In this subsection we extend the question of one or three solutions to the FOC to

T > 2. We consider the extent to which asymptotically the discriminant of (16) of TML

is positive or negative. Before proceeding we define the following quantities:

ãE ≡ E

[
T∑
t=1

ỹ2
i,t−1

]
, ȧE ≡ E

[
T ẏ2

i−
]
, ξ ≡

T−2∑
t=0

(T − t− 1)φt0, x ≡ φ0 − φ. (27)

Using this notation we can express the asymptotic solutions of the FOC for general T as:

Proposition 3. The two non-trivial (x 6= 0) asymptotic solutions of (16) (if they exist)

are implicitly defined by:

x2 T

T − 1
(ȧE ãE) + x

(
ξ

T

(
θ2

0

ãE
T − 1

− σ2
0 ȧE

)
+

2ξ

T

(
θ2

0ãE −
σ2

0 ȧE
T − 1

))
+
(
θ2

0ãE + σ2
0 ȧE
)
− 2ξ2

T (T − 1)
θ2

0σ
2
0 = 0. (28)

The existence of non-trivial solutions to this equation in the simple AR(1) model

depends on two parameters: the autoregressive coefficient φ0 and the relative variance

parameter α0. Under this reparametrization the solutions in Proposition 3 are invariant

to σ2
0, because all quantities of interest are multiplicative in σ2

0:

ãE =

T−1∑
t=0

φ2t
0 −

1

T

(
T−1∑
t=0

φt0

)2
 α0σ

2
0

1− φ2
0

+ σ2
0

T−2∑
t=0

(
t∑

j=0

φj0

(
φj0 −

1

T

(
t∑

j=0

φj0

)))
, (29)

ȧE =
α0σ

2
0ξ

2

T

1− φ0

1 + φ0

+
σ2

0

T

T−2∑
t=0

(
t∑

j=0

φj0

)2

, (30)

θ2
0 = Tσ2

0

(
α0

1− φ0

1 + φ0

+
1

T

)
. (31)

To gain further insight into the quadratic equation in Proposition 3 for general T > 2 we

investigate the sign of the discriminant numerically for different values of T . In Figure 2 we

present two plots of the sign of the discriminant. Here 3 indicates that the discriminant

is positive (thus bimodality), while 1 implies that the discriminant is negative and the

log-likelihood function is asymptotically unimodal. We present results for T = {3, 5}. For

higher values of T the border between three and one solution to the FOC approaches the

α0 = 1 line from below. There is a major change from T = 2 to T > 2 in the set of values

12



(φ0, α0) for which in the limit there is a positive discriminant value. For T = 2 all values

of (φ0, α0) for which α0 > 0 and φ0 < 1 have a positive discriminant when N →∞. This

set is obviously smaller already for T = 3.
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Figure 2: The sign of the discriminant for T = 3 on the left and T = 5 on the right graph. 3 is for positive

discriminant and thus three solutions to FOC, while 1 is for negative discriminant and one solution.

φ0 ∈ [0; 0.99] and α0 ∈ [0.8; 1.05]

Figure 2 shows that as T increases the interval of α0 < 1, that results in a positive

discriminant, shrinks. It can be shown numerically for the relevant range of values for

α0 and φ0 that for α0 ≥ 1 the discriminant is always positive. These results show that

multiple solutions are possible for T > 2 even if N becomes large.

3.3. Connection with Maddala (1971)

Aside from the suggested “take left” procedure in case of bimodality to avoid negative

σ2
v we may also use restricted ML estimation. Consider the following reparametrization

δ = σ2

θ2
, so that in the population δ ∈ (0; 1] because by definition θ2 = σ2 + Tσ2

v . In order

to take this population restriction into account we consider the concentrated log-likelihood

function in terms of the δ parameter:

− 2

N
`c(δ) = T log

[(
c̃− 2φ(δ)b̃+ φ2(δ)ã

)
+ δ

(
ċ− 2φ(δ)ḃ+ φ2(δ)ȧ

)]
− log δ, (32)
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where φ(δ) = b̃+δḃ
ã+δȧ

and

ã =
1

N

N∑
i=1

T∑
t=1

ỹ2
i,t−1, b̃ =

1

N

N∑
i=1

T∑
t=1

ỹi,tỹi,t−1, c̃ =
1

N

N∑
i=1

T∑
t=1

ỹ2
i,t,

ȧ =
T

N

N∑
i=1

ẏ2
i−, ḃ =

T

N

N∑
i=1

ẏiẏi−, ċ =
T

N

N∑
i=1

ẏ2
i .

The expression for the concentrated log-likelihood can be further simplified as:

− 2

N
`c(δ) = T log

[
(c̃+ δċ)− (b̃+ δḃ)2

ã+ δȧ

]
− log δ. (33)

One can recognize this expression as equation (2.3) in Maddala (1971). Similarly to (16),

the FOC for this log-likelihood function is cubic in δ. Maddala (1971) investigates the

occurrence of the boundary solution δ = 1 for this likelihood function. Particularly one

can see that the necessary and sufficient condition for δ = 1 to be a local maximum is:

d`c(δ)

dδ

∣∣∣∣
δ=1

> 0. (34)

In this case one sets δ = 1 and the corresponding estimate of φ is given by:

φ(1) =
b̃+ ḃ

ã+ ȧ
. (35)

We know that for T = 2 and in case of the TML estimator this φ(1) is exactly the middle

solution φ̃ = φ̂W + 1. In all other cases this solution will differ from the unique global

unconstrained maximum (in the one solution case). For example, if yi,0 = 0 for all i,

one can recognize φ(1) as the pooled OLS estimator of φ, which is known to be positively

biased. In general, φ(δ) is a weighted sum of “within” and “quasi-between” estimators and

thus belongs to the interval of Corollary 1. Furthermore, the weight of “within” estimator

is monotonically decreasing in δ, because:

φ(δ) = φ̂W q(δ) + φ̂B(1− q(δ)), q(δ) =
ã

ã+ δȧ
, q′(δ) < 0. (36)

Hence, if the global maximum φ̂ does not satisfy the non-negativity constraint it is always

non-smaller than φ(1). In the Monte Carlo section of this paper we will investigate the

finite sample properties of TML and RML estimators that use φ(1) as estimate at the

boundary of the parameter space.
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4. Extension to exogenous regressors

For most empirically relevant applications the AR(1) model specification is too restric-

tive and incomplete. In this subsection we therefore extend our analysis to an ARX(1)

model including additional strictly exogenous regressors. For ease of exposition, we con-

sider the following simplified version with one additional regressor:

yi,t = ηi + φyi,t−1 + βxi,t + εi,t, E[εi,t|xi,0, . . . , xi,T , yi,0, ηi] = 0. (37)

Then using stacked notation for individual i we have:

yi = φyi− + βxi + ıTηi + εi, εi = (εi,1, . . . , εi,T )′. (38)

We continue by using the Chamberlain (1982) type of projection for ηi as in Kruiniger

(2006) and Bai (2013) on not only yi,0, but now also all the lags and leads of xi,t:

ηi = π′wi + vi, E[viwi] = 0, wi = (yi,0, xi,0,x
′
i)
′. (39)

The main implication is that the conditional model can be represented as:

Ryi = e1φyi,0 + βxi + ıTπ
′wi + (ıTvi + εi). (40)

Thus conditionally on wi:

E[Ryi|wi] = e1φyi,0 + βxi + ıTπ
′wi, (41)

while the variance-covariance matrix remains the same as in the pure AR(1) model without

exogenous regressor. The log-likelihood function over all individuals is then given by (up

to a constant):

(42)

− 2

N
`(κ) = (T − 1) log(σ2) + log(θ2) +

1

Nσ2

N∑
i=1

T∑
t=1

(ỹi,t − φỹi,t−1 − βx̃i,t)2

+
T

Nθ2

N∑
i=1

(ȳi − φȳi− − βx̄i − π′wi)
2,

where κ = (φ, β, σ2, θ2,π′)′.

15



Similarly to the model without xi,t the TML estimator can be expressed as a restricted

version (in terms of the parameter restrictions) of a more general RML estimator. Without

loss of generality, we can rewrite the second component of the log-likelihood function as:

T

Nθ2

N∑
i=1

(ȳi − φȳi− − βx̄i − π′wi)
2 =

T

Nθ2

N∑
i=1

(ÿi − φÿi− − βẍi − ρ′zi)2, (43)

where zi ≡ (yi,0, xi,0,∆xi,1, . . . ,∆xi,T )′ and ẍi ≡ x̄i−xi,0. Furthermore, using e.g. Theorem

3.1 in Juodis (2014) the second component of the TML log-likelihood function is given by:

T

Nθ2

N∑
i=1

(ÿi − φÿi− − βẍi − π′∆∆xi)
2, ∆xi = (∆xi,1, . . . ,∆xi,T )′. (44)

Hence, by setting first two components of the ρ vector to zero we obtain the TML estimator

as the restricted version of the RML estimator.9

Irrespective of the estimator considered it is not difficult to see that, because ẍi ∈

Span(∆xi), one can concentrate out the ρ/π∆ parameter such that the second component

of the log-likelihood function in (44) does not contain the β parameter. Therefore, the

(concentrated) log-likelihood function can be expressed as:

(45)
− 2

N
`(κ) = (T − 1) log(σ2) + log(θ2) +

1

Nσ2

N∑
i=1

T∑
t=1

(ỹi,t − φỹi,t−1 − βx̃i,t)2

+
T

Nθ2

N∑
i=1

(ẏi − φẏi−)2,

where we defined:

ẏi ≡ ÿi −

(
N∑
i=1

ÿi∆x
′
i

)(
N∑
i=1

∆xi∆x
′
i

)−1

∆xi, (46)

ẏi ≡ ÿi −

(
N∑
i=1

ÿiz
′
i

)(
N∑
i=1

ziz
′
i

)−1

zi, (47)

for TML and RML estimators respectively (similarly for ẏi−). One can also concentrate

out the β parameter from the first component of the log-likelihood function. After subse-

quent concentration of σ2 and θ2, the resulting log-likelihood function is then of the same

structure as in (12). The cubic FOC in (16) follows directly from that.

9Note that the interpretation of TML as restricted version of RML is only valid if one includes xi,0 in

wi.
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Summarizing, in this section we argued that in the model augmented with exogenous

regressors the FOC of the TML/RML estimators again is cubic in the autoregressive

parameter φ. Our derivations above rely upon the fact that the full Chamberlain (1982)

projection has been used, rather than the restricted Mundlak (1978) projection. Without

going into further discussion, we state that for the TML estimator the results above do not

carry over if one uses the Mundlak (1978) projection instead. However, they continue to

be valid for the RML estimator if one does not include xi,0 when exploiting the Mundlak

(1978) projection.10

5. Monte Carlo simulations

In this section we investigate the finite sample performance of the various estimators

and corresponding test statistics using simulated data. In particular, we consider the

following panel AR(1) model:

yi,t = φyi,t−1 + (1− φ)µi + εi,t, εi,t ∼ N (0, 1) , t = 1, . . . , T. (48)

yi,0 = γµi + εi,0, εi,0 ∼ N
(

0,
ζ

1− φ2

)
, µi ∼ N

(
0, σ2

µ

)
. (49)

Mean(effect) stationarity of yi,t is achieved for designs with γ = 1, while the process yi,t

is covariance stationary if and only if both γ = ζ = 1. The actual value of σ2
µ is irrelevant

for the TML estimator as long as γ = 1, but for the RML estimator this parameter is

always important. For the TML estimator the only important parameter is α as defined

in (26) as it measures the deviation from the covariance stationarity.

Even for the simple AR(1) model the parameter space is already very large. We have tried

to cover its most relevant part by considering the following parameter settings:

N = {50, 250}, T = {3, 7}, γ = {0.5, 1.0}, σµ = {1, 3}, φ = {0.5, 0.8},

while ζ = 1. We report mean, median, IQR (Interquartile Range) and RMSE for the

following coefficient estimators (TML/RML):

• T(R)ML based on the global maximum (T(R)MLg), where always the global maxi-

mum is selected.

10Or if one does not impose that the coefficient for xi,0 is identical to the one for xi,1, . . . , xi,T .
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• T(R)ML based on the “left” maximum (T(R)MLl), that takes into account the non-

negative restriction only if there two competing local maxima.

• T(R)ML with the boundary condition φ(1) as in (35), imposed (T(R)MLb) if the

discriminant is negative and the estimator based on “left” solution does not satisfy

the non-negativity constraint.

Note that in calculating coefficient estimators we refrained from using numerical opti-

mization techniques. As mentioned earlier, exploiting root finder algorithms one can find

solutions to the cubic first-order condition.11

Regarding inference we consider empirical rejection frequencies based on two sided t-

and LR statistics.12 We address both size and power. Due to the possible flatness of the

profile log-likelihood functions induced by the bimodality, inference quality based on the

two classical tests might differ substantially. The t or Wald test critically depends on a

quadratic approximation of the likelihood, which may cause problems when the likelihood

is flat. The LR test is probably better behaved under the null hypothesis, but the flatness

of the likelihood will influence its power. Below we summarize some general patterns that

arise from the various Tables with simulation results in the Appendix.

5.1. Estimation

Regarding coefficient estimation we find that both T(R)MLl and T(R)MLb perform

substantially better than always choosing the global maximum of the likelihood function

(T(R)MLg). This point is especially relevant for TML and results from not taking the

non-negativity constraint into consideration. The “right” instead of “left” solution to

the FOC may sometimes provide the global maximum of the likelihood and choosing it

causes serious bias. Therefore, in terms of bias and of RMSE both TMLg and RMLg are

dominated by “left” estimators or by exploiting the boundary condition.

When we do not consider T(R)MLg, we find little difference between RML and TML.

There is some tendency of RML to dominate TML, confirming results in Kruiniger (2013).

However, we do not observe any substantial problems for TML when σµ increases, unlike

11As implemented by e.g. the roots(·) function in Matlab.
12For the t-test we exploit the usual “sandwich” covariance matrix estimator.
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the aforementioned study. Furthermore, in terms of RMSE exploiting the boundary solu-

tion φ(1) is almost always better than the “left” estimator. However, in some cases (for

small N) this choice has a negative effect on mean and median bias. As N and T increase

the discrepancy becomes negligible. Also the distributions of all estimators tend to be

asymmetric as illustrated by the discrepancy between mean and the median.

Finally, we found that in all cases where the cubic FOC had three solutions, the “left”

solution always satisfied the non-negativity constraint, while the “right” solution never

satisfies it. Hence for replications with three solutions only the “left” solution is natural.

This is an important observation, because it suggests that there is always at most one

interior maximum.

Figure 3 further illustrates how different ways of dealing with the boundary condition

shapes finite sample distributions of coefficient estimators. The fact that most of the

TMLg 
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Figure 3: Finite sample distribution of the TML/RML estimators for N = 250, T = 3, φ = 0.5 with

covariance stationary initialization of yi,0.

studies that consider RML and/or TML estimation (e.g. Hsiao et al. (2002), Alvarez

and Arellano (2003), Ahn and Thomas (2006), Kruiniger (2008), Hayakawa and Pesaran
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(2014)) either do not address the non-negativity variance issue at all or only mention it

without further exploring its consequences is somewhat puzzling. As we can see for most

designs substantial gains in terms of RMSE can be achieved when using RMLb/TMLb

rather than RMLl/TMLl (or especially RMLg/TMLg).

5.2. Inference

Regarding inference with the t and LR statistics, we observe that the LR test provides

reasonable size control, but the power properties are poor for small N and T . Given the

asymmetry of the likelihood function, especially the power for alternatives larger than the

null hypothesis is negligible and comparable to size. The power of the LR test improves

significantly with a large sample size, and especially for larger T . TMLb/RMLb tends to

be undersized in comparison to TMLl/RMLl.

Furthermore, inference based on the t-test in samples with small N and T is unreliable

as the actual rejection frequencies are substantially higher than nominal ones. The results

for the t-statistic deteriorate for φ = 0.8, which is related to the non-standard behavior of

the TML/RML estimator when φ is local-to-unity, see Kruiniger (2013) for related results.

The LR test is much less affected by the value of φ.

Finally, TML and RML statistics are similar in terms of empirical size with RML

statistics having higher power. In terms of empirical size we can rank test statistics in the

following order: g > l > b. These differences slowly disappear as N and/or T get larger.

6. Empirical illustration

In this section we study the behavior of TML and RML estimators exploiting data

from Bun and Carree (2005), who considered the following model for unemployment at

the U.S. state level:

ui,t = φui,t−1 + βgi,t−1 + ηi + τt + εi,t. (50)

Here ui,t is the unemployment rate in state i at time t and gi,t−1 is the real economic

growth rate at time t− 1.13 The annual panel data cover the years 1991-2000 for all U.S.

13Some evidence on strict exogeneity of gi,t−1 is provided in Bun and Carree (2005), hence the model

may serve as an ARX(1) example.
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states (including Washington D.C, hence N = 51). We present estimation results for the

model including the growth regressor (Table 1) and the pure AR(1) specification (Table 2).

In order to investigate how the behavior of the log-likelihood function for both estimators

changes as T increases we consider estimates over an increasing window. Thus results for

T = 2 are obtained based on years 1998 − 2000, T = 3 exploits the period 1997 − 2000,

etc. All models are estimated based on data in deviations from cross-sectional means to

filter-out the time effects. To illustrate the finite sample properties of T(R)MLg, T(R)MLl

and T(R)MLb we present coefficient estimates for varying T .

6.1. ARX(1) model

Using all time periods (T = 9) the estimation results based on TML and RML are very

similar to the estimates in Bun and Carree (2005) obtained using the bias-corrected FE

estimator.14 The similarity between the bias corrected FE results as found by Bun and

Carree (2005) and TML/RML estimators is not surprising, given that all three estimators

correct for the bias in the FE estimator using some bias adjustment procedure.

The results in Table 1 show that for RML estimation RMLg = RMLl = RMLb,

irrespective of T . Hence, the global maximum is always achieved at the “left” solution

that satisfies the non-negativity restriction, which amounts to θ2 ≥ σ2. The same holds for

TML estimation, with the clear exception of the T = 2 case. There the global maximum

is attained at φ̂(r) = 1.422, which is substantially larger than φ̂(l) = 0.506.

6.2. AR(1) model

The empirical results for the pure AR(1) model without gi,t−1 are reported in Table 2.

As can be seen, the estimation results obtained from TML are quite stable irrespective of

the time horizon under consideration. Furthermore, in all cases we find that the global

maximum of the log-likelihood function is attained at the left maximum.15

14The bias corrected FE estimates are φ̂ = 0.615 and β̂ = −0.057. Furthermore, our results are in line

with the results of Lokshin (2008) obtained for the TML.
15When T = 2 we report the “left” solution for TMLg as both its solutions are of the same log-likelihood

value.
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Table 1: TML and RML estimates for the ARX(1) model.

TMLg TMLl RMLg RMLl

T φ̂ β̂ φ̂ β̂ φ̂ β̂ φ̂ β̂

2 1.422 0.020 0.506 0.003 0.493 0.003 0.493 0.003

3 0.429 -0.006 0.429 -0.006 0.532 -0.008 0.532 -0.008

4 0.492 -0.026 0.492 -0.026 0.562 -0.025 0.562 -0.025

5 0.451 -0.031 0.451 -0.031 0.489 -0.030 0.489 -0.030

6 0.511 -0.036 0.511 -0.036 0.531 -0.035 0.531 -0.035

7 0.511 -0.038 0.511 -0.038 0.517 -0.038 0.517 -0.038

8 0.577 -0.041 0.577 -0.041 0.587 -0.040 0.587 -0.040

9 0.617 -0.057 0.617 -0.057 0.641 -0.055 0.641 -0.055

The results for the RML estimator, however, are considerably less stable. For T =

{2, 5, 7, 8} all three RML estimators are identical and are very close to the TML estimator.

In two other cases, i.e. T = {6, 9}, the global maximum is obtained at the “right”

solution and not at the “left” one. The result is a large difference between the RMLg

and RMLl/RMLb. Because the “left” solution satisfies the non-negativity constraint, the

RMLl and RMLb estimators are identical. Finally, for T = {3, 4} there exists one solution

only, which does not satisfy the non-negativity constraint. RMLl and RMLb produce

therefore markedly different estimates, with the latter actually being quite close to the

corresponding TMLl estimates. In Figure A.4 (see the Appendix) we provide detailed plots

of the concentrated log-likelihood function of this model for different values of T . Based

on these plots we can see how small increments in the length of the time series change

the shape of the concentrated log-likelihood function. Furthermore, the log-likelihood

functions for both estimators are relatively flat where likelihoods are both unimodal and

bimodal. Finally, we see in all cases that the second mode of RML is smaller in absolute

value as compared to that of TML.
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Table 2: TML and RML estimates for the AR(1) model.

T TMLg TMLl RMLg RMLl RMLb

2 0.502 0.502 0.516 0.516 0.516

3 0.514 0.514 0.750 0.750 0.613

4 0.522 0.522 0.950 0.950 0.667

5 0.461 0.461 0.514 0.514 0.514

6 0.553 0.553 1.062 0.596 0.596

7 0.545 0.545 0.565 0.565 0.565

8 0.613 0.613 0.632 0.632 0.632

9 0.671 0.671 1.054 0.695 0.695

7. Conclusions

We have investigated some finite sample and asymptotic properties of the TML and

RML estimators for dynamic panel data models. Both estimators are consistent for fixed

T and N large, but in finite samples their actual numerical implementation matters for

inference. We showed that in a simple AR(1) model with homoscedastic errors the TML

and RML estimators can be obtained as solutions of cubic first-order conditions. We

furthermore argued that in some cases the value that maximizes the log-likelihood function

is not the best possible solution as it can violate the non-negativity constraint of a positive

variance. Finally, we showed that these results extend to models with additional exogenous

regressors.

In a Monte Carlo study we found that the issue of non-negativity constraints cannot

be ignored as it is commonly done in the literature. Additionally, the inference based on

likelihood based estimators can be highly misleading, as for small values of N and T we

found that t-statistics tend to be substantially oversized. Although inference based on the

LR test provides reasonable size control for small N and T , it can result in low power due

to possible flatness of the likelihood function.

Finally, we investigated the issues of local maxima and boundary solutions in an em-

pirical analysis of U.S. state level unemployment rates. We have found that in some
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cases the different treatment of these issues leads to markedly different estimates of the

autoregressive parameter.
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Appendix A. Proofs, Monte Carlo results and Figures

Proof Proposition 1. To prove that the quasi-between estimator for RML is asymptot-

ically smaller than for TML, it is sufficient to show that:

θ2
T ȧ

R
∞ − θ2

Rȧ
T
∞ ≥ 0,

as plimN→∞ φ̂
(j)
B = φ0 + 1

T

θ2j

ȧj∞
ξ, for j = {T,R} that follows from the fact that φ = φ0 is al-

ways a solution to FOC asymptotically (for more details refer to the proof of Proposition 3)

so that the maximum likelihood estimator is consistent. Here ȧ
(j)
∞ = plimN→∞

T
N

∑N
i=1 ẏ

2
i−

for j = {T,R}. Observe that for any T :

ξ ≡
T−2∑
t=0

(T − t− 1)φt0 ≥ 0,

θ2
T = σ0 + T (var (∆yi,1)− σ2

0) = σ2
0 + T

(
E ((φ0 − 1 + π0)yi,0 + vi + εi,1)2 − σ2

0

)
,

θ2
R = σ2

0 + T
(
E (vi)

2) ,
where as before ηi = π0yi,0 + vi and π0 =

E[yi,0ηi]

E[y2i,0]
. The difference is thus θ2

T − θ2
R =

T
(
(φ0 − 1 + π0)2 E[y2

i,0]
)
≥ 0. Regarding ȧR∞ we have:

ȧR∞ = ȧT∞ − T
(E[ÿi−yi,0])2

E[y2
i,0]

,

E[ÿi−yi,0] =
1

T
ξ(φ0 − 1 + π0) E[y2

i,0].

While for ȧT∞:16

ȧT∞ =

(
ξ2

T
(φ0 − 1)2

)
E

(
yi,0 −

ηi
1− φ0

)2

+
σ2

0

T

T−2∑
t=0

(
t∑

j=0

φj0

)2

,

=

(
ξ2

T
(φ0 − 1)2

)
E

(
yi,0

(
1− π0

1− φ0

)
− vi

1− φ0

)2

+
σ2

0

T

T−2∑
t=0

(
t∑

j=0

φj0

)2

,

=

(
1

T
(φ0 − 1 + π0)2ξ2

)
E[y2

i,0] +
ξ2

T
E[v2

i ] +
σ2

0

T

T−2∑
t=0

(
t∑

j=0

φj0

)2

,

16For derivations of this term please refer to Lemma 2 in the Appendix of Juodis (2014).
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as E[viyi,0] = 0, which implies that:

ȧR∞ =
ξ2

T
E[v2

i ] +
σ2

0

T

T−2∑
t=0

(
t∑

j=0

φj0

)2

=
1

T

(
ξ2 E[v2

i ] + σ2
0q
)
,

where q is implicitly defined. Denote w ≡ (φ0 − 1 + π0)2 E[y2
i,0] ≥ 0, then:

θ2
T ȧ

R
∞ − θ2

Rȧ
T
∞ = TwȧR∞ − θ2

R

ξ2

T
w

= w
(
ξ2 E[v2

i ] + σ2
0q
)
− wξ2

(
E[v2

i ] +
1

T
σ2

0

)
= wσ2

0

(
q − ξ2

T

)
> 0,

where the last result follows as an implication of the Jensen’s inequality.

Proof Proposition 2. Using the variables defined in Section 3.3, we note that for T = 2

and TML:

ã = ȧ, ḃ = b̃+ 2ã, ċ = c̃+ 4(ã+ b̃).

and thus θ̂2(φ) = σ̂2(φ) + 4(ã(1− φ) + b̃). Furthermore, for T = 2 we have from (12) that

`c(φ) ∝ log(θ̂2(φ)σ̂2(φ)) with:

θ̂2(φ)σ̂2(φ) = σ̂4(φ) + 4σ̂2(b̃− φã) + 4σ̂2(φ)ã

=
(

2(b̃− φã) + σ̂2(φ)
)2

− 4(b̃− φã)2 + 4σ̂2(φ)ã

=
(

2(b̃− φã) + σ̂2(φ)
)2

− 4(b̃2 − 2φãb̃+ φ2ã2) + 4(ãc̃− 2φãb̃+ φ2ã2)

=
(

2(b̃− φã) + σ̂2(φ)
)2

+ 4(ãc̃− b̃2)

=
(

2(b̃− φã) + σ̂2(φ)
)2

+ d,

where

d =

(
1

N

N∑
i=1

(∆yi,1)2

)(
1

N

N∑
i=1

(∆yi,2)2

)
−

(
1

N

N∑
i=1

∆yi,1∆yi,2

)2

. (A.1)

Proof Corollary 2. From Proposition 2 we have that: θ̂2(φ)− σ̂2(φ) = 4(ã(1− φ) + b̃).

Given that φ̃ = 1 + b̃/ã one can easily see that θ̂2(φ̃)− σ̂2(φ̃) = 4(ã(1− φ̃) + b̃) = 0. The

first and the third parts follow from the symmetry established in Proposition 2, while the

last part follows directly from definitions.
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These results do not hold for T > 2 and/or the RML estimator. For example, observe

that for general T we can decompose (for simplicity denote T̃1 = 1/(T − 1)):

θ̂2(φ) = ċ− 2φḃ+ φ2ȧ, σ̂2(φ) = T̃1

(
c̃− 2φb̃+ φ2ã

)
,

θ̂2(φ)− σ̂2(φ) = φ2
(
ȧ− T̃1ã

)
− 2φ

(
ḃ− T̃1b̃

)
+
(
ċ− T̃1c̃

)
.

For T = 2 and TML we have ȧ = ã and the right hand side of the last equation becomes

linear in φ. Hence, setting the left hand side of the last equation equal to zero and solving

for φ, there is only one solution given by φ̂W + 1. For T > 2 and/or the RML estimator,

the equation θ2(φ)− σ2(φ) = 0 has two solutions of the form:

φ̌ =
ḃ− T̃1b̃

ȧ− T̃1ã
±

√
(ḃ− T̃1b̃)2 − (ȧ− T̃1ã)(ċ− T̃1c̃)

(ȧ− T̃1ã)2
. (A.2)

The first order condition in (16), evaluated at the value φ̌, becomes proportional to (b̃ +

ḃ) − φ̌(ã + ȧ) 6= 0. In the point φ̌ the first order condition is not zero in this case, hence

the corner solution θ̂2(φ̌) = σ̂2(φ̌) cannot hold.

Proof Corollary 3. Note that the discriminant D = 1− S22.1/S11, where S22.1 ≡ S22 −

S2
12/S11, where Sij is the i, j element of the S =

∑N
i=1 ((∆yi,1,∆yi,2)′(∆yi,1,∆yi,2)) matrix.

Under joint normality the elements S22.1 and S11 are independent χ2(·) random variables

with respectively N−1 and N degrees of freedom. The main result follows after observing

that E[vechS] = (var (∆yi,1), φ0 var (∆yi,1)− σ2
0, φ

2
0 var (∆yi,1) + 2σ2

0(1− φ0))′.

Proof Proposition 3. Observe that for any value of φ (see e.g. Juodis (2014)):

σ2
E(x) ≡ E[σ̂2(φ)] = σ2

0 +
1

T − 1

(
x2ãE − x

2ξ

T
σ2

0

)
,

θ2
E(x) ≡ E[θ̂2(φ)] = θ2

0 + x2ȧE + x
2ξ

T
θ2

0,

with ãE, ȧE, ξ, x defined in (27). It is not difficult to see that the asymptotic polynomial

is given by:

θ2
E(x)

(
ãEx−

σ2
0ξ

T

)
+ σ2

E(x)

(
ȧEx+

θ2
0ξ

T

)
= 0.

Plugging in the expressions for σ2
E(x) and θ2

E(x) into the previous formula:

x

(
[θ2
E(x)ãE + σ2

E(x)ȧE] +
x

T
ξ

[
θ2

0

ãE
T − 1

− σ2
0 ȧE

]
− 2ξ2

T (T − 1)
θ2

0σ
2
0

)
= 0.
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Note that:

θ2
E(x)ãE + σ2

E(x)ȧE = x2

(
1 +

1

T − 1

)
(ȧE ãE) + x

2ξ

T

(
θ2

0ãE −
1

T − 1
σ2

0 ȧE

)
+
(
θ2

0ãE + σ2
0 ȧE
)
.

Combining both expressions and removing the trivial solution x = 0 we get:

x2 T

T − 1
(ȧE ãE) + x

(
1

T
ξ

(
θ2

0

ãE
T − 1

− σ2
0 ȧE

)
+

2ξ
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(
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0ãE −
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σ2

0 ȧE
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+
(
θ2

0ãE + σ2
0 ȧE
)
− 2ξ2

T (T − 1)
θ2

0σ
2
0 = 0.
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Table A.3: Estimation Results for N = 50, T = 3.

Mean Median IQR RMSE Mean Median IQR RMSE Mean Median IQR RMSE Mean Median IQR RMSE
φ = 0.5 γ = 0.5 σµ = 1 φ = 0.5 γ = 0.5 σµ = 3 φ = 0.5 γ = 1.0 σµ = 1 φ = 0.5 γ = 1.0 σµ = 3

TMLg 0.72 0.68 0.62 0.40 0.82 0.66 0.83 0.53 0.69 0.66 0.57 0.38 0.69 0.66 0.57 0.38
RMLg 0.57 0.52 0.33 0.26 0.75 0.58 0.77 0.47 0.55 0.51 0.32 0.25 0.64 0.58 0.51 0.34
TMLl 0.54 0.50 0.32 0.23 0.52 0.49 0.20 0.18 0.54 0.50 0.34 0.24 0.54 0.50 0.34 0.24
RMLl 0.53 0.50 0.28 0.22 0.53 0.50 0.20 0.19 0.53 0.49 0.29 0.22 0.54 0.49 0.33 0.25
TMLb 0.51 0.50 0.30 0.19 0.52 0.49 0.20 0.16 0.50 0.50 0.30 0.19 0.50 0.50 0.30 0.19
RMLb 0.49 0.49 0.24 0.16 0.52 0.50 0.20 0.16 0.47 0.48 0.22 0.15 0.50 0.49 0.28 0.18

φ = 0.8 γ = 0.5 σµ = 1 φ = 0.8 γ = 0.5 σµ = 3 φ = 0.8 γ = 1.0 σµ = 1 φ = 0.8 γ = 1.0 σµ = 3
TMLg 0.90 0.93 0.36 0.28 0.95 0.97 0.41 0.31 0.90 0.92 0.36 0.28 0.90 0.92 0.36 0.28
RMLg 0.83 0.82 0.36 0.24 0.95 0.96 0.44 0.31 0.82 0.82 0.36 0.24 0.86 0.87 0.40 0.27
TMLl 0.76 0.77 0.34 0.21 0.78 0.78 0.34 0.20 0.75 0.77 0.34 0.21 0.75 0.77 0.34 0.21
RMLl 0.78 0.77 0.33 0.22 0.79 0.78 0.35 0.22 0.77 0.77 0.33 0.22 0.77 0.77 0.34 0.23
TMLb 0.73 0.76 0.29 0.19 0.77 0.78 0.31 0.19 0.73 0.75 0.29 0.19 0.73 0.75 0.29 0.19
RMLb 0.71 0.73 0.22 0.17 0.76 0.78 0.30 0.18 0.70 0.73 0.22 0.18 0.72 0.74 0.26 0.19

Table A.4: Estimation Results for N = 50, T = 7.

Mean Median IQR RMSE Mean Median IQR RMSE Mean Median IQR RMSE Mean Median IQR RMSE
φ = 0.5 γ = 0.5 σµ = 1 φ = 0.5 γ = 0.5 σµ = 3 φ = 0.5 γ = 1.0 σµ = 1 φ = 0.5 γ = 1.0 σµ = 3

TMLg 0.51 0.49 0.10 0.12 0.52 0.49 0.08 0.15 0.51 0.49 0.10 0.11 0.51 0.49 0.10 0.11
RMLg 0.50 0.49 0.09 0.08 0.52 0.50 0.08 0.13 0.50 0.49 0.10 0.08 0.50 0.49 0.10 0.10
TMLl 0.50 0.49 0.10 0.07 0.49 0.49 0.08 0.06 0.50 0.49 0.10 0.07 0.50 0.49 0.10 0.07
RMLl 0.50 0.49 0.09 0.07 0.49 0.49 0.08 0.06 0.50 0.49 0.10 0.07 0.50 0.49 0.10 0.07
TMLb 0.50 0.49 0.10 0.07 0.49 0.49 0.08 0.06 0.50 0.49 0.10 0.07 0.50 0.49 0.10 0.07
RMLb 0.49 0.49 0.09 0.07 0.49 0.49 0.08 0.06 0.49 0.49 0.10 0.07 0.50 0.49 0.10 0.07

φ = 0.8 γ = 0.5 σµ = 1 φ = 0.8 γ = 0.5 σµ = 3 φ = 0.8 γ = 1.0 σµ = 1 φ = 0.8 γ = 1.0 σµ = 3
TMLg 0.87 0.86 0.25 0.16 0.91 0.90 0.30 0.19 0.87 0.85 0.24 0.16 0.87 0.85 0.24 0.16
RMLg 0.81 0.80 0.14 0.11 0.91 0.89 0.30 0.19 0.81 0.80 0.14 0.11 0.84 0.82 0.20 0.14
TMLl 0.81 0.79 0.15 0.11 0.81 0.79 0.13 0.10 0.81 0.79 0.16 0.11 0.81 0.79 0.16 0.11
RMLl 0.80 0.79 0.13 0.10 0.81 0.79 0.13 0.10 0.80 0.79 0.14 0.10 0.81 0.79 0.15 0.11
TMLb 0.79 0.79 0.14 0.08 0.80 0.79 0.13 0.09 0.79 0.79 0.13 0.08 0.79 0.79 0.13 0.08
RMLb 0.77 0.78 0.09 0.07 0.80 0.79 0.13 0.09 0.77 0.78 0.09 0.07 0.78 0.79 0.12 0.08

Table A.5: Estimation Results for N = 250, T = 3.

Mean Median IQR RMSE Mean Median IQR RMSE Mean Median IQR RMSE Mean Median IQR RMSE
φ = 0.5 γ = 0.5 σµ = 1 φ = 0.5 γ = 0.5 σµ = 3 φ = 0.5 γ = 1.0 σµ = 1 φ = 0.5 γ = 1.0 σµ = 3

TMLg 0.63 0.53 0.28 0.29 0.71 0.52 0.75 0.41 0.61 0.52 0.25 0.26 0.61 0.52 0.25 0.26
RMLg 0.51 0.49 0.12 0.11 0.58 0.50 0.10 0.26 0.51 0.49 0.13 0.11 0.56 0.50 0.16 0.20
TMLl 0.51 0.50 0.13 0.12 0.50 0.49 0.08 0.07 0.52 0.49 0.14 0.14 0.52 0.49 0.14 0.14
RMLl 0.51 0.49 0.12 0.10 0.50 0.49 0.08 0.07 0.51 0.49 0.12 0.10 0.52 0.49 0.14 0.13
TMLb 0.51 0.50 0.13 0.10 0.50 0.49 0.08 0.06 0.51 0.49 0.14 0.11 0.51 0.49 0.14 0.11
RMLb 0.50 0.49 0.12 0.09 0.50 0.49 0.08 0.06 0.50 0.49 0.12 0.08 0.51 0.49 0.14 0.10

φ = 0.8 γ = 0.5 σµ = 1 φ = 0.8 γ = 0.5 σµ = 3 φ = 0.8 γ = 1.0 σµ = 1 φ = 0.8 γ = 1.0 σµ = 3
TMLg 0.89 0.90 0.27 0.20 0.95 0.96 0.34 0.25 0.88 0.90 0.27 0.20 0.88 0.90 0.27 0.20
RMLg 0.82 0.80 0.20 0.14 0.94 0.94 0.35 0.24 0.81 0.80 0.20 0.14 0.85 0.83 0.26 0.18
TMLl 0.80 0.79 0.23 0.14 0.81 0.79 0.23 0.13 0.79 0.79 0.23 0.14 0.79 0.79 0.23 0.14
RMLl 0.80 0.79 0.19 0.13 0.82 0.79 0.23 0.14 0.80 0.79 0.20 0.13 0.80 0.79 0.23 0.15
TMLb 0.78 0.79 0.20 0.12 0.80 0.79 0.21 0.12 0.78 0.79 0.20 0.12 0.78 0.79 0.20 0.12
RMLb 0.76 0.78 0.12 0.09 0.80 0.79 0.21 0.12 0.76 0.78 0.12 0.09 0.77 0.79 0.17 0.11

Table A.6: Estimation Results for N = 250, T = 7.

Mean Median IQR RMSE Mean Median IQR RMSE Mean Median IQR RMSE Mean Median IQR RMSE
φ = 0.5 γ = 0.5 σµ = 1 φ = 0.5 γ = 0.5 σµ = 3 φ = 0.5 γ = 1.0 σµ = 1 φ = 0.5 γ = 1.0 σµ = 3

TMLg 0.49 0.49 0.04 0.03 0.49 0.49 0.03 0.02 0.49 0.49 0.04 0.03 0.49 0.49 0.04 0.03
RMLg 0.49 0.49 0.04 0.03 0.49 0.49 0.03 0.02 0.49 0.49 0.04 0.03 0.49 0.50 0.04 0.03
TMLl 0.49 0.49 0.04 0.03 0.49 0.49 0.03 0.02 0.49 0.49 0.04 0.03 0.49 0.49 0.04 0.03
RMLl 0.49 0.49 0.04 0.03 0.49 0.49 0.03 0.02 0.49 0.49 0.04 0.03 0.49 0.50 0.04 0.03
TMLb 0.49 0.49 0.04 0.03 0.49 0.49 0.03 0.02 0.49 0.49 0.04 0.03 0.49 0.49 0.04 0.03
RMLb 0.49 0.49 0.04 0.03 0.49 0.49 0.03 0.02 0.49 0.49 0.04 0.03 0.49 0.50 0.04 0.03

φ = 0.8 γ = 0.5 σµ = 1 φ = 0.8 γ = 0.5 σµ = 3 φ = 0.8 γ = 1.0 σµ = 1 φ = 0.8 γ = 1.0 σµ = 3
TMLg 0.84 0.80 0.10 0.11 0.87 0.81 0.26 0.15 0.83 0.80 0.10 0.10 0.83 0.80 0.10 0.10
RMLg 0.80 0.79 0.06 0.05 0.87 0.81 0.24 0.14 0.80 0.79 0.06 0.05 0.81 0.80 0.07 0.07
TMLl 0.80 0.79 0.06 0.06 0.80 0.79 0.05 0.04 0.80 0.79 0.06 0.06 0.80 0.79 0.06 0.06
RMLl 0.80 0.79 0.06 0.04 0.80 0.79 0.05 0.05 0.80 0.79 0.06 0.04 0.80 0.79 0.06 0.06
TMLb 0.80 0.79 0.06 0.05 0.80 0.79 0.05 0.04 0.80 0.79 0.06 0.05 0.80 0.79 0.06 0.05
RMLb 0.79 0.79 0.05 0.03 0.80 0.79 0.05 0.04 0.79 0.79 0.05 0.03 0.80 0.79 0.06 0.04
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Table A.7: t- test results for N = 50, T = 3.

φ− φ0 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2
φ = 0.5 γ = 0.5 σµ = 1 φ = 0.5 γ = 0.5 σµ = 3 φ = 0.5 γ = 1.0 σµ = 1 φ = 0.5 γ = 1.0 σµ = 3

TMLg 0.47 0.44 0.44 0.46 0.46 0.49 0.44 0.46 0.54 0.63 0.46 0.43 0.42 0.42 0.43 0.46 0.43 0.42 0.42 0.43
RMLg 0.32 0.25 0.23 0.28 0.36 0.45 0.36 0.38 0.46 0.58 0.31 0.24 0.22 0.26 0.34 0.40 0.36 0.35 0.36 0.40
TMLl 0.23 0.20 0.22 0.26 0.32 0.21 0.08 0.10 0.22 0.38 0.25 0.22 0.23 0.26 0.32 0.25 0.22 0.23 0.26 0.32
RMLl 0.26 0.19 0.18 0.23 0.33 0.23 0.10 0.11 0.22 0.39 0.27 0.20 0.19 0.23 0.32 0.26 0.22 0.22 0.26 0.33
TMLb 0.17 0.13 0.14 0.20 0.28 0.20 0.07 0.09 0.20 0.37 0.17 0.14 0.14 0.19 0.27 0.17 0.14 0.14 0.19 0.27
RMLb 0.14 0.07 0.07 0.16 0.28 0.21 0.07 0.08 0.19 0.36 0.13 0.06 0.07 0.16 0.29 0.15 0.10 0.11 0.16 0.27

φ = 0.8 γ = 0.5 σµ = 1 φ = 0.8 γ = 0.5 σµ = 3 φ = 0.8 γ = 1.0 σµ = 1 φ = 0.8 γ = 1.0 σµ = 3
TMLg 0.56 0.47 0.36 0.28 0.27 0.58 0.52 0.44 0.33 0.30 0.56 0.47 0.35 0.27 0.27 0.56 0.47 0.35 0.27 0.27
RMLg 0.40 0.31 0.26 0.27 0.33 0.55 0.48 0.40 0.33 0.32 0.39 0.31 0.26 0.27 0.33 0.46 0.38 0.31 0.28 0.31
TMLl 0.34 0.28 0.22 0.21 0.29 0.33 0.29 0.25 0.22 0.28 0.34 0.28 0.21 0.21 0.29 0.34 0.28 0.21 0.21 0.29
RMLl 0.32 0.25 0.21 0.25 0.33 0.32 0.27 0.22 0.22 0.29 0.32 0.24 0.21 0.24 0.33 0.33 0.25 0.21 0.23 0.32
TMLb 0.29 0.24 0.20 0.21 0.32 0.30 0.27 0.24 0.21 0.29 0.29 0.23 0.20 0.21 0.33 0.29 0.23 0.20 0.21 0.33
RMLb 0.10 0.07 0.10 0.19 0.33 0.23 0.18 0.15 0.19 0.28 0.10 0.07 0.11 0.20 0.34 0.17 0.11 0.13 0.19 0.32

Table A.8: t- test results for N = 50, T = 7.

φ− φ0 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2
φ = 0.5 γ = 0.5 σµ = 1 φ = 0.5 γ = 0.5 σµ = 3 φ = 0.5 γ = 1.0 σµ = 1 φ = 0.5 γ = 1.0 σµ = 3

TMLg 0.79 0.27 0.08 0.35 0.77 0.90 0.38 0.11 0.44 0.88 0.77 0.26 0.08 0.34 0.76 0.77 0.26 0.08 0.34 0.76
RMLg 0.79 0.27 0.06 0.33 0.76 0.90 0.38 0.10 0.44 0.88 0.77 0.26 0.06 0.32 0.75 0.77 0.26 0.07 0.33 0.75
TMLl 0.79 0.26 0.05 0.32 0.76 0.90 0.37 0.06 0.40 0.87 0.77 0.25 0.05 0.31 0.74 0.77 0.25 0.05 0.31 0.74
RMLl 0.79 0.26 0.06 0.32 0.76 0.90 0.38 0.06 0.40 0.87 0.77 0.25 0.06 0.32 0.74 0.77 0.25 0.05 0.31 0.74
TMLb 0.79 0.26 0.05 0.32 0.76 0.90 0.37 0.06 0.40 0.87 0.77 0.25 0.05 0.31 0.74 0.77 0.25 0.05 0.31 0.74
RMLb 0.79 0.26 0.06 0.32 0.76 0.90 0.38 0.06 0.40 0.87 0.77 0.25 0.05 0.32 0.75 0.77 0.24 0.05 0.31 0.74

φ = 0.8 γ = 0.5 σµ = 1 φ = 0.8 γ = 0.5 σµ = 3 φ = 0.8 γ = 1.0 σµ = 1 φ = 0.8 γ = 1.0 σµ = 3
TMLg 0.64 0.47 0.42 0.43 0.51 0.72 0.50 0.49 0.54 0.57 0.64 0.46 0.41 0.42 0.51 0.64 0.46 0.41 0.42 0.51
RMLg 0.61 0.32 0.21 0.34 0.63 0.72 0.50 0.48 0.54 0.59 0.60 0.32 0.21 0.34 0.62 0.62 0.39 0.32 0.38 0.55
TMLl 0.51 0.27 0.24 0.32 0.55 0.59 0.21 0.19 0.35 0.58 0.50 0.27 0.24 0.31 0.56 0.50 0.27 0.24 0.31 0.56
RMLl 0.58 0.29 0.18 0.33 0.63 0.59 0.21 0.19 0.35 0.58 0.57 0.29 0.18 0.33 0.63 0.52 0.28 0.22 0.32 0.58
TMLb 0.44 0.18 0.13 0.27 0.56 0.56 0.17 0.14 0.31 0.58 0.43 0.17 0.12 0.27 0.57 0.43 0.17 0.12 0.27 0.57
RMLb 0.46 0.12 0.07 0.30 0.68 0.54 0.15 0.12 0.30 0.58 0.45 0.11 0.06 0.31 0.69 0.42 0.14 0.09 0.27 0.59

Table A.9: t- test results for N = 250, T = 3.

φ− φ0 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2
φ = 0.5 γ = 0.5 σµ = 1 φ = 0.5 γ = 0.5 σµ = 3 φ = 0.5 γ = 1.0 σµ = 1 φ = 0.5 γ = 1.0 σµ = 3

TMLg 0.60 0.28 0.28 0.43 0.64 0.91 0.44 0.31 0.56 0.86 0.53 0.27 0.27 0.40 0.59 0.53 0.27 0.27 0.40 0.59
RMLg 0.57 0.15 0.08 0.26 0.59 0.91 0.36 0.15 0.44 0.83 0.53 0.15 0.08 0.25 0.56 0.50 0.20 0.18 0.33 0.56
TMLl 0.49 0.09 0.09 0.28 0.54 0.90 0.29 0.05 0.36 0.79 0.40 0.11 0.11 0.27 0.51 0.40 0.11 0.11 0.27 0.51
RMLl 0.56 0.14 0.08 0.26 0.58 0.90 0.29 0.05 0.36 0.79 0.52 0.15 0.08 0.25 0.56 0.43 0.12 0.11 0.27 0.52
TMLb 0.47 0.07 0.07 0.25 0.52 0.90 0.29 0.05 0.36 0.79 0.38 0.08 0.08 0.23 0.49 0.38 0.08 0.08 0.23 0.49
RMLb 0.55 0.12 0.06 0.25 0.58 0.90 0.29 0.05 0.36 0.79 0.50 0.12 0.05 0.24 0.56 0.40 0.08 0.06 0.23 0.50

φ = 0.8 γ = 0.5 σµ = 1 φ = 0.8 γ = 0.5 σµ = 3 φ = 0.8 γ = 1.0 σµ = 1 φ = 0.8 γ = 1.0 σµ = 3
TMLg 0.59 0.53 0.43 0.29 0.35 0.59 0.55 0.51 0.43 0.36 0.58 0.51 0.41 0.28 0.36 0.58 0.51 0.41 0.28 0.36
RMLg 0.45 0.28 0.20 0.26 0.46 0.57 0.52 0.47 0.40 0.38 0.44 0.28 0.19 0.26 0.46 0.50 0.39 0.29 0.29 0.43
TMLl 0.38 0.33 0.27 0.23 0.40 0.29 0.26 0.27 0.29 0.37 0.38 0.33 0.26 0.23 0.41 0.38 0.33 0.26 0.23 0.41
RMLl 0.42 0.25 0.18 0.25 0.46 0.31 0.27 0.25 0.26 0.38 0.42 0.26 0.17 0.25 0.46 0.40 0.30 0.22 0.26 0.44
TMLb 0.33 0.28 0.23 0.22 0.45 0.27 0.25 0.26 0.29 0.39 0.33 0.27 0.21 0.22 0.46 0.33 0.27 0.21 0.22 0.46
RMLb 0.25 0.06 0.07 0.22 0.50 0.26 0.21 0.20 0.24 0.38 0.24 0.05 0.07 0.23 0.51 0.27 0.14 0.09 0.21 0.45

Table A.10: t- test results for N = 250, T = 7.

φ− φ0 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2
φ = 0.5 γ = 0.5 σµ = 1 φ = 0.5 γ = 0.5 σµ = 3 φ = 0.5 γ = 1.0 σµ = 1 φ = 0.5 γ = 1.0 σµ = 3

TMLg 0.99 0.86 0.05 0.84 0.99 1.00 0.94 0.05 0.94 1.00 0.99 0.85 0.05 0.82 0.99 0.99 0.85 0.05 0.82 0.99
RMLg 0.99 0.87 0.05 0.85 0.99 1.00 0.94 0.05 0.94 1.00 0.99 0.85 0.05 0.83 0.99 0.99 0.85 0.05 0.82 0.99
TMLl 0.99 0.86 0.05 0.84 0.99 1.00 0.94 0.05 0.94 1.00 0.99 0.85 0.05 0.82 0.99 0.99 0.85 0.05 0.82 0.99
RMLl 0.99 0.87 0.05 0.85 0.99 1.00 0.94 0.05 0.94 1.00 0.99 0.85 0.05 0.83 0.99 0.99 0.85 0.05 0.82 0.99
TMLb 0.99 0.86 0.05 0.84 0.99 1.00 0.94 0.05 0.94 1.00 0.99 0.85 0.05 0.82 0.99 0.99 0.85 0.05 0.82 0.99
RMLb 0.99 0.87 0.05 0.85 0.99 1.00 0.94 0.05 0.94 1.00 0.99 0.85 0.05 0.83 0.99 0.99 0.85 0.05 0.82 0.99

φ = 0.8 γ = 0.5 σµ = 1 φ = 0.8 γ = 0.5 σµ = 3 φ = 0.8 γ = 1.0 σµ = 1 φ = 0.8 γ = 1.0 σµ = 3
TMLg 0.99 0.57 0.24 0.62 0.80 0.99 0.75 0.32 0.75 0.90 0.99 0.54 0.24 0.60 0.80 0.99 0.54 0.24 0.60 0.80
RMLg 0.99 0.58 0.08 0.61 0.92 0.99 0.74 0.30 0.75 0.91 0.98 0.56 0.08 0.60 0.92 0.99 0.52 0.14 0.58 0.85
TMLl 0.98 0.46 0.11 0.55 0.87 0.99 0.68 0.06 0.64 0.93 0.98 0.44 0.11 0.53 0.86 0.98 0.44 0.11 0.53 0.86
RMLl 0.98 0.57 0.07 0.61 0.92 0.99 0.68 0.06 0.64 0.93 0.98 0.56 0.08 0.60 0.92 0.98 0.48 0.10 0.55 0.87
TMLb 0.96 0.43 0.06 0.52 0.87 0.99 0.68 0.05 0.63 0.93 0.95 0.40 0.07 0.51 0.87 0.95 0.40 0.07 0.51 0.87
RMLb 0.98 0.56 0.04 0.62 0.96 0.99 0.67 0.05 0.63 0.93 0.98 0.54 0.04 0.63 0.96 0.95 0.44 0.06 0.53 0.88
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Table A.11: LR test results for N = 50, T = 3.

φ− φ0 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2
φ = 0.5 γ = 0.5 σν = 1 φ = 0.5 γ = 0.5 σν = 3 φ = 0.5 γ = 1.0 σν = 1 φ = 0.5 γ = 1.0 σν = 3

TMLg 0.25 0.09 0.05 0.09 0.13 0.42 0.17 0.08 0.13 0.24 0.22 0.08 0.05 0.08 0.12 0.22 0.08 0.05 0.08 0.12
RMLg 0.25 0.10 0.07 0.09 0.14 0.42 0.18 0.10 0.14 0.25 0.23 0.10 0.06 0.08 0.13 0.24 0.10 0.06 0.09 0.12
TMLl 0.22 0.07 0.03 0.06 0.09 0.36 0.12 0.04 0.08 0.19 0.20 0.06 0.03 0.05 0.09 0.20 0.06 0.03 0.05 0.09
RMLl 0.24 0.10 0.06 0.08 0.12 0.36 0.13 0.05 0.09 0.19 0.22 0.09 0.06 0.07 0.13 0.21 0.08 0.04 0.06 0.10
TMLb 0.20 0.06 0.03 0.06 0.09 0.36 0.12 0.04 0.08 0.19 0.18 0.05 0.03 0.05 0.09 0.18 0.05 0.03 0.05 0.09
RMLb 0.21 0.06 0.03 0.06 0.12 0.36 0.12 0.04 0.09 0.19 0.18 0.05 0.03 0.06 0.12 0.18 0.05 0.03 0.05 0.09

φ = 0.8 γ = 0.5 σν = 1 φ = 0.8 γ = 0.5 σν = 3 φ = 0.8 γ = 1.0 σν = 1 φ = 0.8 γ = 1.0 σν = 3
TMLg 0.05 0.02 0.03 0.04 0.04 0.09 0.03 0.03 0.05 0.05 0.04 0.02 0.04 0.04 0.04 0.04 0.02 0.04 0.04 0.04
RMLg 0.12 0.06 0.06 0.06 0.08 0.11 0.04 0.04 0.06 0.06 0.11 0.06 0.06 0.06 0.08 0.08 0.04 0.05 0.06 0.05
TMLl 0.04 0.01 0.02 0.03 0.03 0.09 0.02 0.02 0.03 0.04 0.04 0.01 0.02 0.03 0.02 0.04 0.01 0.02 0.03 0.02
RMLl 0.11 0.05 0.04 0.05 0.07 0.10 0.02 0.02 0.04 0.04 0.10 0.05 0.04 0.05 0.07 0.06 0.02 0.03 0.04 0.04
TMLb 0.04 0.01 0.02 0.03 0.03 0.08 0.02 0.02 0.03 0.04 0.04 0.01 0.02 0.03 0.02 0.04 0.01 0.02 0.03 0.02
RMLb 0.05 0.01 0.02 0.04 0.07 0.09 0.02 0.02 0.04 0.04 0.05 0.01 0.02 0.04 0.07 0.04 0.01 0.02 0.03 0.04

Table A.12: LR test results for N = 50, T = 7.

φ− φ0 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2
φ = 0.5 γ = 0.5 σν = 1 φ = 0.5 γ = 0.5 σν = 3 φ = 0.5 γ = 1.0 σν = 1 φ = 0.5 γ = 1.0 σν = 3

TMLg 0.82 0.30 0.06 0.25 0.65 0.91 0.39 0.06 0.34 0.83 0.80 0.28 0.05 0.24 0.63 0.80 0.28 0.05 0.24 0.63
RMLg 0.82 0.30 0.04 0.25 0.67 0.91 0.39 0.06 0.34 0.82 0.80 0.28 0.04 0.24 0.66 0.80 0.28 0.05 0.24 0.63
TMLl 0.82 0.29 0.04 0.24 0.64 0.91 0.38 0.05 0.32 0.81 0.80 0.28 0.04 0.23 0.62 0.80 0.28 0.04 0.23 0.62
RMLl 0.82 0.30 0.04 0.24 0.66 0.91 0.38 0.05 0.32 0.81 0.80 0.28 0.04 0.24 0.66 0.80 0.28 0.04 0.23 0.63
TMLb 0.82 0.29 0.04 0.24 0.64 0.91 0.38 0.05 0.32 0.81 0.80 0.28 0.04 0.23 0.62 0.80 0.28 0.04 0.23 0.62
RMLb 0.82 0.30 0.04 0.24 0.66 0.91 0.38 0.05 0.32 0.81 0.80 0.28 0.04 0.24 0.66 0.80 0.28 0.04 0.23 0.63

φ = 0.8 γ = 0.5 σν = 1 φ = 0.8 γ = 0.5 σν = 3 φ = 0.8 γ = 1.0 σν = 1 φ = 0.8 γ = 1.0 σν = 3
TMLg 0.70 0.24 0.06 0.12 0.12 0.79 0.30 0.06 0.16 0.19 0.69 0.22 0.06 0.12 0.12 0.69 0.22 0.06 0.12 0.12
RMLg 0.70 0.24 0.07 0.15 0.42 0.79 0.32 0.08 0.18 0.21 0.69 0.23 0.06 0.14 0.43 0.69 0.23 0.07 0.13 0.20
TMLl 0.66 0.21 0.04 0.09 0.10 0.76 0.25 0.04 0.12 0.15 0.65 0.20 0.04 0.09 0.10 0.65 0.20 0.04 0.09 0.10
RMLl 0.69 0.23 0.06 0.14 0.42 0.76 0.25 0.05 0.12 0.16 0.68 0.22 0.06 0.14 0.43 0.66 0.21 0.05 0.11 0.19
TMLb 0.66 0.18 0.03 0.09 0.10 0.76 0.24 0.04 0.12 0.15 0.65 0.17 0.03 0.09 0.10 0.65 0.17 0.03 0.09 0.10
RMLb 0.69 0.18 0.03 0.14 0.43 0.76 0.24 0.04 0.12 0.16 0.68 0.17 0.02 0.13 0.43 0.66 0.18 0.03 0.10 0.19

Table A.13: LR test results for N = 250, T = 3.

φ− φ0 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2
φ = 0.5 γ = 0.5 σν = 1 φ = 0.5 γ = 0.5 σν = 3 φ = 0.5 γ = 1.0 σν = 1 φ = 0.5 γ = 1.0 σν = 3

TMLg 0.73 0.26 0.09 0.18 0.36 0.93 0.43 0.09 0.33 0.73 0.68 0.23 0.08 0.16 0.31 0.68 0.23 0.08 0.16 0.31
RMLg 0.73 0.23 0.05 0.17 0.42 0.93 0.40 0.08 0.31 0.72 0.70 0.21 0.05 0.16 0.41 0.67 0.22 0.07 0.15 0.31
TMLl 0.70 0.21 0.06 0.14 0.32 0.93 0.37 0.05 0.28 0.69 0.65 0.19 0.06 0.13 0.27 0.65 0.19 0.06 0.13 0.27
RMLl 0.73 0.23 0.05 0.16 0.42 0.93 0.38 0.05 0.28 0.70 0.69 0.21 0.05 0.16 0.41 0.66 0.20 0.06 0.14 0.29
TMLb 0.70 0.21 0.05 0.14 0.32 0.93 0.37 0.05 0.28 0.69 0.65 0.19 0.05 0.13 0.27 0.65 0.19 0.05 0.13 0.27
RMLb 0.73 0.23 0.05 0.16 0.42 0.93 0.38 0.05 0.28 0.69 0.69 0.20 0.04 0.15 0.41 0.66 0.19 0.05 0.13 0.29

φ = 0.8 γ = 0.5 σν = 1 φ = 0.8 γ = 0.5 σν = 3 φ = 0.8 γ = 1.0 σν = 1 φ = 0.8 γ = 1.0 σν = 3
TMLg 0.33 0.04 0.03 0.06 0.05 0.47 0.10 0.04 0.08 0.09 0.31 0.03 0.04 0.06 0.04 0.31 0.03 0.04 0.06 0.04
RMLg 0.43 0.12 0.05 0.09 0.23 0.49 0.11 0.04 0.09 0.09 0.41 0.12 0.05 0.09 0.23 0.37 0.09 0.05 0.07 0.09
TMLl 0.32 0.04 0.02 0.04 0.04 0.45 0.09 0.02 0.06 0.07 0.30 0.03 0.02 0.04 0.03 0.30 0.03 0.02 0.04 0.03
RMLl 0.42 0.12 0.05 0.09 0.23 0.46 0.10 0.03 0.06 0.08 0.41 0.11 0.05 0.09 0.23 0.35 0.07 0.04 0.06 0.08
TMLb 0.31 0.04 0.02 0.04 0.04 0.45 0.09 0.02 0.06 0.07 0.29 0.03 0.02 0.04 0.03 0.29 0.03 0.02 0.04 0.03
RMLb 0.39 0.06 0.02 0.08 0.23 0.45 0.09 0.03 0.06 0.08 0.37 0.05 0.02 0.08 0.24 0.32 0.04 0.02 0.05 0.08

Table A.14: LR test results for N = 250, T = 7.

φ− φ0 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2 -.2 -.1 .0 .1 .2
φ = 0.5 γ = 0.5 σν = 1 φ = 0.5 γ = 0.5 σν = 3 φ = 0.5 γ = 1.0 σν = 1 φ = 0.5 γ = 1.0 σν = 3

TMLg 0.99 0.87 0.04 0.82 0.99 0.99 0.95 0.05 0.93 1.00 0.99 0.86 0.05 0.80 0.99 0.99 0.86 0.05 0.80 0.99
RMLg 0.99 0.88 0.04 0.83 0.99 0.99 0.95 0.04 0.93 1.00 0.99 0.86 0.04 0.81 0.99 0.99 0.86 0.05 0.80 0.99
TMLl 0.99 0.87 0.04 0.82 0.99 0.99 0.95 0.05 0.93 1.00 0.99 0.86 0.05 0.80 0.99 0.99 0.86 0.05 0.80 0.99
RMLl 0.99 0.88 0.04 0.83 0.99 0.99 0.95 0.04 0.93 1.00 0.99 0.86 0.04 0.81 0.99 0.99 0.86 0.05 0.80 0.99
TMLb 0.99 0.87 0.04 0.82 0.99 0.99 0.95 0.05 0.93 1.00 0.99 0.86 0.05 0.80 0.99 0.99 0.86 0.05 0.80 0.99
RMLb 0.99 0.88 0.04 0.83 0.99 0.99 0.95 0.04 0.93 1.00 0.99 0.86 0.04 0.81 0.99 0.99 0.86 0.05 0.80 0.99

φ = 0.8 γ = 0.5 σν = 1 φ = 0.8 γ = 0.5 σν = 3 φ = 0.8 γ = 1.0 σν = 1 φ = 0.8 γ = 1.0 σν = 3
TMLg 0.99 0.69 0.08 0.33 0.42 0.99 0.80 0.09 0.49 0.60 0.99 0.67 0.08 0.32 0.43 0.99 0.67 0.08 0.32 0.43
RMLg 0.99 0.71 0.05 0.49 0.94 0.99 0.80 0.10 0.50 0.62 0.99 0.70 0.05 0.49 0.95 0.99 0.67 0.06 0.35 0.69
TMLl 0.99 0.67 0.06 0.30 0.41 0.99 0.78 0.05 0.44 0.56 0.99 0.65 0.06 0.29 0.42 0.99 0.65 0.06 0.29 0.42
RMLl 0.99 0.71 0.05 0.49 0.94 0.99 0.78 0.05 0.44 0.57 0.99 0.70 0.05 0.49 0.95 0.99 0.66 0.06 0.34 0.69
TMLb 0.99 0.67 0.04 0.30 0.41 0.99 0.78 0.05 0.44 0.56 0.99 0.65 0.04 0.29 0.42 0.99 0.65 0.04 0.29 0.42
RMLb 0.99 0.71 0.03 0.49 0.93 0.99 0.78 0.05 0.44 0.57 0.99 0.70 0.03 0.49 0.94 0.99 0.66 0.04 0.34 0.69
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Figure A.4: Average concentrated log-likelihood function for φ in AR(1) model.
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