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Abstract

We analyze a class of linear regression models including interactions of endoge-

nous regressors and exogenous covariates. We show that, under typical conditions

regarding higher-order dependencies between endogenous and exogenous regressors,

the OLS estimator of the coe¢ cient of the interaction term is consistent and asymptot-

ically normally distributed. Applying heteroskedasticity-consistent covariance matrix

estimators, we then show that standard inference based on OLS is valid for the co-

e¢ cient of the interaction term. Furthermore, we analyze several IV estimators, and

show that an implementation assuming exogeneity of the interaction term is valid

under fairly weak conditions. In the more general case, we derive that instruments

need to be interacted with the exogenous part of the interaction to achieve identi�ca-

tion. Finally, we propose several speci�cation tests to empirically assess the validity

of OLS and IV inference for the interaction model. Using our theoretical results we

con�rm recent empirical �ndings on the nonlinear causal relation between �nancial

development and economic growth.
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1. Introduction

In applied research, it is common to use interaction terms to investigate the multiplicative

e¤ect of two variables, labeled x and w, on a dependent variable y. Of primary interest

in regression models including interaction terms are the coe¢ cients of those interactions.

More speci�cally, one would like to verify whether the interaction term x � w is signi�cant
and economically important and thus should be included in the empirical model.

In this study we analyze the interaction model in which x is endogenous and w is

exogenous. For example, analyzing the returns to schooling one generally regresses wages

on education, gender, and other covariates (i.e., ethnicity, age, marital status, etc.). A

researcher might interact education and gender in the regression to investigate the gender

gap in returns to schooling (see e.g. Dougherty, 2005). At the same time one may want to

correct for endogeneity of education due to selection bias or measurement error. In this case

it is expected that the interaction variable, i.e. the product of education and gender, is also

an endogenous regressor. Two other examples of empirical studies, in which interactions of

endogenous and exogenous regressors appear, are Rajan and Zingales (1998) and Aghion et

al. (2005). Both studies analyze the relation between �nancial development and economic

growth, allowing the impact of �nancial development on growth to be nonlinear.

In the presence of endogenous regressors it is expected that ordinary least squares

(OLS) is inconsistent and that instrumental variables (IV) estimation is required instead.

Although for linear models the properties of OLS and IV estimators and corresponding

inference have received much attention the last decades, little research exists on OLS and

IV estimation in models with (partly) endogenous interactions. An exemption is Nizalova

and Murtazashvili (2014), who analyze consistency of the OLS coe¢ cient estimator in

an interaction model with treatment e¤ects under more restrictive conditions than in our

setting. They also do not consider OLS (and IV) inference, however. Our study aims at

providing a comprehensive analysis of the relative merits of OLS versus IV based inference.

We analyze to what extent one can still rely on OLS estimation and inference. We

�rst establish that, in some important cases, the interaction term actually can be clas-

si�ed as exogenous. We next show that, under a further particular condition regarding

higher-order dependencies in the data, the OLS estimator for the coe¢ cient of the interac-

tion term is consistent and asymptotically normally distributed. These results are derived

under quite general conditions, allowing for continuous and discrete interaction terms, cor-

relation between endogenous and exogenous regressors, conditional heteroskedasticity and

non-normality. Thus, the researcher can possibly perform valid statistical inference for

the interaction term using OLS prior to implementing IV estimation. Such knowledge can

avoid unnecessary and more complex IV estimation, particularly in cases where validity of

instrumental variables is questionable.

OLS estimation of the other coe¢ cients, however, is not consistent. Hence, IV estima-
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tion is necessary if one is interested in the full marginal e¤ect of the endogenous regressor

on the dependent variable. We provide guidance on the optimal set of instruments given

the presence of an endogenous regressor. Given a vector of valid instrumental variables z

for x, we show that under reasonable conditions, the interaction term itself is exogenous

and can therefore be included as part of the instrument set. In the more general case, the

interaction term is treated as a second endogenous regressor. We show that in this case the

instrument set should include interactions of the elements in z with w in order to satisfy

the necessary rank condition for IV estimation. Although a priori this seems the most

natural set of instruments (e.g. Wooldridge, 2002, p121-122), we are unaware of any prior

study documenting that (i) exploiting z alone leads to underidenti�cation, even when the

order condition is satis�ed; and (ii) the interaction term itself may be a valid instrument.

Finally, we propose a series of speci�cation tests to enable the researcher to distinguish

between IV and OLS and also the optimal set of instruments.

We demonstrate our theoretical results both through Monte Carlo experiments and

by an empirical analysis. The Monte Carlo experiments show the favorable statistical

properties of OLS inference on the interaction term and also non-normality of the IV

estimator when only the linear instruments are employed. Our results also validate the

use of the interaction term as an instrument in a wide variety of cases. In addition, we

partly reproduce and extend the empirical analysis of Aghion et al. (2005), who analyze

the relation between �nancial development and convergence. In a cross-sectional growth

regression they test the signi�cance of an interaction e¤ect between initial income and

�nancial development. They allow �nancial development to be an endogenous regressor.

We provide further support for their instrument set choice, and additionally report valid

OLS based inference. We show that for the parameter of interest, i.e. the interaction

coe¢ cient, OLS inference is often at least as credible as IV inference. Our empirical results

reinforce their conclusion that low �nancial development makes growth convergence less

likely.

In the next Section, we describe the interaction model and investigate the asymptotic

properties of the OLS and IV estimators. In Section 3 we report the Monte Carlo simula-

tions, while Section 4 contains the growth application. Section 5 concludes.
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2. Model and Asymptotic Properties

2.1. Basic Set-up

We consider the following model with only one endogenous regressor (labeled x) and one

additional exogenous regressor (labeled w):1

yi = �� + �wwi + �xxi + �xwxiwi + ui: (2.1)

Furthermore, a set of instruments (labeled z) is available to correct for the endogeneity of x.

The endogenous regressor interacts with an exogenous variable w. One relevant application

could be where y is wage, x is schooling and w is gender. In our application in Section 4,

the variables y, x, and w represent country speci�c growth rates, a measure for the �nancial

development of the country, and log of initial GDP per capita respectively. The parameter

of interest is �xw, i.e. we want to test whether the returns to education is homogeneous

or depends on gender or whether the e¤ects of �nancial development depend on the initial

GDP of the country. Stacking the observations (i = 1; :::; n) we get

y = X� + u; (2.2)

where y = (y1; :::; yn)
0 and u = (u1; :::; un)

0. Furthermore, X = (X 0
1; :::; X

0
n)
0 with Xi =h

1 wi xi xiwi

i0
and � = (��; �w; �x; �xw)

0. For analysis of OLS, we do not specify a

particular functional form or relation between the regressors. Of particular concern, x and

w can be correlated.

To establish the sampling properties of OLS and IV estimators, we make the following

assumption regarding the data and errors:

Assumption 1. The data (yi; xi; wi; zi) are i.i.d. across i with nonzero �nite fourth

moments and E (uijwi; zi) = 0. Furthermore, we assume E(xi) = 0, E(wi) = 0 and

E(zi) = 0:

Although this simple random sampling assumption rules out most time series applica-

tions, it is general enough to allow for conditional heteroskedasticity and non-normality.

The assumption of zero means for regressors and instruments is without loss of generality.

Because a constant is always included, all theoretical results below will continue to hold

with rescaling of these variables (Kiviet and Niemczyk, 2012). Also note that we do not

specify a particular functional form or relation between the regressors x and w. Hence, x

and w can be collinear as is usually the case in applied work.

1The presence of additional exogenous regressors in (2.1) does not change the theoretical results. The

analysis below holds exactly when we replace y, w and x by the residuals of their projection on these

additional exogenous regressors.
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The structure in (2.1) and Assumption 1 results in classic endogeneity bias if

cov(xi; ui) = �xu 6= 0: (2.3)

In the linear model such endogeneity a¤ects consistent OLS estimation of all regression

coe¢ cients. In this study we will investigate to what extent this is also the case in the

interaction model (2.1). Regarding the correlation between the interaction term and the

structural error we can write:

cov(xiwi; ui) = E (wiE(xiuijwi)) : (2.4)

Now even if xi and wi are dependent random variables, the following assumption can still

be satis�ed:

Assumption 2. The conditional expectation of xiui given wi does not depend on wi:

E(xiuijwi) = E(xiui): (2.5)

Assumption 2 states that the degree of endogeneity does not depend on w.2 Under this

assumption we have that:

cov(xiwi; ui) = E(wi)E(xiui) = 0; (2.6)

because without loss of generalization we assumed that E (wi) = 0. In other words, under

Assumption 2 the interaction term is not an endogenous regressor after all.

Assumption 2 is a fairly weak condition implied by a variety of statistical data generating

processes. An obvious special case is that of joint normality of xi, wi and ui. In this case the

conditional distribution of (xi; ui) is normal with conditional covariance not depending on

wi. Note that this condition holds because we assume that w is exogenous. More generally,

in the linear IV model it is common to impose a Kronecker product form covariance matrix

for the errors (see e.g. Staiger and Stock, 1997) implying Assumption 2. But even in the

case of heteroskedasticity it still is a valid assumption as long as the conditional covariance

between the structural and reduced form errors is not depending on w.

Whether Assumption 2 is plausible in relevant economic models is context-dependent.

For example, consider the treatment regression model analyzed in Nizalova and Murtaza-

shvili (2014) in which the treatment indicator wi is randomly assigned. The treatment

e¤ect, however, may depend on a pre-treatment characteristic xi, which potentially is cor-

related with other unobserved factors in ui. Nevertheless, due to the random assignment

wi is independently distributed from both xi and ui, hence Assumption 2 is satis�ed.

2The conditional covariance in (2.5) may still depend on other exogenous variables.
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Assumption 2 may be reasonable as well in the case of relevant omitted variables. In the

case of the returns to schooling application, for example, it will depend on how unobserved

ability is related to wages. Suppose we model the returns to education being gender speci�c,

i.e. yi is log wage, xi is schooling and wi is gender in (2.1). The level of schooling xi is

endogenous, i.e. correlated with unobserved ability ai. Suppose we have for the unobserved

heterogeneity the following:

ui = �aai + �awaiwi + u
�
i ; (2.7)

where we allow for the possibility that the returns to ability may also be gender speci�c.3

Note that in order to maintain exogeneity of wi, we also need the additional assumption

that E(aijwi) = 0.4 In the returns to schooling application this is not a strong assumption.
However, in other circumstances this additional assumption will be violated, rendering

wi endogenous and therefore in need of IV estimation techniques as well. Maintaining

exogeneity of wi, we then have:

E [xiuijwi] = E [�axiai + �awxiaiwi + xiu�i jwi]
= (�a + �awwi)E [xiaijwi] + E [xiu�i jwi] ; (2.8)

so for Assumption 2 to hold we need at least that �aw = 0.
5 In other words, the returns to

ability need to be the same for males and females. Furthermore, we need that

E [xiaijwi] = E [xiai] ; (2.9)

E [xiu
�
i jwi] = E [xiu�i ] : (2.10)

The second condition mimics Assumption 2, and let�s assume it holds. Then for consistency

of IV3 and OLS the correlation between schooling and ability should not depend on gender.

While Assumption 2 may still be reasonable in the case of relevant omitted variables, it

is not when endogeneity of xi is caused by simultaneity. Suppose the structural equation

for x is:

xi = �� + �wwi + �yyi + �
0
zzi + "i: (2.11)

As we show in the Appendix, in this case Assumption 2 only holds when either �y = 0 (no

simultaneity) or �xw = 0 (no �endogenous�interaction), which are both trivial cases.

Because its validity is context-dependent, in applied research one may therefore not

a priori want to impose Assumption 2, and treat the interaction term as exogenous. It

is relatively straightforward, however, to empirically test condition (2.5) with a Hausman

3Note that the speci�cation of ui in (2.7) rules out the validity of joint normality of xi, wi and ui
as discussed above. The reason is that the structural error ui in general has a non-normal distribution,

because ui is (partly) a product of ai and wi.
4With this assumption E(uijwi) = 0 since E [uijwi] = �aE [aijwi] + �awwiE [aijwi] + E [u�i jwi] :
5Alternatively, we assume that E [xiaijwi] = 0; but obviously this is a questionable assumption in

applied research.

6



(1978) test comparing two di¤erent IV estimators, of which one assumes endogeneity of

both xi and xiwi and one imposes exogeneity of xiwi. In Section 2.4 we will provide more

details on this and other speci�cation tests, but �rst we discuss the asymptotic properties

of the OLS estimator.

2.2. OLS estimation and inference

In this Section we show that, under further reasonable conditions related to higher-order

moments between xi and wi, the OLS estimator of the coe¢ cient �xw of the interaction

term is consistent and asymptotically normally distributed. Additionally, we show that

standard heteroskedasticity-robust OLS inference can be applied to test the signi�cance of

the interaction e¤ect and for constructing a con�dence interval.

The OLS estimator of the full parameter vector � is equal to:

�̂ = (X 0X)�1X 0y: (2.12)

Taking the probability limit we have

plim �̂ = � +

�
plim

1

n
X 0X

��1
plim

1

n
X 0u

= � + ��1XX�Xu; (2.13)

where Assumption 1 implies that �XX = E [XiX
0
i] and �Xu = E [Xiui]. The vector

��1XX�Xu is the OLS inconsistency. For the interaction model (2.1) the following result

holds:

Proposition 1: Under Assumptions 1 and 2, the inconsistency of the OLS estimator of

model (2.1) equals:

��1XX�Xu =
�xu

det (�XX)

26664
E(xiwi) (E(xiwi)E(xiw

2
i )� E(w2i )E(x2iwi))

E (x2iwi)E (xiw
2
i ) + (E (xiwi))

3 � E (xiwi)E (x2iw2i )
E(w2i ) (E (x

2
iw

2
i )� E (xiw2i ))� (E (xiw2i ))

2

E(xiwi)E(xiw
2
i )� E(w2i )E(x2iwi)

37775 : (2.14)
Proof. see the Appendix.

The last element in the inconsistency (2.14) is interesting because quite often it will be

zero, irrespective of the degree of endogeneity �xu. For example, when xi and wi are bivari-

ate normal distributed we have that E(x2iwi) = E(xiw
2
i ) = 0. More generally, multivariate

elliptical distributions are su¢ cient, but not necessary, for these higher-order dependencies

to vanish.
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The possible consistency of OLS for the coe¢ cient �xw is not limited to continuous

random variables x and w. Suppose we can specify the relation between x and w by a

linear (reduced form) regression:

xi = �wwi + �i, (2.15)

with �i � i:i:d:(0; �2�) independent from wi. This implies:

E (xiwi) = �wE
�
w2i
�

(2.16)

E
�
xiw

2
i

�
= �wE

�
w3i
�
; (2.17)

which follows from the implied linear relation between x and w. Furthermore, we have:

E
�
x2iwi

�
= �2wE

�
w3i
�
; (2.18)

Plugging these three components into the last element of (2.14), the terms will cancel. OLS

is therefore consistent for the coe¢ cient of the interaction term, but now irrespective of

the further nature of the distribution of x and w. In particular, w could be discrete or

continuous and have any distribution, as long as the conditional expectation of xi given wi
is linear.

Depending on the statistical assumptions, the OLS estimators of other coe¢ cients may

be consistent as well. For example, in the treatment regression model discussed earlier the

treatment indicator wi is randomly assigned, hence independently distributed of xi. From

expression (2.14) we learn that in this case also �w, the coe¢ cient of wi, can be consistently

estimated. Therefore, as shown already by Nizalova and Murtazashvili (2014) one can

consistenly estimate by OLS the full heterogeneous treatment e¤ect, which depends on

both �w and �xw. Below, we further that analysis by also deriving the limiting distribution,

which is also applicable more generally.

To derive the limiting distribution of the OLS estimator, rewrite model (2.1) as:

yi = X
0
i�� + "i; (2.19)

with �� = � + �
�1
XX�Xu the pseudo-true value and

"i = ui � �0Xu��1XXXi; (2.20)

such that E [Xi"i] = 0. Note that "i depends on Xi and, hence, in general will be het-

eroskedastic.

The OLS estimator (2.12) is simply a method of moments estimator exploiting the

following moment equation:

E [fi (�)] = E [Xi (yi �X 0
i�)] = 0: (2.21)

These moment conditions are satis�ed in � = ��. Standard asymptotic theory for method of

moments estimators then gives the following large sample distribution of the OLS estimator:
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Lemma 1. Given model (2.1) and Assumption 1, the large sample distribution of the

OLS estimator (2.12) is: p
n
�
�̂ � ��

�
d�! N (0; V ); (2.22)

where

V = A�1� B�A
0�1
� ; (2.23)

A� = plim
1

n

nX
i=1

@fi(�)

@�0

����
��

= ��XX ; (2.24)

B� = plim
1

n

nX
i=1

fi(��)fi(��)
0 = E

�
"2iXiX

0
i

�
: (2.25)

From Lemma 1 it can be seen that, although normally distributed, the limiting distri-

bution of the OLS estimator is centered around its pseudo-true value �� = � + �
�1
XX�Xu,

but with a standard sandwich-type expression for the asymptotic variance.6

If the last element of the vector ��1XX�Xu in Proposition 1 is zero, Lemma 1 implies the

following interesting result for the OLS estimator of the interaction coe¢ cient �xw:

p
n
�
�̂xw � �xw

�
d�! N (0; Vxw) ; (2.26)

where Vxw is the diagonal element of V corresponding to the interaction term. In other

words, we have the remarkable fact that, even if we have an endogenous regressor x, the

OLS estimator of the coe¢ cient �xw is consistent and asymptotically normal. It should be

noted, however, that this consistency is restricted to �xw only and not the full marginal

e¤ect of x on y (i.e., �x + �xww) because the OLS estimator of �x is inconsistent.

The asymptotic normality of the OLS estimator holds under relatively weak conditions.

In Assumption 1 we only speci�ed �nite fourth moments, but they do not need to coincide

with those of the normal distribution. In other words, non-normality and also conditional

heteroskedasticity are allowed for. However, we get interesting simpli�cations when we

further impose normality and homoskedasticity as in Kiviet and Niemczyk (2012):

Assumption 3. In model (2.1), ui, wi and xi are jointly normally distributed with mean

zero and variance matrix

0B@ �2u 0 �xu

0 �2w �xw

�xu �xw �2x

1CA for all i = 1; :::; n.

Kiviet and Niemczyk (2012) analyze the asymptotic distribution of the OLS estimator

for linear models with endogenous regressors. We di¤er from Kiviet and Niemczyk (2012)

in that, although we assume normality of xi and wi, the interaction term xiwi is still

non-normal. Assuming normality of the data and errors, the following holds:

6Lemma 1 can also be interpreted as a multivariate extension of Lemma 3.1 in Kiviet (2013).
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Proposition 2: Under Assumptions 1 and 3, the asymptotic distribution of the OLS

estimator of � in Lemma 1 simpli�es to:

p
n
�
�̂ � ��

�
d�! N (0; V ) ; (2.27)

with

�� = � +
�xu

�2w�
2
x � �2xw

�
0 ��xw �2w 0

�0
(2.28)

V = �2u
�
1� �2xu

�
��1XX . (2.29)

Proof. see the Appendix.

The result on the asymptotic variance in (2.29) is similar to equation (32) of Kiviet

and Niemczyk (2012). From Proposition 2 it also can be seen that endogeneity actually

decreases the asympotic variance of the OLS estimator as 0 < �2xu < 1.

As described by Kiviet and Niemczyk (2012), under normality and homoskedasticity

standard OLS inference exploiting homoskedasticity-only (ho) standard errors makes sense.

The reason for this is that

plim s2u = plim
û0û

n
= �2u

�
1� �2xu

�
; (2.30)

with û = y � X�̂ the OLS residuals. Hence, the variance estimator s2u is a consistent
estimator of �2u (1� �2xu) and estimating V by

V̂ho = s
2
u (X

0X)
�1
; (2.31)

is asymptotically valid. Thus, under Assumptions 1 and 2, the t-statistic for testing H0 :

�xw = �xw;0 based on the OLS coe¢ cient and variance estimators is approximately standard

normal distributed, viz.
�̂xw � �xw;0
SEho(�̂xw)

d�! N (0; 1) ; (2.32)

with SEho(�̂xw) the square root of the last diagonal element of the standard OLS variance

estimator s2u (X
0X)�1.

For the more general case of non-normality and/or heteroskedasticity, however, one

should base inference on the asymptotic variance provided in Lemma 1 above. The ex-

pression of the asymptotic variance is of the usual sandwich form. Therefore, a standard

heteroskedasticity-robust (hr) covariance estimator (White, 1980) can be used. Here we

exploit:

V̂hr = (X
0X)

�1
nX
i=1

"̂2i�
1� ĥi

�2XiX
0
i (X

0X)
�1
; (2.33)

with ĥi = Xi (X
0X)�1X 0

i and "̂i = yi�X 0
i�̂ the OLS residuals. The estimator in (2.33) has

been proposed by Davidson and MacKinnon (1993, p554), and is a slight modi�cation of
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the jackknife estimator in MacKinnon and White (1985).7 The robust variance estimator

in (2.33) will be su¢ cient to warrant asymptotically valid inference for �xw, i.e.

�̂xw � �xw;0
SEhr(�̂xw)

d�! N (0; 1) ; (2.34)

with SEhr(�̂xw) the square root of the last diagonal element of the robust variance estimator

V̂hr. Further improvements in �nite sample accuracy can possibly be achieved by exploiting

a robust covariance matrix estimator in combination with a (wild) bootstrap procedure

(MacKinnon, 2013).

Summarizing, the OLS estimator of the interaction term in (2.1) is, under many rea-

sonable conditions, consistent and asymptotically normal, and standard inference can be

applied. An important implication of these results is that in some applications, if the main

empirical result only depends on the interaction variable, OLS based inference is su¢ cient

and one does not need to resort to IV techniques. In other words, OLS inference can be

performed without worry about strength and exogeneity of instruments. Still certain as-

sumptions are needed for valid OLS inference, and in Section 2.4 we will discuss several

ways of verifying these conditions in practice.

2.3. IV estimation and the optimal set of instruments

We showed that OLS can provide asymptotically valid inference of the interaction coe¢ cient

�xw even in the presence of endogeneity. However, because of the remaining endogeneity

bias in estimating �x, the main e¤ect of the endogenous regressor x, we still need to in-

strument for x if the full marginal e¤ect of x on y is of importance. In this Section we

therefore compare three di¤erent implementations of IV assuming that we have kz instru-

mental variables z available satisfying Assumption 1. The �rst IV estimator (labeled IV1)

only exploits these kz excluded instrumental variables z. The second implementation (la-

beled IV2) also uses the kz additional instruments z � w. This approach parallels Kelejian
(1971) and Amemiya (1974), who demonstrate that employing polynomial series as instru-

ments provides consistent IV estimators for nonlinear structural models. Compared with

IV2, the third implementation (labeled IV3) adds the original interaction term x �w as an
instrumental variable.

In applied research, IV3 is never exploited because typically the interaction term is

treated as an endogenous regressor too. As we showed above, however, under mild condi-

tions, x�w is actually an exogenous regressor. Furthermore, typically IV2 has been preferred
over IV1, and here we provide a theoretical background for this choice. A priori one would

prefer IV2 over IV1 as z �w are natural instruments for x �w when z are valid instruments
7In the literature this is known as the HC3 estimator, see MacKinnon (2013) for an overview of

heteroscedasticity-robust covariance matrix estimators.
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for x (Wooldridge, p122, 2002). Aghion et al. (2005) dismiss IV1 because of collinearity

problems between the two �rst stage regressions. Exploiting only z as an instrument set,

the resulting IV1 standard errors are large, and hence estimates are imprecise and not

signi�cant. Below we will provide an explanation for this anomalous behaviour by showing

that IV1 is likely to su¤er from underidenti�cation even when we have more instruments

than endogenous variables.

To analyze the IV estimators, we supplement the structural equation (2.1) with the

following reduced form8 for the endogenous regressor x:

xi = � + �wwi + z
0
i�z + vi; (2.35)

where zi is the kz dimensional vector of instrumental variables excluded from (2.1). We

analyze the relevance of the IV1, IV2 and IV3 sets of instruments de�ned as:

z
(1)
i =

h
1 wi z0i

i0
; (2.36)

z
(2)
i =

h
1 wi z0i z0i � wi

i0
; (2.37)

z
(3)
i =

h
1 wi z0i z0i � wi xi � wi

i0
: (2.38)

The lack of identi�cation of the IV1 estimator can be explained by the fact that, under

certain conditions, the rank condition is not satis�ed:

Proposition 3: Under (2.1), (2.35) and Assumption 1, we have that:

rank E
h
z
(1)
i X

0
i

i
= 3 if E

�
w2i zi

�
= 0 and E [wiziz0i] = 0, (2.39)

rank E
h
z
(2)
i X

0
i

i
= 4.

Proof. see the Appendix.

Thus, the IV1 estimator is subject to an identi�cation problem when:

E
�
w2i zi

�
= 0 and E [wiziz0i] = 0: (2.40)

In practice it is relatively easy to test the reduced rank for IV1 by applying the rank

statistic of Kleibergen and Paap (2006), which is a generalization of the Anderson (1951)

rank statistic to the case of a nonscalar error covariance structure. Note that it is often the

case that when condition (2.40) holds, the last element in the OLS inconsistency (2.14) is

zero, and vice versa (see e.g. the last Monte Carlo design in Section 3.4 below).

Proposition 3 shows that, irrespective of the strength of the instruments z; the IV1

estimator may not meet the rank condition for identi�cation and, hence, it does not identify

8Note that the reduced form speci�ed in (2.15) is more restrictive in the sense that independence is

assumed between w and the other stochastic components (z and v) as well as homoskedasticity.
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the structural parameters. As we will show in the Monte Carlo experiments, we tend to �nd

bimodality for the IV1 t-statistic. However, the IV2 estimator does ful�ll the rank condition

for identi�cation. Under standard, strong instruments asymptotics the IV2 estimator is

consistent and asymptotically normal, and conventional IV based inference can be applied.

The following proposition gives its asymptotic variance in terms of model parameters when

condition (2.40) holds:

Proposition 4: Under (2.1), (2.35), Assumption 1, condition (2.40) and homoskedastic

errors ui and vi, the asymptotic variances of the IV2 estimator of �x and �xw are equal

to:

V(2);x =
�2u

E [z2i ] �
0
z�z
; (2.41)

V(2);xw =
�2u

�2wE [w
3
i z
0
i] (E [w

2
i ziz

0
i])
�1
E [ziw3i ] + �

0
zE [w

2
i ziz

0
i] �z

: (2.42)

Proof. see the Appendix.

Proposition 4 shows that when instruments become weak, i.e. �z � 0, the IV2 estimator
is subject to the usual weak instruments problem and its variance will become large.9

Furthermore, with weak instruments the IV2 estimator is biased in the direction of the

OLS estimator, and its distribution is non-normal a¤ecting inference (Staiger and Stock,

1997).

Until now we assumed that we have two endogenous regressors, i.e. x and x � w. We
have shown, however, that under Assumption 2 the correlation between interaction term

and structural error is zero. In this case we can classify x � w as exogenous, and use IV3
instead of IV2.10 We will now discuss how to empirically assess when we can use IV2, IV3

or even OLS.

2.4. empirical comparison of IV and OLS estimators

In applied research one may not a priori want to impose the assumptions leading to con-

sistency of IV3 and OLS. In this Section we therefore discuss various ways to empirically

9Note that, assuming either independence or joint normality of wi and zi, we have E
�
ziw

3
i

�
= 0 and

E
�
w2i ziz

0
i

�
= E

�
w2i
�
E
�
z2i
�
Ikz . In this case, the above expressions further simplify to V(2);x =

�2u
�0z�z�

2
z
and

V(2);xw =
1
�2w
V(2);x, where E

�
z2i
�
= �2z and E

�
w2i
�
= �2w.

10An alternative implementation of IV3 is without z � w as instruments. It will be necessary, however,
to include these instruments when we apply the speci�cation test of Hahn et al. (2011), see Section 2.4

below.
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assess the validity of IV2, IV3 and OLS estimators de�ned as:

�̂2 = (X 0PZ2X)
�1
X 0PZ2y

�̂3 = (X 0PZ3X)
�1
X 0PZ3y

�̂ = (X 0X)
�1
X 0y;

where Zm =
�
z
(m)
1 ; :::; z

(m)
n

�0
and z(m)i ; m = f2; 3g ; as in (2.37) and (2.38) respectively.

More speci�cally, we limit ourselves to testing the coe¢ cient of the interaction term �xw
because this is the parameter of interest.

The two prerequisites for consistency of the OLS estimator of �xw are Assumption 2

and furthermore the condition:

E(xiwi)E(xiw
2
i )� E(w2i )E(x2iwi) = 0; (2.43)

which is the last element in the OLS inconsistency (2.14). The condition (2.43) can be

easily checked by a Wald test. De�ning

� =
h
E(xiwi) E(xiw

2
i ) E(w2i ) E(x2iwi)

i0
; (2.44)

we want to verify H0 : �1�2 � �3�4 = 0. The four elements in � can be estimated by their
sample counterparts resulting in the following sample moment equations:

1

n

nX
i=1

m(wi; xi; �̂) =
1

n

nX
i=1

0BBB@
26664
xiwi

xiw
2
i

w2i
x2iwi

37775�
26664
�̂1

�̂2

�̂3

�̂4

37775
1CCCA = 0: (2.45)

Standard asymptotic theory for method of moments estimators shows that the limiting

distribution of �̂ is equal to:

p
n
�
�̂ � �

�
d�! N (0; C0) ; (2.46)

where C0 can be estimated consistently by

Ĉ =
1

n

nX
i=1

mi(�̂)mi(�̂)
0: (2.47)

De�ning now h(�) = �1�2 � �3�4, we have @h(�)
@�0 =

h
�2 �1 ��4 ��3

i
and we can test

H0 : h(�) = 0 with the following Wald t-test statistic:11

Wc =
h(�̂)p
n�1r̂Ĉr̂0

; (2.48)

11See e.g. Cameron and Trivedi (2005, p226).
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where r̂ = @h(�)
@�0

���
�̂
. Under H0 the statistic in (2.48) is asymptotically standard normal

distributed. In the Appendix we describe how to adapt the statistic (2.48) to the case of

nonzero means.

If the applied researcher does not reject condition (2.43) with theWc statistic (2.48), one

can proceed with testing Assumption 2. For this we can compare IV2 and IV3 estimators

exploiting the conventional Hausman (1978) test, because IV3 is consistent only under

Assumption 2. The Hausman (1978) statistic comparing IV2 and IV3 estimators reads:�
�̂2 � �̂3

�0
V̂ �1H

�
�̂2 � �̂3

�
; (2.49)

where V̂H is an estimate of the asymptotic variance of the contrast vector �̂2� �̂3. Because
we limit ourselves to testing the coe¢ cient of the interaction term �xw, we only test the

last element �̂xw;2 � �̂xw;3. The Hausman test statistic (2.49) then simply becomes:

H23 =

�
�̂xw;2 � �̂xw;3

�2
V̂H;xw

; (2.50)

with V̂H;xw the last diagonal element of V̂H . Under homoskedasticity we use:

V̂H = s
2
u;2 (X

0PZ2X)
�1 � s2u;3 (X 0PZ3X)

�1
: (2.51)

where

s2u;j =
1

n

�
y �X�̂j

�0 �
y �X�̂j

�
; j = 2; 3: (2.52)

is the IV estimate of the error variance. In the case of heteroskedasticity we use the following

modi�cation to estimate the asymptotic variance of the contrast vector (see e.g. Cameron

and Trivedi, 2005):

V̂H = V̂22 + V̂33 � 2V̂23; (2.53)

where

V̂jj = n
�
X 0PZjX

��1
X 0Zj

�
Z 0jZj

��1
Ŝjj
�
Z 0jZj

��1
Z 0jX

�
X 0PZjX

��1
; j = 2; 3;

V̂23 = n (X 0PZ2X)
�1
X 0Z2 (Z

0
2Z2)

�1
Ŝ23 (Z

0
3Z3)

�1
Z 03X (X

0PZ3X)
�1
;

Ŝjj =
1

n

nX
i=1

û2j;i

(1� hj;i)2
z
(j)
i z

(j)
i
0; j = 2; 3;

Ŝ23 =
1

n

nX
i=1

û22;i

(1� h2;i)2
z
(2)
i z

(3)0
i ;

and hj;i is the ith diagonal element of PZj , j = 2; 3. Using (2.53) in (2.50) results in a

heteroskedasticity-robust Hausman test.
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The statistic in (2.50) will, under the null hypothesis that plim(�̂xw;2 � �̂xw;3) = 0, be
asymptotically distributed as �21. When the applied researcher rejects this null hypothesis,

Assumption 2 is not valid. In this case OLS (and also IV3) inference is not valid, and the

IV2 estimator is to be preferred.

As is well known, the particular version of the Hausman test above, i.e. exploiting

the variance estimator (2.51), is not robust to weak instruments (Staiger and Stock, 1997;

Hahn et al., 2011). In the case of weak instruments, however, one can still test Assumption

2 exploiting a weak instrument robust version of the Hausman test proposed by Hahn et

al. (2011). In the case of exact identi�cation, i.e. kz = 1, the resulting Hausman statistic

can be written as (2.50), but replacing s2u;2 in (2.51) by the IV3 variance estimator s
2
u;3:

V̂H = s
2
u;3 (X

0PZ2X)
�1 � s2u;3 (X 0PZ3X)

�1
: (2.54)

Hahn et al. (2011) also provide an extension to heteroskedasticity.

Summarizing, to empirically evaluate the validity of OLS, IV3 and IV2 inference on the

coe¢ cient of the interaction term �xw we perform the following sequence of tests.
12 We �rst

test condition (2.43) with the Wc statistic in (2.48). Note that the Wc statistic is robust

to identi�cation issues originating from weak instruments, because it only depends on the

regressors x and w. Therefore, this is the best starting point for checking consistency of

OLS, because we don�t have to worry about the validity of external instrumental variables.

If we reject condition (2.43), then OLS is inconsistent. If we do not reject, we continue with

the H23 statistic in (2.50) to check Assumption 2. Note that the H23 statistic is not robust

to weak instruments, so depending on a pre-test for weak instruments one can exploit (2.51)

or (2.54) as variance estimator. If we also do not reject Assumption 2, then OLS inference

for �xw is valid. If we reject Assumption 2, then we prefer the IV2 estimator. For both

strong and weak instrument scenarios, we investigate in the Monte Carlo study below the

accuracy of the moments based test Wc and the various H23 tests in �nite samples.

3. Monte Carlo experiments

In order to further illustrate the theoretical results from the previous Section, we perform

a number of Monte Carlo experiments. We simulate �nite sample distributions of the OLS,

IV1, IV2 and IV3 estimators. Once again, the di¤erence between the three IV estimators

is due to the choice of di¤erent instrument sets; see (2.36), (2.37) and (2.38). On top of the

instruments of the IV1 estimator, the IV2 estimator also exploits instruments interacted

with the exogenous part of the interaction term. IV3 additionally exploits exogeneity of

the interaction term.
12An alternative Hausman test would be to compare OLS and IV2, but this is super�uous given that we

already perform the Wc and H23 tests.
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Apart from analyzing bias and variance of these coe¢ cient estimators, we also report ac-

tual rejection probabilities of corresponding t-statistics. We report both homoskedasticity-

only and heteroskedasticity-robust inference exploiting (2.31) and (2.33) for OLS, and

equivalent expressions for IV estimators (see for details Steinhauer and Wuergler, 2010).

Furthermore, for the IV estimators we calculate Cragg-Donald (1993) and Kleibergen-

Paap (2006) statistics: The latter (labeled KP) tests the rank condition and can therefore

be viewed as a �rst check on identi�cation. Note that in the case of homoskedasticity it is

equal to the Anderson (1951) rank statistic. Cragg-Donald statistics (labeled CD) indicate

weak instruments in the case of (multiple) endogenous regressors. In the case of a single

endogenous regressor it reduces to the �rst stage F statistic testing the joint signi�cance

of the excluded instruments. Cragg-Donald statistics indicate strength of identi�cation

and it is well known that very weak instruments can lead to huge standard errors and

non-normality of �nite sample distributions.

Finally, we report the actual rejection percentage of the Wc statistic (2.48), testing

the condition (2.43) underlying consistency of OLS, as well as the Hausman H23 test

checking Assumption 2 by comparing IV2 and IV3 estimators. We report outcomes from

homoskedasticity-only and heteroskedasticity-robust Hausman tests13. Furthermore, we

report results for the strong IV Hausman statistic using (2.51) as the variance estimator as

well as the weak instrument robust Hausman statistic using (2.54) as the variance estimator

(labeled Hs
23 and H

w
23 respectively).

We generate data for y and x according to (2.1) and (2.35). Although most of the designs

ful�ll Assumption 2, we also specify a Monte Carlo DGP in which the interaction term is

actually endogenous and, hence, OLS and also IV3 are inconsistent. Given that conditions

(2.43) and (2.40) are crucial for OLS and IV1 respectively, we furthermore specify a DGP

in which we can vary the nonlinear dependencies between x, w and z.

Choosing values and distributions for the various elements in (2.1) and (2.35) we have

to keep in mind any invariance properties of our theoretical results. Because we include

a constant in our model, without loss of generalization we will always center all variables

so that they have mean zero. Additionally, without loss of generalization we can generate

exogenous variables (wi and zi) such that they are mutually uncorrelated and have unit

variance. The reason is that we always can provide a nonsingular transformation of the

data, such that OLS and IV inference are not a¤ected.

Furthermore, for all designs, we choose �� = �w = �x = �xw = 1 in (2.1) and the

unconditional error variances are standardized at �2u = �
2
v = 1. We also generate normally

distributed errors in all experiments. Finally, we set kz = 5 and n = 100 in all exper-

iments. These choices are not without loss of generalization, but unreported simulation

experiments14 show that these choices are relatively innocuous for the main conclusions.

13By construction the Wc test is heteroskedasticity-robust.
14Among other things, we have simulated also with �2 or t distributed errors, n = f200; 500; 1000g and
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All simulation results are based on 10,000 replications.

3.1. normality and homoskedasticity

In our benchmark design we assume normality of the data and homoskedastic error terms.

These are ideal conditions for the OLS estimator of �xw, which is consistent and asymptoti-

cally normal and inference using the standard homoskedasticity-only variance estimator can

be applied. In this design we choose wi �i.i.n.(0; 1); zi �i.i.n.(0; Ikz), (ui; vi) �i.i.n.(0;�)
and

� =

 
1 �uv
�uv 1

!
:

The parameter �uv determines the degree of endogeneity. Regarding the reduced form,

without loss of generalization we can set �w = 1 because in this design OLS and IV

inference for �xw are invariant to this parameter. We �x the concentration parameter

� =
�0zZ

0Z�z
�2v

;

across experiments. We set �=kz = f1; 100g; these values are well below and above the
rule of thumb of 10 proposed by Staiger and Stock (1997) for the �rst-stage F statistic.

Hence, a value of 1 corresponds to weak instruments, while 100 indicates strong instruments.

Choosing all �j�s equal this implies for each element in the vector of reduced form coe¢ cients

that

�j =

s
�2v
n

�

kz
:

Simulation results for this �rst design are in Table 1. We report bias, standard devi-

ation (sd) and actual rejection probabilities (rp) of nominal 5% t-tests. Furthermore, we

report the actual rejection percentage of the Anderson (1951) and Kleibergen-Paap (2006)

statistics checking the rank condition for all IV estimators, as well as average Cragg-Donald

(1993) statistics. Finally, we report actual rejection percentages of the Wc and H23 tests.

<Table 1 about here>

We can see that while the OLS estimator for �x (and also �w) remains biased, we observe

neglible bias in estimating �xw showing the consistency result of Section 2. Biases in IV

estimators are substantially smaller for strong instruments, as expected. Comparing IV1

and IV2/IV3, we �nd that the standard deviation of IV1 is much larger than that of IV2/IV3

re�ecting the lack of identi�cation discussed previously. The large variance is particularly

acute for the IV1 estimator of �xw. Dispersion of IV2/IV3 is also larger than for OLS, but

the di¤erence in variance is much smaller than that of IV1 versus IV2/IV3. IV1 inference is

kz = f2; 10g.

18



almost always conservative, i.e. rejection frequencies are well below the nominal signi�cance

level. IV2/IV3 inference is valid in the case of strong instruments. OLS coe¢ cient bias

(and lack of bias as it may be) carries over to t-tests: actual rejection frequency for testing

�xw is close to nominal level, while that for testing �x can be close to 100%. Di¤erence in

�nite-sample performance between homoskedasticity-only or heteroskedasticity-robust test

statistics is negligible.

The several speci�cation tests to discriminate between OLS, IV3 and IV2 estimators

are all reasonably well behaved. Note that in this Monte Carlo design both condition (2.43)

and Assumption 2 are satis�ed, hence we simulate under the null hypothesis of validity of

both OLS and IV3. Therefore, in this design it can be checked what the actual signi�cance

level is for nominal 5% Wc and H23 tests. From Table 1 it can be seen that the various

Hausman tests are slightly conservative in the case of weak instruments, while the Wc test

has almost no size distortion already at a small sample size of n = 100.

The KP rank statistics checking the condition for IV1 inconsistency are also accurate

under the null hypothesis. In this design the rank condition for identi�cation is not satis�ed

for IV1, irrespective of the strength of the instruments. When instruments are strong the

actual rejection percentage for IV1 is close to the nominal level of 5%, while for IV2 and

IV3 KP has large power. As a result of this, IV2 and IV3 clearly outperform IV1 with IV3

being superior to IV2. Average CD statistics in the weak instruments experiment are of

similar magnitude indicating an identi�cation problem for all IV implementations. Average

CD statistics in the strong instruments experiment are of di¤erent magnitude indicating

that the identi�cation problem remains for the IV1 estimator. This corresponds to the

theoretical results of Proposition 3.

<Figure 1 about here>

Figure 1 further illustrates this by plotting empirical densities for the OLS, IV1, IV2

and IV3 estimation errors of �xw (left panels) and corresponding t-statistics (right panels)

for testing H0 : �xw = �xw;0.
15 It is clearly seen that the IV1 coe¢ cient estimator is

not normally distributed and has large tails consistent with the large standard deviations

reported in Table 1. The IV2, IV3 and OLS estimators of �xw, however, are very close

to a normal distribution, as expected.16Corresponding t-statistics should be distributed

as standard normal, which we plot as well for reference in each of the four right panels.

Striking is the bimodality of the distribution of the IV1 t-statistic, which is caused by the

lack of identi�cation facing this implementation. IV2, IV3 and OLS t-statistics, however,

are very close to a standard normal distribution, as expected.

15For reference we plot in the left panel of Figure 1 also normal densities with a variance that matches with

the empirical distribution, while in the right panel we plot densities from the standard normal distribution.
16A similar �gure (not reported here) holds for �x with the only di¤erence that the OLS estimator and

t-statistic for �x is shifted to the right re�ecting the positive coe¢ cient bias.
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Summarizing, OLS inference on �xw, the coe¢ cient of the interaction term, is excellent

re�ecting the theoretical results of the previous Section. Furthermore, the several speci�-

cation tests to discriminate between IV2, IV3 and OLS estimators are all reasonably well

behaved under the null hypothesis of validity of both OLS and IV3. Finally, the KP and

CD statistics correctly diagnose the identi�cation problem for IV1.

3.2. heteroskedasticity

In our second design we continue to assume normality of the data, but allow for conditional

heteroskedasticity in the errors. We specify the following scedastic function:

!i = � (� + �wwi + z
0
i�z)

2
;

where � is a scaling factor to ensure that on average the variance of ui and vi are one.

This speci�cation implies substantial heteroskedasticity determined by wi and zi.17 Now

we generate heteroskedastic errors according to (ui; vi) �i.i.n.(0;�i) with

� =

 
!i �uv
�uv !i

!
:

In this second design, the OLS coe¢ cient estimator of �xw continues to be consistent, but

the standard variance estimator is incorrect and we have to exploit the heteroskedasticity-

robust covariance estimator instead. Regarding the IV estimators we also show results

for both homoskedasticity-only and heteroskedasticity-robust covariance matrix estimators

where obviously the latter is necessary for asymptotically valid inference.

<Table 2 about here>

Table 2 reports simulation results for this heteroskedastic design, again distinguishing

between weak and strong instruments cases. Focusing on the estimation of the interaction

coe¢ cient �xw, we again observe neglible OLS and IV bias. Comparing IV1 and IV2/IV3,

we again �nd that the standard deviation of IV1 is much larger than that of IV2/IV3

re�ecting lack of identi�cation.

IV2 or IV3 inference exploiting heteroskedasticity-robust standard errors is valid in the

case of strong instruments, while using homoskedasticity-only standard errors creates large

size distortions for testing �x and �xw as can be seen. In the case of weak instruments,

however, uncertainty is much larger compared with OLS, and large size distortions may

result irrespective of the type of standard errors used. OLS inference on �xw exploiting

robust standard errors is valid as the actual rejection frequency for testing �xw is close

17For simplicity we choose the coe¢ cients in the scedastic function equal to those in the reduced form

for xi.
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to nominal level. Regarding the other coe¢ cients, however, OLS t-statistics should not

be used. Finally, we �nd in Table 2 that the heteroskedasticity-robust speci�cation tests

are reasonably well behaved under the null hypothesis. Somewhat remarkable is that even

homoskedasticity-only tests are not seriously size distorted under heteroskedasticity.

3.3. nonlinear dependence

In our third design, we assume homoskedasticity again, but we specify the dependency

between wi and zi such that IV1 is no longer subject to failure of the rank condition.

Hence, also for this estimator strong identi�cation may result. For that, we change the

speci�cation for z1i into:

z1i =
1p
2

�
w2i � 1

�
; (3.1)

while maintaining all other choices of our benchmark design. Given wi �i.i.n.(0; 1), this
alternative construction of z1i implies that it has a standardized �21 distribution, i.e. mean

zero and variance one. It also implies that E(z1iwi) = 0 and E(z21iwi) = 0, but

E(z1iw
2
i ) =

1p
2

�
E(w4i )� E(w2i )

�
; (3.2)

which is nonzero. Hence, the rank condition failure as described in Proposition 3 is not

present, and IV1 identi�es the structural parameters in (2.1).

It should be noted that in this design the condition (2.43) for consistency of OLS is

violated, because

E(xiw
2
i ) =

�jp
2

�
E(w4i )� E(w2i )

�
; (3.3)

is non-zero as long as �j 6= 0.
We report results from the strong instruments experiment only. This is because in the

weak instruments experiment the nonlinear dependence between wi and zi has much less

e¤ect on both IV1 and OLS estimators. For IV1 this is so because in general there is a

weak correlation between instruments and endogenous regressor. Regarding OLS in this

design the dependence between xi and w2i is parametrized by �j, which is small in the case

of weak instruments.

Table 3 reports simulation results for this design. To maximize the e¤ect of the alterna-

tive construction of z1i, we also report results for kz = 1 (left panel) in addition to kz = 5

(right panel). For kz = 1 the IV1 estimator is underidenti�ed and IV2 exactly identi�ed.18

<Table 3 about here>
18For completeness we report mean and standard deviation for IV2 in the left panel of Table 4. These

numbers should be treated with care, however, as corresponding population moments do not exist in case

of an exactly identi�ed model.
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The right panel of Table 3 shows that the IV1 estimator performs much better com-

pared with other designs. Although its e¢ ciency is still lower than IV2 and IV3, it has

greatly improved compared with other designs and size distortions are smaller. In the case

kz = 5 (right panel) the OLS estimator is not much a¤ected, although theoretically it is

inconsistent for �xw. The �nite sample bias for the OLS estimator of �xw is small in mag-

nitude, and the t-test has a small size distortion only. However, the left panel of Table 3

(kz = 1) provides a situation where there is a substantial OLS inconsistency for �xw, which

is re�ected also in a large size distortion of its corresponding t-test.

In this design condition (2.43) is violated, hence contrary to earlier designs we now

simulate the power of theWc speci�cation test. Table 3 shows that it has reasonable power

against the null hypothesis that OLS is a consistent estimator. Furthermore, Assumption

2 is still valid in this design, hence we still simulate actual size of the various Hausman

speci�cation tests. As can be seen from Table 3, also in this design size distortions are

small.

3.4. omitted variables bias

In our last design we quantify the implications of omitted variables bias as described in

Section 2.1. More in particular, we investigate the consequences of violating Assumption

2. We assume that the structural errors ui obey equation (2.7) with ai �i.i.n.(0; 1), while
we use a similar speci�cation for the reduced form errors vi:

vi = �aai + �awaiwi + v
�
i : (3.4)

We furthermore assume that (u�i ; v
�
i )
0 �i.i.n.(0;��) with �� such that the variance co-

variance matrix � of (ui; vi)0 stays unaltered compared with the benchmark design. This

implies the following for the elements in ��:

�� =

 
1� �2a � �2aw �uv � �a�a � �aw�aw

1� �a�a � �aw�aw 1� �2a � �2aw

!
: (3.5)

The discussion in Section 2.1 predicts that the OLS and IV3 coe¢ cient estimators of

�xw are inconsistent when �aw 6= 0. It can be shown that this is also the case when �aw 6= 0.
We choose the parameters in (3.5) such that �� is a positive de�nite matrix. For simplicity

we set �aw = 0. We furthermore set �a = �a = 0:5, hence the omitted variable ai is

correlated with xi. Finally, we choose �aw = f0; 0:5g. In the case of �aw = 0 Assumption 2
is not violated and OLS/IV3 is consistent. However, for �aw = 0:5 biases will occur. Note

that in this latter case the resulting errors are conditionally heteroscedastic, hence valid

IV2 inference only results with a heteroscedasticity-robust covariance estimator.

<Table 4 about here>
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Table 4 shows the simulation results when �aw = 0:5.
19 Compared with Table 1 it can

be seen that omitted variables bias may a¤ect the �nite sample properties substantially.

Because Assumption 2 is violated, biases are seen in estimating �xw by OLS and IV3.

And in the case of weak instruments bias in estimating this coe¢ cient is present for all

estimators. Naturally the bias in estimating �xw carries over to the t-statistics based

on OLS/IV3 resulting in substantial size distortions for these tests. As predicted by the

theoretical results, only heteroscedasticity-robust IV2 inference is reasonably accurate in

this case.

Because for this design both IV3 and OLS are inconsistent estimators, the rejection

frequencies of the H23 speci�cation test statistic in Table 4 actually measure power. It is

clear that especially in the case of weak instruments power is low, i.e. rejection frequencies

of the Hausman statistics are around the nominal signi�cance level of 5%. It is only in

the case of strong instruments that some power results for discriminating between IV2 and

IV3/OLS. Furthermore, note that in this design the condition (2.43) is ful�lled again. From

Table 4 it is seen that actual size of theWc statistic is again close to its nominal signi�cance

level.

4. Economic growth and �nancial development

Aghion, Howitt and Mayer-Foulkes (2005), hereafter AHM, develop a theory implying that

economic growth convergence depends on the level of �nancial development. They test

their theory in a cross-country growth regression including an interaction term between

initial GDP per capita and an indicator of �nancial development. In our notation yi is the

average growth rate of GDP per capita in the period 1960-1995, wi is initial (1960) per

capita GDP and xi is the average level of �nancial development. Sample size is n = 71

countries. Their speci�cations include di¤erent sets of control variables (labeled "empty",

"policy" and "full").20 The data are taken from Levine, Loayza and Beck (2000) and include

four di¤erent measures of �nancial development ("private credit", "liquid liabilities", "bank

assets" and "commercial-central bank").

AHM conjecture that �nancial development is an endogenous regressor because of feed-

back from growth to �nance, or because of relevant omitted variables. They acknowledge

that the interaction between �nancial development and initial income may be an endoge-

nous regressor too. They follow La Porta et al. (1997, 1998) and use legal origin as source

of exogenous variation in �nancial development to construct instrumental variables. Legal

origin is a categorical variable with 4 categories, i.e. French, English, German and Scandi-

19We don�t report the results for �aw = 0, which are virtually equal to those in Table 1 (as expected).
20The policy control variables are average years of schooling, government size, in�ation, black market

premium and trade openness. The full conditioning set is the policy set plus indicators for revolution and

coups, political assassinations and ethnic diversity.
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navian traditions. La Porta et al. (1997, 1998) construct three binary indicators (omitting

Scandinavion), which serve as instrumental variables for �nancial development.

Table 5 reports empirical results using OLS, IV1, IV2, and IV3 estimators of (2.1)

using private credit as the measure of �nancial development.21 The �rst speci�cation does

not include any further control variables; AHM (p193) consider this speci�cation to be

representative of their main result. The second set of results uses their full set of control

variables.22 Note that AHM only use IV2, and the reported IV2 coe¢ cient estimates in

columns (3) and (7) of Table 5 indeed correspond exactly to AHM�s results in columns 1

and 3 of their Table 1. Also note that AHM used homoskedasticity-only standard errors,

which we used as well for the IV estimation.23 Regarding OLS we report heteroskedasticity-

robust standard errors, because only under particular distributional assumptions (i.e. see

Proposition 2) is homoskedasticity-only inference is valid for this estimator.

<Table 5 about here>

Table 5 shows the similarity of the OLS, IV2, and IV3 results, particularly for the

interaction coe¢ cient.24 We also note the di¤erence in the point estimate and the huge

standard errors for IV1. Both empirical facts corroborate our theoretical and simulation

results. AHM do not report IV1 estimates because this resulted in too much collinearity

in the second stage regression (between the �tted values of x and x � w) to identify the
parameters �x and �xw. In other words, exploiting only legal origin as an instrument set

without interactions with initial GDP per capita, the resulting IV1 standard errors are large,

and hence estimates are imprecise and not signi�cant. This can be clearly seen from Table

5. The Cragg-Donald statistics (0.07 and 0.62 respectively) indicate very weak instruments

for IV1 corroborating with our theoretical results.25 Furthermore, the Kleibergen-Paap

(2006) rank statistic does not reject the null hypothesis of underidenti�cation for IV1 in

both speci�cations of Table 5. Weak instruments are less of a problem in the case of IV2

and IV3, although the CD statistics are not very large either.

Because AHM treat �nancial development as an endogenous regressor, they do not con-

sider OLS estimation. Our theoretical results, however, show that when both Assumption

2 and the further condition (2.43) are satis�ed OLS inference is valid for the coe¢ cient of

21Private credit is AHM�s preferred measure of �nancial development.
22Empirical results for the policy set of control variables are similar.
23Tests for heteroskedasticity do not reject the null hypothesis of homoskedasticity.
24All of these results use the raw, non-mean centered data. As Balli and Sørensen (2013) note one must

be careful in interpretation when scaling data that contains interaction terms. In particular, if data are

mean-centered, one must add X � �w to our interaction term in order to produce correct estimates. With

this correction, inference and our speci�cation tests are invariant to mean centering.
25We note that the anomalous IV1 estimation results seem to originate precisely from rank issues dis-

cussed in proposition 3, because the CD statistic for the IV1 estimator is much larger when estimating a

linear speci�cation excluding the interaction term.
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the interaction term. Applying the Wc test for the empty speci�cation, we do not reject

the null (p-value is 0.07). Furthermore, checking Assumption 2 with the H23 test we also

do not reject (p-values are 0.11 and 0.73 for Hs
23 and H

w
23 respectively). These outcomes

suggest that OLS inference for the interaction term is valid.

The results become somewhat di¤erent, however, when considering the speci�cation

including the full set of control variables. The di¤erences between OLS, IV2 and IV3 inter-

action estimates become larger, as can be seen from the right panel of Table 5. Although the

Wc test still does not reject the condition (2.43), the H23 Hausman tests reject Assumption

2 for this speci�cation. Hence, the validity of both IV3 and OLS inference is questionable.

In unreported results using liquid liabilities or bank assets as alternative measures26 for �-

nancial development, we tend to �nd qualitatively similar results as in Table 5. In general,

however, the di¤erences between IV2 and IV3/OLS are larger and speci�cation tests are

more in favor of IV2.

<Table 6 about here>

In Table 6 we report additional estimates using productivity growth as an alternative

dependent variable. We continue to report the �empty" and �full" speci�cations and use

private credit again as measure of �nancial development. The results in Table 6 show that,

irrespective of the set of control variables, one can rely on OLS regarding inference for �xw.

At the same time IV1 standard errors and CD and KP statistics show again the failure

of this estimator to identify the coe¢ cients of the structural relation between �nancial

development and productivity growth.

This additional empirical evidence con�rms the conclusion of AHM that the interplay

between �nancial development and initial conditions impacts future growth. For both

dependent variables, point estimates for the interaction term are quite similar between

the �empty" and �full" speci�cations. In general, the IV2 estimates provide the largest

point estimate, while the OLS and IV3 results suggest a signi�cant but smaller impact.

Furthermore, our speci�cation tests are able to discriminate between IV2, IV3 and OLS.

For some speci�cations IV3/OLS are rejected, but quite often the empirical evidence tends

to support OLS (and/or IV3) in lieu of IV2.

5. Concluding remarks

In this study we have analyzed OLS and IV inference for regression models including interac-

tions between endogenous regressors and exogenous covariates. We show that endogeneity

bias is reduced for the OLS estimator as far as the interaction term is concerned. Under
26Following AHM we omit the commercial-central bank measure from the analysis, because this variable

is a priori considered to be an inferior measure of �nancial development.

25



typical conditions regarding higher-order dependencies in the data we show that the OLS

estimator of the coe¢ cient of the interaction term is consistent, and that standard OLS

inference applies. Although OLS estimators of other regression coe¢ cients may still be

inconsistent, this result implies that for testing on the presence of endogenous interactions

one does not necessarily have to resort to IV techniques. Given the di¢ culties associ-

ated with �nding valid instruments, our results suggest that the researcher may produce

more reliable estimates with little worry about endogeneity bias if the economic variable of

interest is the interaction term.

Regarding IV estimation we note that, under a fairly weak condition, the interaction

term can be classi�ed as exogenous. We therefore propose an IV estimator instrumenting

only the endogenous regressor, but treating the interaction term as an exogenous covari-

ate. In the more general case we show that, for identi�cation of the full marginal e¤ect

of the endogenous regressor by IV techniques, it is necessary to include in the instrument

set interactions of instrumental variables with the exogenous part of the interaction term.

Due to the nonlinearity of the model, exploiting linear instruments only will lead to under-

identi�cation irrespective of the strength of these instrumental variables. Furthermore, we

provide speci�cation tests to allow the researcher to discriminate between the various IV

procedures and OLS, including procedures robust to weak instruments.

Monte Carlo experiments corroborate our theoretical �ndings. In particular, we show

that OLS inference on the coe¢ cient of the interaction term is valid for a wide variety of

designs. Even if strong instruments are available, OLS might be still bene�cial in terms of

e¢ ciency. Furthermore, including interacted instruments does lead to identi�cation and is

the preferred IV implementation, but has the usual caveats in the case of weak instruments.

A further issue is that Hausman speci�cation tests proposed to discriminate between OLS

and IV have low power in the case of weak instruments. But note that precisely in this case

our simulation results also show that the �nite sample performance of OLS is not much

worse than that of IV estimators.

Finally, we partly reproduce and extend the empirical analysis of Aghion et al. (2005),

who analyze the interaction between �nancial development and growth convergence. We

provide support for their instrument set choice, but at the same time show that identi�-

cation with the current set of instrumental variables is not always strong. Additionally,

we are able to produce credible OLS inference for testing their hypothesis that �nancial

development matters for convergence. Our supplementary empirical results reinforce their

conclusion that low �nancial development makes growth convergence less likely.
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Appendix

Assumption 2 and simultaneity Assuming that the structural equations for yi and xi
are as in (2.1) and (2.11), the reduced form for xi then becomes:

xi = �� + �wwi + �yyi + "i

= �� + �wwi + �y (�� + �wwi + �xxi + �xwxiwi + ui) + "i

=
�� + �y�� + (�w + �y�w)wi + �

0
zzi + �yui + "i

1� �y�x � �y�xwwi
:

We therefore have:

xiui =
�� + �y�� + (�w + �y�w)wiui + �

0
zziui + �yu

2
i + ui"i

1� �y�x � �y�xwwi
;

and

E [xiuijwi] =
�� + �y�� + (�w + �y�w)wiE [uijwi] + �0zE [ziuijwi] + �yE [u2i jwi] + E [ui"ijwi]

1� �y�x � �y�xwwi

=
�� + �y�� + �yE [u

2
i jwi] + E [ui"ijwi]

1� �y�x � �y�xwwi
;

because wi and zi are exogenous. Now even if E [u2i jwi] and E [ui"ijwi] do not depend
on wi it is still the case that E [xiuijwi] depends on wi via the denominator. This non-
linear dependency only disappears when either �y = 0 (no simultaneity) or �xw = 0 (no

�endogenous�interaction), which are both trivial cases.

Proof of Proposition 1. The components of the OLS estimation error are:

Xiui =

0BBB@
ui

wiui

xiui

xiwiui

1CCCA ; XiX
0
i =

0BBB@
1 wi xi xiwi

wi w2i wixi xiw
2
i

xi xiwi x2i x2iwi

xiwi xiw
2
i x2iwi x2iw

2
i

1CCCA :
Because we can assume, without loss of generality, that E [wi] = 0 and E [xi] = 0, we have

�XX =

0BBB@
1 0 0 E [xiwi]

0 E [w2i ] E [xiwi] E [xiw
2
i ]

0 E [xiwi] E [x2i ] E [x2iwi]

E [xiwi] E [xiw
2
i ] E [x

2
iwi] E [x

2
iw

2
i ]

1CCCA ; �Xu =
26664

0

0

�xu

0

37775 :
Note that the last element of �Xu is zero because of Assumption 2.

Furthermore, we have that

��1XX =
1

det (�XX)
adj(A);
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where the transpose of adj(A) is the matrix of cofactors of �XX . Because �Xu has only the

third element nonzero, for the evaluation of ��1XX�Xu we only need cofactors corresponding

to the third column of �XX . Denoting with cij the cofactor of entry dij in matrix �XX , we

have:

c13 = det

0B@ 0 E [w2i ] E [xiw
2
i ]

0 E [xiwi] E [x2iwi]

E [xiwi] E [xiw
2
i ] E [x

2
iw

2
i ]

1CA
= E(xiwi)

�
E(w2i )E(x

2
iwi)� E(xiwi)E(xiw2i )

�
;

c23 = � det

0B@ 1 0 E [xiwi]

0 E [xiwi] E [x2iwi]

E [xiwi] E [xiw
2
i ] E [x

2
iw

2
i ]

1CA
= E

�
x2iwi

�
E
�
xiw

2
i

�
+ (E (xiwi))

3 � E (xiwi)E
�
x2iw

2
i

�
;

c33 = det

0B@ 1 0 E [xiwi]

0 E [w2i ] E [xiw
2
i ]

E [xiwi] E [xiw
2
i ] E [x

2
iw

2
i ]

1CA
= E(w2i )

�
E
�
x2iw

2
i

�
� E

�
xiw

2
i

��
�
�
E
�
xiw

2
i

��2
;

c43 = � det

0B@ 1 0 E [xiwi]

0 E [w2i ] E [xiw
2
i ]

0 E [xiwi] E [x
2
iwi]

1CA
= E(w2i )E(x

2
iwi)� E(xiwi)E(xiw2i );

and the inconsistency is equal to

��1XX�Xu =
�xu

det (�XX)

26664
c13

c23

c33

c43

37775 ;
which is equal to expression (2.14).

Proof of Proposition 2. Assumption 3 implies that �XX further simpli�es to:

�XX =

0BBB@
1 0 0 E [xiwi]

0 E [w2i ] E [xiwi] 0

0 E [xiwi] E [x2i ] 0

E [xiwi] 0 0 E [x2iw
2
i ]

1CCCA ;
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which results in:

��1XX�Xu =
�xu

�2w�
2
x � �2xw

�
0 ��xw �2w 0

�0
:

Using properties of the multivariate normal distribution, we also have:

E [uijwi; xi] =
�
0 �xu

� �2w �xw

�xw �2x

!�1 
wi

xi

!
=

�xu
�2w�

2
x � �2xw

�
�2wxi � �xwwi

�
;

V [uijwi; xi] = �2u �
�
0 �xu

� �2w �xw

�xw �2x

!�1 
0

�xu

!

= �2u �
�2w�

2
xu

�2w�
2
x � �2xw

:

Furthermore, it is clear that E [uijwi; xi] = E [uijXi] and V [uijwi; xi] = V [uijXi] where

Xi =
�
1 wi xi xiwi

�0
and it can be shown that:

E [uijXi] = �
0
Xu�

�1
XXXi;

V [uijXi] = �2u � �0Xu��1XX�Xu
= �2u

�
1� �2xu

�
;

where �2xu =
�2xu
�2x�

2
u
. Regarding

"i = ui � �0Xu��1XXXi;

we now have that

"ijXi � i:i:n:
�
0; �2"

�
; �2" = �

2
u

�
1� �2xu

�
:

This implies that in the model

y = X� + u = X�� + ";

the errors obey the classical OLS assumptions, hence we have for the OLS estimator:

p
n
�
�̂ � ��

�
d�! N (0; V );

with

V = �2"

�
plim

1

n
X 0X

��1
= �2u

�
1� �2xu

�
��1XX :
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Proof of Proposition 3. Note that without loss of generalization we can assume that

(1) only one of the excluded instruments zi has a reduced form coe¢ cient unequal to zero;

(2) the excluded instruments zi have a scalar covariance matrix; (3) the elements of wi and

zi are uncorrelated. The reason for (1) and (2) is that any nonsingular transformation of the

excluded instruments results in the same IV estimator. Hence, we can take a transformation

such that only the �rst instrument has a reduced form coe¢ cient unequal to zero and that

the covariance matrix of the excluded instruments is scalar. The reason for (3) is that we

can orthogonalize included (wi) and excluded (zi) instruments without a¤ecting again the

IV estimator. Summarizing, without loss of generalization we can asume:

E
h
z
(1)
i z

(1)0
i

i
=

0B@ 1 0 0

0 E [w2i ] 0

0 0 E [z2i ] Ikz

1CA ; �z =
0BBBB@
�1

0
...

0

1CCCCA ;
with E [z2i ] a scalar indicating the common variance of the elements in zi and �1 the only

non-zero element of �z.

Now exploiting the model structure in (2.1) and (2.35) we get the following:

E
h
z
(1)
i X

0
i

i
=

0B@ 1 E [wi] E [xi] �wE [w
2
i ]

E [wi] E [w2i ] �wE [w
2
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3
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2
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2
i ] + E [wiziz
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3
i ] + �

0
zE [ziw

2
i ]
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2
i ] + E [wiziz

0
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1CA ;
Note that E

h
z
(1)
i X

0
i

i
is a (kz + 2) � 4 matrix. Because E [ziz0i] = E [z2i ] Ikz and only

the �rst element of �z is non-zero, a full rank has to come exclusively from the term

�wE [ziw
2
i ] + E [wiziz

0
i] �z. There are a number of cases, but it is easily seen that the rank

is only 3 when E [ziw2i ] = 0 and E [wiziz0i] = 0, which is the �rst result in Proposition 3

follows.

Regarding the IV2 estimator, we have that

E
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1CCCA ;
which is of full rank.
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Proof of Proposition 4. Given homoskedasticity and strong instruments, the asymp-

totic variance of the IV2 estimator is de�ned as:

V(2) = �
2
u
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where plim 1
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is given above and
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Now assuming condition (2.40) we get:
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hence
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where we used shorthand notation to indicate the nonzero entries inE
h
z
(2)
i X

0
i

i
andE

h
z
(2)
i z

(2)0
i

i
.

De�ning the 4� 4 matrix:
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we have
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The inverse of C is:
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and straightforward algebra now gives:
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where for brevity we only show the structure of the lower right block explicitly. From this

it is seen that:

V(2);x =
�2u

E [z2i ] �
0
z�z
;

V(2);x�w =
�2u

(�wE [ziw3i ] + E [w
2
i ziz

0
i] �z)

0
(E [w2i ziz

0
i])
�1
(�wE [ziw3i ] + E [w

2
i ziz

0
i] �z)

=
�2u

�2wE [w
3
i z
0
i] (E [w

2
i ziz

0
i])
�1
E [ziw3i ] + �

0
zE [w

2
i ziz

0
i] �z

:

Extension of Wald test checking OLS consistency. In practice x and w may have

nonzero means, but one can rescale the data by taking deviations from sample mean.

These sample means are estimators, and will a¤ect the asymptotic variance of the moment
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conditions in (2.46). Therefore, the Wald test has to be adapted slightly to capture the

e¤ect of centering the data.

De�ne �� = (�w; �x; �)
0 with �w and �x the expectation of of w and x respectively.

Centering the sample moment equations leads to:

1

n

nX
i=1

m�(wi; xi; �̂
�
) =

1

n

nX
i=1

0BBBBBBBB@

2666666664

xi

wi

(xi � �x) (wi � �w)

(xi � �x) (wi � �w)2

(wi � �w)2

(xi � �x)2 (wi � �w)

3777777775
�

2666666664

�̂x
�̂w
�̂1

�̂2

�̂3

�̂4

3777777775

1CCCCCCCCA
= 0;

where we have added two moments to estimate the means of x and w. Standard asymptotic

theory for method of moments estimators shows that the limiting distribution of �̂
�
is equal

to: p
n
�
�̂
� � ��

�
d�! N

�
0; G�10 S0 (G

0
0)
�1
�
;

with

G0 = plim
1

n

nX
i=1

@m�
i

@��0

����
��0

= �

2666666664

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

var(wi) 2cov(xi; wi) 0 1 0 0

0 0 0 0 1 0

2cov(xi; wi) var(xi) 0 0 0 1

3777777775
;

S0 = plim
1

n

nX
i=1

m�
im

�
i
0j��0 :

Taking the lower right 4 � 4 block from G�10 S0 (G
0
0)
�1 delivers the asymptotic variance of

�, i.e. C0 in (2.46), in the case of centered data.
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Figure 1: �nite sample distributions of OLS and IV coe¢ cient estimators of �xw
and corresponding t-statistics, strong instruments case
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Note: Left panel are coe¢ cient estimators, while right panel contains corresponding t-statistics; Solid lines are normal densities

with a variance matching the empirical distribution (left panel) or standard normal densities (right panel)
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Table 1: homoskedasticity and normality

weak instruments strong instruments

OLS IV1 IV2 IV3 OLS IV1 IV2 IV3

bias �� -0.002 -0.001 -0.000 -0.002 -0.001 -0.001 -0.000 -0.001

�w -0.478 -0.232 -0.323 -0.333 -0.085 -0.006 -0.008 -0.011

�x 0.477 0.228 0.321 0.329 0.083 0.003 0.006 0.007

�xw 0.002 0.000 -0.000 0.002 0.001 0.000 0.000 0.001

sd �� 0.101 0.426 0.168 0.108 0.104 0.276 0.110 0.106

�w 0.125 0.529 0.294 0.275 0.110 0.172 0.114 0.113

�x 0.087 0.490 0.277 0.260 0.041 0.067 0.046 0.046

�xw 0.055 0.432 0.147 0.060 0.038 0.264 0.047 0.039

rp ho �� 4.81 0.55 3.02 4.07 4.89 0.82 4.80 5.00

�w 95.51 7.13 24.52 29.66 12.84 2.54 5.52 5.72

�x 99.96 7.49 26.51 31.67 52.81 2.31 5.47 5.73

�xw 5.23 0.33 2.61 4.37 5.52 0.27 5.19 5.64

rp hr �� 4.50 0.80 2.41 3.61 4.42 0.99 4.51 4.59

�w 95.79 6.88 22.53 28.06 11.99 1.90 5.19 5.25

�x 99.96 7.41 24.18 30.04 50.25 1.76 5.08 5.26

�xw 5.68 0.22 1.55 4.42 5.48 0.19 4.81 5.37

CD 0.63 1.15 3.06 0.81 21.66 100.58

KP ho 1.41 12.73 23.68 5.09 100.00 100.00

KP hr 1.34 6.33 15.64 3.33 83.38 100.00

speci�cation tests Hs23 Hw23 Wc Hs23 Hw23 Wc

ho 2.03 3.07 5.32 4.50

hr 3.64 3.40 5.04 5.96 4.51 4.47

Notes: based on 10,000 MC replications; rp is actual rejection % of nominal 5% t-statistics;

ho is homoskedasticity-only, hr means heteroskedasticity-robust; KP and various speci�cation tests (Hs23, H
w
23

and Wc) are rp of nominal 5% tests, while CD are average values. Hs23 tests IV2 versus IV3 assuming strong

IVs, Hw23 does the same allowing for weak IVs, and Wc veri�es condition (2.43) for OLS consistency.

35



Table 2: heteroskedasticity

weak instruments strong instruments

OLS IV1 IV2 IV3 OLS IV1 IV2 IV3

bias �� -0.002 -0.001 -0.001 -0.002 -0.001 -0.000 -0.001 -0.001

�w -0.478 -0.221 -0.365 -0.376 -0.086 -0.010 -0.013 -0.017

�x 0.475 0.210 0.360 0.370 0.078 -0.002 0.003 0.005

�xw 0.002 0.001 0.002 0.002 0.001 -0.001 0.001 0.001

sd �� 0.088 0.323 0.170 0.096 0.095 0.266 0.096 0.097

�w 0.201 0.464 0.336 0.317 0.110 0.163 0.111 0.110

�x 0.142 0.460 0.312 0.297 0.064 0.088 0.073 0.072

�xw 0.087 0.346 0.182 0.096 0.062 0.267 0.077 0.066

rp ho �� 3.88 0.51 6.01 3.63 3.57 0.60 2.63 3.41

�w 87.98 8.77 39.98 46.44 13.42 2.25 5.54 5.76

�x 97.89 8.51 41.73 48.34 50.16 12.27 21.92 21.93

�xw 31.97 1.34 17.72 28.50 25.20 0.80 23.28 27.36

rp hr �� 3.97 1.04 3.07 3.46 4.08 1.02 4.10 4.12

�w 66.07 8.07 23.58 28.34 10.06 1.64 3.87 4.32

�x 86.90 8.04 24.99 29.83 24.81 3.08 5.40 5.59

�xw 7.59 1.08 4.63 6.62 7.06 0.71 6.67 7.46

CD 0.64 1.54 4.98 0.82 20.49 111.64

KP ho 1.49 30.90 62.33 5.25 100.00 100.00

KP hr 1.84 7.83 25.93 3.05 81.23 99.98

speci�cation tests Hs23 Hw23 Wc Hs23 Hw23 Wc

ho 9.32 9.84 13.05 8.01

hr 4.19 4.32 5.46 5.60 4.36 4.56

Note: see Table 1.
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Table 3: nonlinear dependence

kz= 1 kz= 5

OLS IV1 IV2 IV3 OLS IV1 IV2 IV3

bias �� 0.092 -0.008 0.003 0.014 0.002 0.002 0.002

�w -0.225 0.020 -0.003 -0.074 -0.005 -0.008 -0.011

�x 0.324 -0.027 0.003 0.088 0.003 0.007 0.010

�xw -0.083 0.008 -0.002 -0.012 -0.003 -0.002 -0.002

sd �� 0.113 0.573 0.132 0.104 0.138 0.106 0.106

�w 0.141 0.796 0.188 0.117 0.184 0.120 0.120

�x 0.096 0.807 0.187 0.043 0.055 0.047 0.047

�xw 0.059 0.328 0.078 0.036 0.122 0.039 0.037

rp ho �� 16.68 4.71 5.29 5.03 3.58 4.98 5.18

�w 46.01 4.42 5.51 10.62 3.97 5.36 5.69

�x 97.95 4.87 6.69 55.51 4.33 5.97 6.27

�xw 44.49 4.38 6.64 6.95 3.09 5.11 5.61

rp hr �� 13.60 3.77 4.35 4.66 3.56 4.56 4.53

�w 33.99 4.64 5.38 10.12 3.12 5.20 5.48

�x 88.22 4.89 6.34 51.90 3.48 5.46 5.78

�xw 33.36 3.88 4.65 6.70 1.81 5.06 5.32

CD 24.81 64.39 6.56 44.14 97.40

KP ho 98.09 99.19 78.69 100.00 100.00

KP hr 70.81 70.91 31.07 99.91 100.00

speci�cation tests Hs23 Hw23 Wc Hs23 Hw23 Wc

ho 6.61 8.76 8.03 4.75

hr 3.29 2.27 55.85 5.13 4.05 19.00

Note: see Table 1.
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Table 4: omitted variables bias

weak instruments strong instruments

OLS IV1 IV2 IV3 OLS IV1 IV2 IV3

bias �� -0.083 -0.081 -0.062 -0.083 -0.037 -0.038 -0.007 -0.038

�w -0.484 -0.276 -0.359 -0.369 -0.107 -0.005 -0.010 -0.015

�x 0.482 0.272 0.357 0.365 0.105 0.004 0.009 0.010

�xw 0.085 0.083 0.063 0.085 0.038 0.040 0.008 0.039

sd �� 0.096 0.407 0.176 0.104 0.102 0.299 0.115 0.105

�w 0.146 0.518 0.333 0.314 0.130 0.183 0.137 0.135

�x 0.088 0.497 0.306 0.289 0.046 0.075 0.053 0.052

�xw 0.071 0.408 0.169 0.075 0.049 0.289 0.062 0.051

rp ho �� 12.37 0.87 6.48 10.33 6.02 0.77 5.79 5.87

�w 95.56 8.65 28.52 34.40 21.46 4.85 10.40 10.34

�x 99.94 8.29 30.59 36.47 64.79 2.55 6.01 6.44

�xw 42.02 1.12 11.51 36.67 23.00 0.69 10.16 22.84

rp hr �� 12.84 1.08 4.26 10.15 5.98 1.29 4.72 5.88

�w 90.67 7.48 21.32 26.19 13.83 2.64 5.39 5.74

�x 99.89 7.90 24.24 29.86 61.77 2.19 5.40 5.55

�xw 26.31 0.91 5.84 22.66 13.98 0.65 5.93 13.01

CD 0.61 1.06 2.82 0.82 16.64 76.09

KP ho 1.17 9.13 18.06 5.17 99.99 100.00

KP hr 1.15 4.78 12.03 3.34 78.99 100.00

speci�cation tests Hs23 Hw23 Wc Hs23 Hw23 Wc

ho 4.35 5.62 19.56 9.69

hr 3.63 3.71 4.90 10.98 5.33 4.70

Note: see Table 1.
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Table 5: empirical results for GDP growth and private credit

(1) (2) (3) (4) (5) (6) (7) (8)

Empty Full

OLS IV1 IV2 IV3 OLS IV1 IV2 IV3

�w 1.299 -4.294 1.507 1.390 0.191 2.739 1.131 0.719

(0.335) (12.298) (0.480) (0.458) (0.780) (2.783) (0.758) (0.691)

�x -0.012 0.164 -0.015 -0.015 -0.006 -0.056 -0.016 -0.025

(0.009) (0.379) (0.016) (0.015) (0.010) (0.068) (0.020) (0.019)

�xw -0.048 0.106 -0.061 -0.050 -0.037 -0.098 -0.063 -0.047

(0.009) (0.354) (0.011) (0.009) (0.013) (0.060) (0.014) (0.011)

CD 0.07 6.28 6.29 0.62 3.63 3.92

KP 0.23 26.57 26.87 2.24 19.98 21.30

(0.89) (0.00) (0.00) (0.33) (0.00) (0.00)

Hs23 Hw23 Wc Hs23 Hw23 Wc

2.62 0.12 -1.83 4.52 5.10 -0.17

(0.11) (0.73) (0.07) (0.03) (0.02) (0.87)

Note: numbers in parentheses are standard errors (below estimates) or p-values (below test statistics);

IV and OLS standard errors are homoskedasticity-only and heteroskedasticity-robust respectively;

Empty and Full refer to the set of control variables; Financial development measure (x) is private credit.
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Table 6: empirical results for productivity growth and private credit

(1) (2) (3) (4) (5) (6) (7) (8)

Empty Full

OLS IV1 IV2 IV3 OLS IV1 IV2 IV3

�w 0.593 -1.662 0.844 0.856 -0.574 0.110 0.496 0.308

(0.328) (1.871) (0.510) (0.401) (0.780) (7.258) (0.866) (0.762)

�x 0.052 0.018 0.064 0.065 0.044 0.060 0.067 0.067

(0.011) (0.035) (0.011) (0.011) (0.018) (0.106) (0.015) (0.015)

�xw -0.041 0.016 -0.051 -0.052 -0.034 -0.049 -0.057 -0.054

(0.009) (0.049) (0.012) (0.011) (0.015) (0.152) (0.017) (0.015)

CD 0.97 6.23 7.15 0.06 3.94 4.94

KP 3.01 25.74 28.19 0.22 20.93 24.42

(0.22) (0.00) (0.00) (0.90) (0.00) (0.00)

Hs23 Hw23 Wc Hs23 Hw23 Wc

0.00 0.14 -1.71 0.21 0.02 -0.51

(0.97) (0.71) (0.09) (0.65) (0.88) (0.61)

Note: see Table 5.
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