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Abstract

This paper considers the Panel Vector Autoregressive Models of order 1 (PVAR(1)) with possibly
spatially dependent error terms. We propose a simple Method of Moments based cointegration test
using the rank test of Kleibergen and Paap (2006) for fixed number of time observations. The test is
shown to be robust to spatial dependence, cross-sectional and time series heteroscedasticity as well
as unbalanced panels. The main novelty of our approach is that we fully exploit the “weakness” of
the Anderson and Hsiao (1982) moment conditions in construction of the new test. The finite-sample
performance of the proposed test statistic is investigated using the simulated data. The results show
that for most scenarios the method performs well in terms of both size and power. The proposed
test is applied to employment and wage equations using Spanish firm data of Alonso-Borrego and
Arellano (1999) and the results show little evidence for cointegration.

Keywords: Dynamic Panel Data, Panel VAR, cointegration, heteroscedasticity, spatial
dependence, fixed T consistency.
JEL: C13, C33.

1. Introduction

The standard textbook treatment of econometrics assumes that estimation and hypothesis testing
are the two sides of the same coin, with the latter being impossible to implement without the
former. More importantly, for most of standard estimation methods regularity conditions necessary
for hypothesis testing are equivalent to those of estimation. As the prototypical example consider
the full rank assumption in the (Generalized) Method of Moments estimation that is needed both
for estimation and hypothesis testing using Wald test. Unfortunately, for some econometric models
this assumption can be too strong, resulting in a partial identification only, see e.g. Phillips (1989).

In their pioneering work Anderson and Rubin (1949) advocated the idea that it is possible to per-
form hypothesis testing for a simultaneous equations model under weaker regularity conditions than
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estimation1. Thus, in some situations it is possible to avoid the estimation step and to perform the
hypothesis testing directly. In this paper we apply a similar principle by turning a disadvantageous
situation from estimating point of view, into an advantageous one for hypothesis testing.

We consider the cointegration testing problem for the Panel VAR model of order 1 with fixed time
dimension. To the best of our knowledge currently in the Dynamic Panel Data (DPD) literature with
fixed number of time periods no feasible Method of Moments (MM) alternative to likelihood based
cointegration testing procedures was proposed. The main reason for the absence of MM alternatives
is the partial identification issue of the standard Anderson and Hsiao (1982)[AH] moment conditions
when the process is cointegrated, as the Jacobian of these moment conditions are of reduced rank.
Therefore we propose a rank based cointegration test for the Jacobian of the aforementioned moment
conditions. We show that the proposed test is robust to cross-sectional and time series heteroscedas-
ticity as well as spatial dependence between cross-sectional units. Moreover, unlike the likelihood
based tests, (e.g. the Transformed Maximum Likelihood estimator of Binder, Hsiao, and Pesaran
(2005)[henceforth BHP]) our test does not require any computationally demanding numerical opti-
mization algorithms.

The paper is structured as follows. In Section 2 we briefly present the model and the intuition
behind our testing procedure. The theoretical framework is presented in Section 3. In Section 4
we continue with the finite sample performance by means of a Monte Carlo analysis. In Section
5 we illustrate the testing procedure using the Spanish manufacturing data of Alonso-Borrego and
Arellano (1999). Possible extensions and problems are discussed in Section 6. Finally, we conclude
in Section 7.

2. Model

In this paper we consider the following PVAR(1) specification:

yi,t = ηi +Φyi,t−1 + εi,t, i = 1, . . . , N, t = 1, . . . , T, (1)

where yi,t is an [m×1] vector, Φ is an [m×m] matrix of parameters to be estimated, ηi is an [m×1]
vector of fixed effects and εi,t is an [m×1] vector of innovations independent across i, with zero mean
and covariance matrix Σi,t. If we set m = 1 the model reduces to the linear DPD model with AR(1)
dynamics. Throughout this paper we maintain the assumption that data in levels {yi,t} is available
for all t = {0, . . . , T} and i = {1, . . . , N}.

We assume that ηi satisfy the so-called “common dynamics”(“common factor”) assumption:

ηi = (Im −Φ)µi.

If at least one eigenvalue is equal to unity this assumption ensures that there is no discontinuity in
DGP, for further discussion see BHP.
Assuming common dynamics we can rewrite the model in (1) as:

∆yi,t = Πui,t−1 + εi,t, i = 1, . . . , N, t = 1, . . . , T.

1For more recent papers please refer Stock and Wright (2000) and Kleibergen (2005) inter alia.
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Here we define Π = Im −Φ and ui,t−1 := yi,t−1 − µi. We say that series yi,t are cointegrated if the
Π matrix is of reduced rank2. In particular, there exist [m× r] matrices αr and βr

3 of full column
rank such that:

Φ = Im +αrβ
′
r,

where r is the rank of Π . In general matrices αr and βr are not unique as for any [r × r] invertible
matrix Q:

αrβ
′
r = αrQQ

−1β′r = α∗rβ
∗′
r .

This is the so-called rotation problem. As a result, it is a usual practise in the cointegration literature
to impose identifying restrictions on αr or βr. However, the exact normalization of βr matrix is not
important for purpose of this paper as we are interested in rank of Π but not in particular form of
Π .

To explain the intuition of our approach lets consider the following (standard) AH moment
conditions for Panel VAR(1) model:

vec E[(∆yi,t −Φ∆yi,t−1)y′i,t−2] = 0m2 , t = 2, . . . , T.

The (minus) Jacobian of these moment conditions is given by:(
E[∆yi,t−1y

′
i,t−2]

)′ ⊗ Im, t = 2, . . . , T. (2)

It follows from the properties of the Kronecker product that the rank of this matrix is determined by
the rank of the matrix in the brackets4. The expected value of this term is given by (upon redefining
t→ t+ 1, as the previous expression is well defined for t = T + 1):

E[∆yi,ty
′
i,t−1] = Π E[ui,t−1y

′
i,t−1] + E[εi,ty

′
i,t−1]. (3)

Under usual regularity conditions of the DPD literature5 the second term is equal to Om, while the
first term is the product of rank r and rank m matrices. As a result rk (E[∆yi,ty

′
i,t−1]) is equal to

r and leads to violation of the “relevance” condition for the Instrumental Variable (IV) estimator.
In such situation we can not estimate Φ consistently from the AH moment conditions. However, we
can use the Jacobian matrix directly avoiding the estimation step to test for cointegration.

3. Theoretical framework

3.1. Regularity conditions

In the previous section we have presented the intuition of the proposed method, but it still
remains to be investigated under which conditions the E[∆yi,ty

′
i,t−1] term is of reduced rank iff Π is

of reduced rank. We assume that the initial conditions yi,0 are of the following form:

yi,0 = Υµi + εi,0.

2Note that unlike pure time series models, we do not define cointegration as a property of time series.
3We slightly abuse the notation in this case, so that it remains consistent with the general practice of the time

series cointegration literature.
4See e.g. Magnus and Neudecker (2007).
5That we will state formally in the next section.
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Here Υ is an [m×m] matrix that allows for a possible effect non-stationarity6 of the initial condition
if Υ 6= Im. The following Standard Assumptions are used throughout this paper7.

(A.1) The error terms εi,t are i.h.d.8 across cross sectional units and uncorrelated over time
E[εi,tε

′
i,s] = Om for s 6= t. Variance of the error terms is a constant p.d. matrix var εi,t = Σi,t

for t > 0. Furthermore, the higher order moment condition sup≤i≤N E[‖εi,t‖4+δ] <∞ holds ∀t
and some δ > 0.

(A.2) The fixed effects µi are i.h.d. across cross sectional units and have zero mean with a p.d.
variance-covariance matrix Σi,µ. Furthermore, for all i and t ≥ 0 E[µiε

′
i,t] = Om. The higher

order moment condition sup≤i≤N E[‖µi‖4+δ] <∞ holds for some δ > 0.

E[εi,ty
′
i,t−1] = Om is a direct implication of Assumptions (A.1)-(A.2). However, they do not

ensure that Π E[ui,t−1y
′
i,t−1] has a reduced rank iff yi,t are cointegrated.

Lets investigate this issue more closely by expanding the E[ui,t−1y
′
i,t−1] term (for t ≥ 2)9:

E[ui,t−1y
′
i,t−1] = E

[(
Φt−1ui,0 +

t−2∑
s=0

Φsεi,t−s−1

)(
µi +Φt−1ui,0 +

t−2∑
s=0

Φsεi,t−s−1

)′]

= E

[(
Φt−1(Υ − Im)µi +

t−1∑
s=0

Φsεi,t−s−1

)(
(Im +Φt−1(Υ − Im))µi +

t−1∑
s=0

Φsεi,t−s−1

)′]
= Φt−1(Υ − Im)Σµ(Φt−1(Υ − Im))′︸ ︷︷ ︸

p.s.d

+Φt−1(Υ − Im)Σµ

+
t−2∑
s=0

ΦsΣt−1−sΦ
s′

︸ ︷︷ ︸
p.d.

+ E[Φt−1εi,0ε
′
i,0(Φt−1)′]

In the effect-stationary case (Υ = Im) all terms involving Υ are equal to Om. However, if that is not
the case we have that the first term is a p.s.d. matrix while it is not immediately clear what happens
with the second term. The third term is a p.d. matrix as all Σs’s are positive definite. The analysis
of the last term is more subtle as it requires explicit assumptions regarding the DGP for εi,0. In
general, we are looking at εi,0 such that at least product matrix E[Φt−1εi,0ε

′
i,0(Φt−1)′] is well defined

and non-negative definite. Below we summarize few DGP’s for εi,0 currently used in the literature
that satisfy this condition.

(DGP.1) εi,0 ∼ IID(0,Σ0) with Σ0 constant p.s.d. matrix (independent of other DGP parame-
ters).

(DGP.2) εi,0 =
∑M

l=0Φ
lεi,−l. Here M is assumed to be finite.

6It is often called “mean non-stationarity” by other scholars.
7If we allow for individual specific Υi it is sufficient to assume that sup1≤i≤N ‖Υi‖4+δ < ∞ to ensure that results

hold without any changes.
8Here i.h.d. stands for “Independently and heterogeneously distributed”.
9For the ease of exposition in what follows we assume that Σi,t = Σt for all i and t.
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(DGP.3) εi,0 =
∑∞

l=0

(
Φl −C

)
εi,−l + Cξi. Here ξi is an [m × 1] vector of the (independent)

individual-specific initialization effects, while C = β⊥ (α′⊥β⊥)−1 α′⊥ is an m− r rank matrix10.

To simplify matters we assume that all random variables in (DGP.1)-(DGP.3) satisfy assumptions
(A.1)-(A.2). The (DGP.3) initialization was used in the Monte Carlo studies of BHP and is
motivated by the Granger Representation Theorem, see e.g. Johansen (1995)[Theorem 4.2]. The
(DGP.2), among others, was used in Hayakawa (2011).

It is important to emphasize that all three DGP’s are well defined for all rank values of r. For
ρ(Φ) < 1 we have C = Om resulting in stationary initialization. On the other hand, Φ = Im implies
C = Im (by definition) so that (DGP.3) and (DGP.2) coincide (by redefining M to M + 1).
For (DGP.3) by construction of the C matrix we have that ΠC = Om, and thus Φt−1C = C, we
have that:

E[ΠΦt−1εi,0ε
′
i,0(Φt−1)′] = ΠΦt−1

(
∞∑
l=0

(
Φl −C

)
Σ
(
Φl −C

)′)
(Φt−1)′,

where existence of
∑∞

l=0

(
Φl −C

)
Σ
(
Φl −C

)′
is implied by the absolute summability of {Φl−C}∞l=0,

see e.g. Lütkepohl (2006). Furthermore, it is obvious that
∑∞

l=0

(
Φl −C

)
Σ
(
Φl −C

)′
is a p.s.d.

matrix and consecutively that
(
E[Φt−1εi,0ε

′
i,0(Φt−1)′]

)
is a p.s.d. matrix.

If we can ensure thatΦt−1(Υ−Im)Σµ is such that E[ui,t−1y
′
i,t−1] has full rankm, then E[Πui,t−1y

′
i,t−1]

has reduced rank r iff yi,t−1 are cointegrated11. However, it is not a trivial task to identify the pa-
rameter space of {Φ,Υ ,Σµ} for the aforementioned condition to be satisfied. One special case is
obtained for Υ = Im (effect stationarity) with other matrices being unrestricted (at least finite).
Unfortunately, there are a lot of evidence in the DPD literature suggesting that in general this as-
sumption can be too restrictive, see e.g. Arellano (2003b) and Roodman (2009). In the Monte Carlo
simulations we will check the adequacy of the proposed procedure by considering different values of
Υ that are mentioned in the literature.

3.2. Rank Test

In this paper we use the generalized rank test of Kleibergen and Paap (2006)[KP] as a basis for
a cointegration testing. We will briefly introduce their testing procedure and later apply it to our
problem. In construction of the rank test KP use the property that any [k ×m] matrix D can be
decomposed as:

D = AqBq +Aq,⊥ΛqBq,⊥,

where all ⊥ matrices are defined in a usual way and Λq is an [(k− q)× (m− q)] matrix. For Λq = O
the rank of D is determined by the rank of AqBq. The procedure in KP is based on testing if Λq is
equal to Om, with matrices Aq,Bq,Λq obtained using the singular value decomposition (SVD). In
our case matrix D is the [m×m] matrix E[∆yi,ty

′
i,t−1].

10For simplicity in what follows, we assume that all εi,−l are homoscedastic over time.
11Note that positive definiteness of E[ui,t−1y

′
i,t−1] is a sufficient, but not a necessary condition. The term can be

negative definite or even indefinite, as long as it has full rank.
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We define the following cross-sectional average:

∆yi,ty′i,t−1 :=
1

N

N∑
i=1

∆yi,ty
′
i,t−1.

Using the standard Lindeberg-Lévy CLT for i.h.d. data it follows that:

√
N vec

(
∆yi,ty′i,t−1 − E[∆yi,ty′i,t−1]

) d−→,Nm2(0m2 ,V ), t = 2, . . . , T.

Here the full rank matrix V can be consistently estimated using its finite sample counterpart:

VN =
1

N

N∑
i=1

vec (∆yi,ty
′
i,t−1) vec (∆yi,ty

′
i,t−1)

′ − vec ∆yi,ty′i,t−1 vec ∆yi,ty′i,t−1

′
.

Consecutively the estimator ∆yi,ty′i,t−1 satisfies Assumption 1 (asymptotic normal distribution),
while V satisfies Assumption 2(full rank) of KP. These two assumptions are sufficient to Theorem
1 of KP to the problem at hand:

Theorem 1. Let Assumptions (A.1)-(A.2) be satisfied with εi,0 generated by one of (DGP.1)-
(DGP.3), then: √

N λ̂r
d−→ N(0r,Ωr),

where:

λ̂r = vec Λ̂r, Λ̂r = Â′r,⊥∆yi,ty′i,t−1B̂
′
r,⊥,

Ωr = (Br,⊥ ⊗A′r,⊥)V (Br,⊥ ⊗A′r,⊥)′

Furthermore, under H : rkΠ = r, the test statistic:

rk(r) = N λ̂′rΩ
−1
r λ̂

′
r

converges in distribution to a χ2((m− r)2) distributed random variable.

All A and B variables in Theorem 1 are obtained from the SVD of the ∆yi,ty′i,t−1 matrix. An
operational version of the rk(r) test statistic is obtained by replacing the (unknown) matrix Ωr with
some consistent estimator. An obvious choice for Ω̂r is given by:

Ω̂r = (B̂r,⊥ ⊗ Â′r,⊥)VN(B̂r,⊥ ⊗ Â′r,⊥)′.

The test statistic in Theorem 1 is based only on one time series observation (in a sense that if T > 2,
then we can construct test statistic for every value of t, but t = 1). Of course, it is not the most
efficient way how information can be used. Instead, all time series observations can be pooled into
one test statistic for testing rank of:

∆yi,ty′i,t−1T
=

1

N

N∑
i=1

1

T − 1

T∑
t=2

∆yi,ty
′
i,t−1. (4)
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For any fixed value of T , the ∆yi,ty′i,t−1T
term satisfies sufficient conditions for the CLT , so that the

results of Theorem 1 can be extended trivially, with VN for this case given by:

VN =
1

N

N∑
i=1

vec

(
1

T − 1

T∑
t=2

∆yi,ty
′
i,t−1

)
vec

(
1

T − 1

T∑
t=2

∆yi,ty
′
i,t−1

)′
−vec ∆yi,ty′i,t−1T

vec ∆yi,ty′i,t−1T

′
.

In the next section we will use “rk-J” to denote the Jacobian based cointegration test for ∆yi,ty′i,t−1T
.

Up to this stage we considered only the Jacobian of Anderson and Hsiao (1982) moment condi-
tions, however for T > 2 further lags can be used. The particular choice of lags used is subject to the
same “arbitrariness” as the choice of moment conditions for the Arellano and Bond (1991)[AB] esti-
mator. More importantly, it is not clear that use of lags larger than 1 still ensures that E[∆yi,ty′i,t−jT ]
has reduced rank r iff rkΠ = r (even in the effect stationary case). Moreover, the power of the test
might be substantially affected by the choice of lags, as with any alternative close to the unit circle
we encounter weak instruments problem for any distanced lags. On the other hand, we can expect
better test power to alternatives with substantially lower ρ(Φ).

Remark 1. If the model contains time effects λt, the test statistic is based on variables in deviations
from the cross-sectional averages y̌i,t := yi,t − (1/N)

∑N
i=1 yi,t rather than levels (similarly to the

standard GMM treatment).

Remark 2. One important advantage of the proposed test statistic is the additional flexibility while
dealing with unbalanced panels. As long as for every individual i at least one ∆yi,ty

′
i,t−1 (t > 1) term

is available, the test statistic can be computed. The only difference as compared to the unbalanced
case is that individual contributions to ∆yi,ty′i,t−1T

are no longer simple averages with T − 1 terms
involved, but have individual specific number of observations T (i)− 1.

3.3. Cross-sectional dependence

In many situations of practical relevance the cross-sectional independence assumption might be
too restrictive to properly describe the data at hand. In this section we generalize the testing
procedure by allowing weak (for a general reference, see e.g. Sarafidis and Wansbeek (2012)) cross-
sectional dependence in εi,t. In particular, for simplicity we assume that εi,t have Spatial Moving
Average (SMA) representation of the following form:

εi,t = θ

N∑
j=1

ωi,jζj,t + ζi,t, i = 1, . . . , N ; t = 0, . . . , T ;

where all ζi,t are independent across individuals and satisfy Assumptions (A.1)-(A.2). Denote by
WN an [N × N ] matrix with a typical element ωi,j. The spatial covariance structure induced by
the SMA assumption is local (see Anselin (2003)), as compared to the global covariance structure
induced by the Spatial Autoregressive model (SAR). Although we restrict our attention to the SMA
model, the results can be similarly extended to both SAR and Spatial Error Components (SEC)
specifications12. We assume that WN and θ satisfy the following regularity conditions (see e.g.
Kelejian and Prucha (2010) and Sarafidis (2011)):

12Assuming that regularity conditions for SAR and SEC models are satisfied as in Baltagi et al. (2007) or Kelejian
and Prucha (2010).
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(A.3) weighting matrix and space of MA parameter (i) All diagonal elements ofWN are equal
to zero. (ii) The spatial moving average parameter satisfies θ ∈ (−c1,θ, c2,θ) with 0 < c1,θ, c2,θ ≤
cθ < ∞. (iii) The matrix WN is non-singular and PN = IN + θWN is non-singular for all
θ ∈ (−c1,θ, c2,θ). (iv) The row and column sums of WN and PN are bounded uniformly in
absolute value.

It can be easily seen that under Assumptions (A.1)-(A.3) the matrix E[∆yi,ty
′
i,t−1] (∀i, t) has

reduced rank r iff Π has reduced rank r (of course the same problem with effect non-stationary
initial condition remains). Hence, the intuition does not change if spatial dependence across cross-
sectional units is present. However, we can no longer use standard LLN and CLT for i.h.d. data
to obtain limiting distribution of vec (∆yi,tyi,t−1T ). In order to prove the next result we strengthen
Assumptions (A.1)-(A.3) by replacing all uncorrelated terms with totally independent, we denote
these assumptions by (A.1)*-(A.3)*.

Theorem 2. Let Assumptions (A.1)*-(A.3)* be satisfied and εi,0 be generated by (one of) (DGP.1)-
(DGP.3), then:

1√
N

vec

(
N∑
i=1

∆yi,ty
′
i,t−1 − E[∆yi,ty

′
i,t−1]

)
d−→,Nm2(0m2 ,V ), t = 2, . . . , T.

Proof. Observe that all elements in vec (·) are at most quadratic in {ζi,t}N,Ti=1,t=0 and {µi}Ni=1 (call this
stacked [mN(T + 2)× 1] vector ξ). All elements of ξ have zero mean with block-diagonal covariance
matrix between individuals and satisfy Assumption (A.2.) of Kelejian and Prucha (2010). Further-
more, the quadratic form matrices {As,mN(T+2)}m

2

s=1 are functions of (PN ,Φ0,Υ ) and consecutively
have bounded column and row sums. The result follows from Theorem A.1 in Kelejian and Prucha
(2010).

Remark 3. The implications of Theorem 2 are actually wider than considered in this paper. For
instance, it enables use of the weak-instrument robust testing procedures of Kleibergen (2005) and
Kleibergen and Mavroeidis (2009) for the AB estimator in PVAR(1) model with the SMA cross-
sectional dependence.

So far we have considered models with weak cross-sectional dependence. However, there is a
growing literature on DPD models with strong cross-sectional dependence (both for large and fixed
T). The most popular model is the common factor type of dependence, see e.g. Pesaran and Tosseti
(2011), Bai and Ng (2004) and recent surveys of Breitung and Pesaran (2008) and Sarafidis and
Wansbeek (2012). The DGP for yi,t can be expressed as following:

yi,t = Φyi,t−1 +Λift + εi,t, i = 1, . . . , N, t = 1, . . . , T, (5)

where Λi is an [m × kf ] matrix of factor loadings and ft is an [kf × 1] vector of common factors.
The error terms εi,t can be i.h.d. or spatially dependent (both cases will be discussed separately).
As the time dimension is assumed to be fixed we treat all ft as fixed parameters, while the factor
loadings Λi are assumed to satisfy:

vecΛi ∼ (0mkf ,ΣΛ).
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For ft = 1 we have the fixed effects model. Subtracting yi,t−1 from both sides of (5):

∆yi,t = Πyi,t−1 +Λift + εi,t, i = 1, . . . , N, t = 1, . . . , T. (6)

The corresponding Jacobian of the AB moment conditions is then given by:

∆yi,ty
′
i,t−1 = Πyi,t−1y

′
i,t−1 +Λifty

′
i,t−1 + εi,ty

′
i,t−1.

The second term on the RHS in general will not be equal to Om, hence the rk-J test can not be
used without any changes. However, if the common dynamics is imposed on Λi, then the previous
equation can be rewritten as (upon redefinition Λi → −ΠΛi):

∆yi,ty
′
i,t−1 = Π(yi,t−1 −Λift)y

′
i,t−1 + εi,ty

′
i,t−1.

If this Assumption is indeed satisfied, then the rk-J statistic does not require any adjustments.
Unfortunately, there are several major drawbacks of imposing common dynamics in this case. First
of all, unlike in the pure fixed effects case, motivation for this assumption is not clear. Secondly,
even in the simple fixed effects case we have shown that it is difficult to ensure that E[ui,ty

′
i,t−1] is

of full rank, this task becomes even more complicated under presence of common factor structure.
However, if εi,t are spatially correlated with some known weighting matrix WN then we can make
use of the so-called “spatial instruments” of Sarafidis (2011):

ŷ′t−1 = (WN +W ′
N)y′t−1. (7)

Here y′t−1 is an [N × m] matrix of stacked y′i,t−1 observations. The Jacobian of these moment
conditions is then given by:

∆yi,tŷ
′
i,t−1 = Πyi,t−1ŷ

′
i,t−1 +Λiftŷ

′
i,t−1 + εi,tŷ

′
i,t−1.

As Λi are i.i.d. across cross-sectional units E[Λiftŷ
′
i,t−1] = E[εi,tŷ

′
i,t−1] = O, while the first term

will be of reduced rank r iff rkΠ = r (for correctly specified WN and θ 6= 0). Of course, for small
values of θ E[yi,t−1ŷ

′
i,t−1] will be very close to zero matrix resulting in the weak instrument problem,

regardless of rkΠ . Note that these moment conditions have merits even for situations without
strong cross-sectional dependence as it directly solves the effect non-stationarity issue encountered
in Section 3.
To sum up, we can see that for models with strong cross-sectional dependence the rk-J test can be
useful only under strong assumptions about factor loadings and/or spatial dependence. In all other
situations, we suspect that we should instead look for an estimation method that is robust to both
cointegration and strong cross-sectional dependence so that the rk test of KP can be applied directly
on Π̂ (for instance the estimator of Robertson et al. (2010)).

4. Monte Carlo

To the best of our knowledge only the BHP study provides results on cointegration analysis for
panels with fixed T13. Hence, for the main building blocks of the finite-sample studies performed in

13Other studies, like Mutl (2009) adapted setups of BHP.

9



this paper we take the setups from BHP, but we provide extended range of scenarios. Only bivariate
panels are considered, thus the only null hypothesis we are testing is:

H0 : rkΠ = 1 (8)

For simplicity we will use (DGP.2) for initialization:

yi,0 = Υiµi +
M∑
j=0

Φjεi,−j, εi,−j ∼ IID(02,Σ). (9)

In what follows we will alow for cross-sectional heterogeneity in Υi but not in Σ. We set M = 50
and number of Monte Carlo replications B = 1000014.
We generate the individual heterogeneity µi using exactly the same procedure as in BHP:

µi = τ

(
qi − 1√

2

)
η̌i, qi ∼ χ2(1), η̌i ∼ N(02,Σ). (10)

We assume that the error terms are normally distributed i.i.d. both across individuals and time with
zero mean and variance-covariance matrix Σ (to be specified later).

Before summarizing Design parameters for this Monte Carlo study recall that Π can rewritten
as (for m = 2):

Π = αβ′ + λα⊥β
′
⊥

We set λ = 0 to study the size of the test, while non-zero values of λ are used to investigate power.
In order to reduce the dimensionality of the parameter space we assume that vectors α and β are of
the following structure:

α = αı2, β′ = (1,−0.2).

All Design parameters are summarized in Table 115.

Table 1: Design parameters. di ∼ Bernoulli(.3)

N T τ α θ λ vechΣ Υ

50 3 1 -.1 .0 -.700 (.05, .03, .05)′ 0.5I2

250 5 5 -.5 .3 -.300 (.05,−.03, .05)′ I2

500 7 -.9 .5 -.100 1.5I2

-.050 I2 −Φ10

-.010 I2 − diΦ10

-.005

(
.85 .15
.00 .85

)
.000

Comparing our Designs to those present in the literature, we can see that Design 3 of BHP is achieved
when α = −0.5.

14As it was argued in Kiviet (2012) 10000 Monte Carlo replications should be sufficient to get precise quantile
estimates.

15Later we will use notation Υ (i) with i indicating the particular row of Table 1.

10



The θ parameter controls the degree of cross-sectional dependence between units. For θ = 0 we
have i.i.d. dataset, while for θ 6= 0 cross-sectional units are weakly correlated. Spatial correlation
matrix WN is assumed to be 1 ahead - 1 behind circular, so that every individual i is directly
linked only with individuals i−1 and i+1.16 Particular choice of the spatial matrix WN is motivated
by the study in Baltagi et al. (2007), where in the context of the panel unit root testing it is shown
that the tests are mostly distorted for this choice of spatial matrix17. Thus, we suspect that by
choosing this particular matrix we will put the proposed cointegration test under the least favorable
conditions in terms of size distortions.

As we have discussed in Section 2 in the effect non-stationary case particular choice of {Υ ,Σ}
and τ might substantially influence the performance of the test statistic. For this reason we consider
two different choices of Σ matrix.

The choice of Υ (4) is motivated by the finite start-up assumption, so that the individual specific
effects are accumulated only for 9 periods. The particular choice of S = 10 was rather arbitrary
and is not empirically or theoretically motivated18. With Υ

(5)
i = I2 − diΦ10 we allow for mixture

type of cross-sectional heterogeneity in Υi such that approximately 30% of population has effect non-
stationary initial condition, while the rest have effect stationary one. Υ (6) is based on the estimates
in Arellano (2003a) obtained from the bivariate panel of Spanish firm data.

In terms of the test power, we suspect that it should be decreasing with |λ|, with almost no
power against alternatives with λ ≈ 0. However, it is very likely that for general Υ matrices power
curve might not be monotonic because λ not only controls the rank of Π but as well (indirectly) the
eigenvalues of the E[ui,t−1y

′
i,t−1] matrix. Hence, for some specific choices of Υ we can observe the

weak instruments problem of the AB moment conditions that is not caused by the reduced rank of
Π matrix.

Remark 4. It is important to emphasize that in this MC study we do not control R2
∆(or any other

sensible measure as in Kiviet (2007)) between designs as it was done in BHP. It is not clear what
exactly should be kept fixed between designs as for the effect non-stationary designs measures will
be time dependent (the average of R2

∆ over time is a likely candidate). We acknowledge that by not
fixing relevant “orthogonal” measures we will not be able to properly explore the parameter space.

4.1. Results

All Designs of Table 1 in total constitute for 13608 different Monte Carlo setups. We will present
results only for those Designs that are sufficiently informative regarding general trends19. In partic-
ular, we do not present results for “intermediate designs” with θ = 0.3, Υ (5). Furthermore, based on
the preliminary MC results no substantial difference between two choices of Σ can be observed, so
the results of Σ(2) are omitted as well. We omit the results of α = −.9 as they are both quantita-
tively and qualitatively similar to those of α = −.520. In total we are left with 2520 Designs with

16Circle is closed by connecting i = 1 with i = N .
17For a graphical illustration see Figure 2 of the aforementioned paper.
18Setting S = 50 would be another option, but it is of similar arbitrariness.
19All other results are available from the author upon request.
20The only difference is somewhat higher power at the costs of bigger size distortions for low N/moderate T.
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summarized results presented in Tables A.3-A.6, henceforth Tables21.

General Trends. First of all, we can observe that rejection frequencies are monotonically de-
clining in |λ| for the vast majority of Designs without spatial dependence (the case with spatial
dependence will be discussed later). As we have discussed in Section 3.2 this property should not be
taken as granted for the rk-J test (as dependence on Φ in non-linear). It goes without saying that
performance in terms of size and power is improving once N increases. However, for lower values of
N test tends to be undersized for T = 3 and oversized for T = 722. In the effect stationary case τ
does not play substantial role and only affects the V matrix, but we can still observe that higher
value of τ is associated with slightly lower power. The results of the effect non-stationary designs are
way more interesting in this case and will be discussed afterwards. It is remarkable that for N = 500,
the rk-J test has notable power when λ is very close to 0. For instance, all rejection frequencies in the
effect stationary designs at λ = 0.005 are above 30% and 25% for α = −0.5 and α = −0.1 respectively.

As we have mentioned in the previous section, comparison between different values of α is not
very fair and should be interpreted with caution (in the effect stationary case R2

∆ for α = −0.5 is
roughly 5 times higher than the one for α = −0.1.). In the vast majority of cases with size distortions
being of similar magnitude test power for α = −0.5 tends to be higher than for α = −0.1 (with few
exceptions when higher power is obtained at the costs of seriously oversized test 10%).

Spatial Dependence. Evidence of the uniform upward shift in the size can be observed when
designs with spatial dependence (θ = 0.5) are considered. This upward movement does not come
as a surprise because similar patterns were documented in the panel unit root testing literature23.
However, the same conclusion can not be reached regarding the test power, as for most scenarios
it changes marginally and does not show any clear patterns in terms of magnitude and direction.
More importantly, major size distortions do not disappear for N = 500, thus substantially higher
cross-sectional dimension is required to perform inference with the correct size.

Effect Non-stationarity and Non-monotonic power curves. Firstly, we consider rejection
frequencies for Υ = 0.5Im as it is the most exceptional in terms of observed patters. In the latter
case we observe power curves that are not monotonic for α = −0.1 (especially for N = 250) and
sharply decreasing for α = −0.5 if τ = 5 and T = 3. It can be intuitively explained as in this case
the effect non-stationarity term in E[∆yi,ty

′
i,t−1] is negative, driving the whole expression towards

zero matrix (recall analysis in Hayakawa (2009) for the univariate case). Thus, we have a weak in-
strument problem under alternative that is not induced by cointegration. These patterns are present
irrespective of whether spatial dependence is present or not. As we have mentioned in Remark 4
in this MC study we do not fix any “orthogonal parameters” and that might be one of the reasons

21All rejection frequencies are rounded two digits after comma. Empty spots indicate maximal power. Numbers in
bold indicate that the actual size is equal to the nominal one.

22As in this case orders of magnitude for N and T are not substantially different we suspect that critical values
obtained as N,T →∞ (jointly) might be more appropriate.

23Moreover, presence of spatial dependence reduces the proportion (but not substantially) of var (εi,t + ηi) attributed
to the variance of the ηi,t that might substantially influence the results.
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why quadratic power curves for τ = 5 are observed24. By varying λ parameter we directly vary the
relative contributions of fixed effects and idiosyncratic parts of the variance components in varyi,t.
For larger values of |λ| the fixed effects part is more pronounced, resulting in substantial effects of
the “negative” effect stationarity. On the other hand, for |λ| ≈ 0 the idiosyncratic part is dominant
and there is no substantial effects of the “negative” effect non-stationary initialization.

As it can be expected, the results for Υ = 1.5Im are less controversial (again, recall Hayakawa
(2009)). In this case power curves are monotonic, and rejection frequencies are uniformly dominating
the ones from effect stationary case irrespective of other design parameters.
Results for Υ (4) seem to combine properties of both Υ (3) and Υ (1). From Υ (1) some non-monotonicities
are inherited but for a smaller number of designs and are less pronounced. Apart from that, the
superior test power properties (as compared to the effect stationary case) of Υ (3) are dominant. This
combined behavior is due to the fact that Υ (4) is changing with λ. In designs with λ substantially
lower than 0 we have Υ (4) ≈ Im, consecutively the weak instrument problem under alternative is less
pronounced.
Finally, the results of Υ (6) are somewhat in between those of Υ (1) and Υ (2), but are slightly closer to
Υ (2). It serves as an indication that the off-diagonal element in Υ (6) is not of any great importance
(given the particular choice of other design parameters). It would be an interesting exercise to further
investigate the impact of other choices of Υ with possibly diagonal elements of different magnitude
and sign. However, there are no clear guidelines for choosing empirically relevant Υ in the literature.

5. Empirical Illustration

In this section we use the rk-J procedure to test for cointegration in Spanish firm panel dataset
covering 1983-1990 of 738 manufacturing companies as in Alonso-Borrego and Arellano (1999). We
construct bivariate PVAR(1) model where dependent variables are logs of employment and wages. It
is reasonable to assume that time effects are present in the model so we explicitly consider variables in
their deviations from the cross-sectional averages. Several alternative approaches for cointegration
testing are considered. Firstly, we apply the rk test of KP directly to GMM estimates Π̂ . We
restrict set of GMM estimators to two step estimators (except for SGMM) presented in BHP (in
total 3)25. Secondly, the LR tests based on the Transformed Maximum Likelihood function of BHP
(LR-TMLE) and Conditional Maximum Likelihood function of Arellano (2003a) (LR-CMLE) are
considered. Finally, the rk-J test of Section 3.2 is considered. Under H0 : rkΠ = 1 all tests have
limiting χ2 distribution with one degree of freedom. Results are summarized in Table 2:
From Table 2 we can see that only the rk-J test based on the AH moment conditions rejects H0, while
all the others do not reject it26. Numerous reasons might be responsible for differences in conclusions.
First of all, we suspect that the initialization moment conditions of the System estimator are not
valid and because of that it does not come as a surprise that all EGMM estimators fail to reject

24Some preliminary MC results, not presented in this paper suggest that effect of τ in this setup is not-monotonic.
In the sense that higher values of τ will lead to increase of power rather than further decrease. At least for this
particular design it seems that τ = 5 represents the close to worst possible scenario as minimum is reached for τ ≈ 6.2.

25We use asymptotic standard errors for all GMM estimators. Here we do not present results based on Windmeijer
(2005) type of finite sample corrected S.E., but they are available from the author upon request.

26We present results for SGMM(2) for informal comparison, as under H0 the AB (SGMM) estimator is not
consistent.
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Table 2: Cointegration testing. The 5% critical value is 3.84.

Name Test Statistic
SGMM 12.271
EGMM1 0.89563
EGMM2 0.036158
EGMM3 2.0536
LR-TMLE 0.587821
LR-CMLE 0.546498
rk-J 13.352***

H0. Hayakawa and Nagata (2012) provide some evidence based on an incremental Sargan test in
support of the latter statement27. Another explanation of results in Table 2 might be the low power
of cointegration test used directly on the estimate of Π . Some preliminary MC results suggest that
at least for the System Estimator it might be the case, because the (size adjusted) power of the rk-J
test dominates the power of rk-EGMM in most setups of Table 1.

Now we turn our attention to Likelihood Ratio tests. We know that both likelihood methods
are robust to violations of mean stationarity, but are not so to time-series heteroscedasticity. Thus,
we can not rule out the possibility that it can be one of the reasons for divergence in conclusions28.
Furthermore, the possibility of potential model misspecification can not be ruled out, the rejection by
rk-J test might indicate just that (recall that Arellano (2003b) considers PVAR(2), not the PVAR(1)
model).

6. Discussions

In this section we will summarize the main theoretical problems and challenges for the rk-J test.
Effect non-stationarity. The importance of this problem can not be overestimated. As it has been
already discussed both in Theoretical and in Monte Carlo sections, it is very difficult to draw general
conclusions about the performance of the rk-J test when the {yi,t}Tt=0 process is not effect stationary.

Initialization and common dynamics assumption. It was also assumed throughout the
paper that the common dynamics assumptions is satisfied. In the univariate case we know that if
this assumption is satisfied the moment conditions are not relevant at unity. On the other hand, if
the common dynamics assumptions is violated it is possible to have non-zero correlation at the unit
root, see an extensive overview in Bun and Kleibergen (2012) on this issue.

Cross-sectional heterogeneity. Another issue reserved for future investigation in this paper
is cross-sectional heterogeneity in Π parameter matrix. If Πi matrices are individually specific then
it is possible that individually all cross-sectional units have cointegrated dynamics but the average
is not (or the other way around). Hence, in situations with possible cross-sectional heterogeneity in
Πi we should be very cautious interpreting the rejection of H0.

27However, this testing procedure can not be used if series are cointegrated.
28Arellano (2003b) presents some evidence of time-series heteroscedasticity in this dataset.
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7. Conclusions

In this paper we have studied the properties of the standard Anderson and Hsiao (1982) moment
conditions in a PVAR(1) when the process is cointegrated. Under the assumptions similar to Binder
et al. (2005) we have shown that these moment conditions are of reduced rank if and only if the
process is cointegrated. Based on this observation we have proposed a rank based test to test the
null hypothesis of cointegration. The suggested testing procedure was shown to be robust to both
cross-sectional and time series heteroscedasticity as well as spatial dependence. In the Monte Carlo
study we found evidence that the test is reasonably sized and has good power properties in the vast
majority of scenarios but might exhibit non-monotonic power curves for models with substantial
effect non-stationarity. We have applied our testing procedure to the Spanish manufacturing data of
Arellano (2003b) and unlike the test of BHP we have rejected the null hypothesis of cointegration.
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