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Abstract

We show that Dif(ference), see Arellano and Bond (1991), Lev(el), see Arellano and

Bover (1995) and Blundell and Bond (1998), or the N(on-)L(inear) moment conditions

of Ahn and Schmidt (1995) do not separately identify the parameters of a first-order

autoregressive panel data model when the autoregressive parameter is close to one and

the variance of the initial observations is large. We, however, construct a new set of

(robust) moment conditions that identifies the autoregressive parameter irrespective of

the variance of the initial observations. These robust moment conditions are (non-linear)

combinations of the System (Sys) and A(hn-)S(chmidt) moment conditions. We use them

to construct the maximal attainable power curve under the worst case setting, which im-

plies a quartic root convergence rate. It is identical for the AS and Sys moment conditions

so assuming mean stationarity does not improve power in worst case settings. We com-

pare the maximal attainable power curve under the worst case setting with the lower

envelopes of the power curves of different GMM test procedures. These power envelopes

show the lowest rejection frequencies of these test procedures. The power envelope of

the K(leibergen) L(agrange) M(ultiplier) statistic of Kleibergen (2005) coincides with the

maximal attainable power curve under the worst case setting so the KLM statistic is effi -

cient both when the autoregressive parameter is one or less than one. Our results extend

to general values of the autoregressive parameter for which identification fails when the

variance of the individual specific effects becomes large.
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1 Introduction

It is common to estimate the parameters of linear dynamic panel data models using the Gen-

eralized Method of Moments (Hansen, 1982). The moment conditions for the linear dynamic

panel data model either analyze it in first differences using lagged levels of the series as instru-

ments, in levels using lagged first differences as instruments or using a combination of levels

and first differences. We refer to the first set of moment conditions as Dif(ference) moment

conditions, see Arellano and Bond (1991), the second set as Lev(el) moment conditions, see

Arellano and Bover (1995), Blundell and Bond (1998) and the third set as N(on-)L(inear)

moment conditions, see Ahn and Schmidt (1995).

The Dif, Lev and NL moment conditions can be used separately to identify the parameters

of dynamic panel data models. In order to exhaust all information, however, two particu-

lar combinations of Dif, Lev and NL moment conditions have been proposed. We refer to

the combination of the Dif and Lev moment conditions as the Sys(tem) moment conditions

and the combination of the Dif and NL moment conditions as the A(hn-)S(chmidt) moment

conditions.1 The Sys moment conditions exhaust all information on the autoregressive para-

meter that is present under mean stationarity, see Arellano and Bover (1995) and Blundell

and Bond (1998). The AS moment conditions exhaust all information whilst not assuming

mean stationarity, see Ahn and Schmidt (1995).

We analyze the various moment conditions when the panel data are highly persistent.

All moment conditions involve first differences of the series to remove the individual specific

effects. The first difference operator removes information in the time series at the unit root

value of the autoregressive parameter. It is well known that the Dif moment conditions there-

fore do not identify the autoregressive parameter when its true value is (close to) one, since

lagged levels are then weak predictors of first differences. This has led to the development of

the NL and Lev, and hence AS and Sys, moment conditions which originally were considered

to identify the autoregressive parameter when the panel data are highly persistent.

We show that identification of the autoregressive parameter by Dif, NL or Lev moment

conditions separately depends on the setting of the initial observations, individual specific

effects and variances of the disturbances. We show that these affect the identification of

the autoregressive parameter and that none of the previous moment conditions identifies the

autoregressive parameter for all specifications of these nuisance parameters. For a range of

relative convergences rates of the variance of the initial observations compared to the sample

size, the Dif, Lev and NL sample moments and their derivatives diverge. Both the population

moment and the Jacobian identification condition are then ill defined which implies that the

autoregressive parameter is not identified. These results confirm and extend earlier findings

1Note that in a combination of all three sets of moments conditions, the NL moment conditions are

redundant.
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in Madsen (2003), Bond et. al. (2005), Hahn et. al. (2007) and Kruiniger (2009).

We construct a new combination of the Dif, Lev and NL moment conditions (other than

AS and Sys) that does not depend on the initial observations. These novel robust moment

conditions therefore identify the parameters irrespective of the setting of the nuisance para-

meters which obviously includes the case of highly persistent data. The novel robust moments

are suboptimal under less severe settings of the nuisance parameters so we refrain from using

them for estimation. Instead, we use them to obtain optimal inference procedures under the

worst case settings of the nuisance parameters.

Our first main contribution is to show that the novel robust moment conditions are

spanned by either the Sys or AS moments. Hence, the Sys and AS moments identify the

parameters irrespective of the setting of the nuisance parameters when there are more than

three time periods. It is remarbable that the AS moments always lead to identification

since it implies that the assumption of mean stationarity is redundant. Despite that, the

large sample distributions of one step and two step generalized method of moments (GMM)

estimators are non-standard under worst case settings of the nuisance parameters. This

explains their large biases and the size distortions of their corresponding t-statistics when

the series are persistent, see e.g. Madsen (2003), Bond and Windmeijer (2005), Bond et. al.

(2005), Dhaene and Jochmans (2012), Hahn et. al. (2007), Kruiniger (2009) and Bun and

Windmeijer (2010).

We next determine which GMM test procedure, that remains size correct under worst case

settings of the nuisance parameters, is optimal. This excludes one and two step t-statistics

since they are obviously size distorted. The size correct GMM statistics that we therefore

analyze are the GMM-A(nderson-)R(ubin) statistic of Anderson and Rubin (1949) and Stock

and Wright (2000), the GMM-L(agrange-)M(ultiplier) statistic of Newey and West (1987)

and the K(leibergen)LM statistic of Kleibergen (2005). Both GMM-LM and KLM statistics

are LM or score statistics so they are optimal when the autoregressive parameter is less than

one. To determine if any of these three test statistics is optimal under the worst case setting

of the nuisance parameters, we construct the lower envelope of their power curves to which

we refer as the power envelope. The power envelope shows the lowest attainable power which

results from the worst case specification of the nuisance parameters.

Under the worst case specifications only the novel robust moments contain information

on the autoregressive parameter. We therefore use them to construct the maximal attainable

power curve under a worst case setting. It implies a quartic root convergence rate which

further reflects the non-standard manner in which the autoregressive parameter is identified

by the moment conditions. We compare the maximal attainable power curve with the power

envelopes of the large sample distributions of the GMM-AR, GMM-LM and KLM statistics

based on Sys or AS moments. In doing so, we provide an extension of Andrews et. al.

(2006) from the linear instrumental variables regression model with one included endogenous
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parameter towards the panel autoregressive model of order one.

Our second main result is that the power envelope of the KLM statistic is on the maximal

attainable power curve for all number of time periods. Thus the KLM statistic is optimal

in worst case settings. Hence, since it is also optimal in all other settings, it is optimal in

general for inference in the dynamic panel data model. This is a somewhat different conclusion

compared with Andrews et. al. (2006), who do not recommend the KLM test for practical

use.2

A final interesting outcome from the asymptotic power analysis is that the power envelopes

that result for the AS and Sys moment conditions coincide. This shows that assuming

mean stationarity is not only redundant for identification, but also does not add any further

identifying information about the autoregressive parameter in worst case settings.

Throughout the analysis, we use an asymptotic sampling scheme in which we let both the

variance of the initial observations and the number of cross section observations get large. In

dynamic panel data models, the variance of the initial observations can be large due to a unit

root value of the autoregressive parameter or because of a large variance of the individual

specific effects. In the latter case, the identification of the autoregressive parameter also fails

at values of the autoregressive parameter smaller than one. Although we, in our analysis,

mainly focus on values of the autoregressive parameter close to one, all our results apply as

well to the case of a large individual specific effect variance.

The paper is organized as follows. Section 2 introduces the linear dynamic panel data

model and the different moment conditions we use to identify its parameters. In Section 3, we

introduce our asymptotic sampling scheme, and as an illustration show that the Dif and Lev

moment conditions with three time periods do not identify the autoregressive parameter. In

Section 4, we use a representation theorem, akin to the cointegration representation theorem,

see Engle and Granger (1987) and Johansen (1991), to pin down the identification properties

of the different moment conditions for the general case. In Section 5, we construct the robust

moments conditions and the maximal attainable power curve under worst case settings. We

also briefly discuss the extension to a large individual specific effect variance. In Section

6, we construct the power envelopes of different GMM test procedures. The final section

concludes. Proofs of theorems and definitions of test statistics are provided in Appendices A

and B respectively. We use the following notation throughout the paper: =
a
means asymp-

totically equivalent, →
p
indicates convergence in probability, and →

d
indicates convergence in

distribution.
2Compared with Andrews et. al. (2006) we didn’t analyze the conditional LR test. For the panel data

model, however, Newey and Windmeijer (2009) report in their simulation study that KLM and conditional

LR statistics have similar power properties.
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2 Moment conditions

We analyze the first-order dynamic panel data model

yit = ci + θyit−1 + uit i = 1, . . . , N, t = 2, . . . , T, (1)

with T the number of time periods and N the number of cross section observations. For

expository purposes, we analyze the simple dynamic panel data model in (1) which can

be extended with additional lags of yit and/or explanatory variables.3 Estimation of the

parameter θ by means of least squares leads to a biased estimator in samples with a finite

value of T, see e.g. Nickell (1981). We therefore estimate it using GMM. We obtain the GMM

moment conditions from the unconditional moment assumptions:

E[uituis] = 0, s 6= t; t = 2, . . . , T,

E[uitci] = 0, t = 2, . . . , T,

E[uityi1] = 0, t = 2, . . . , T.

(2)

Under these assumptions, the moments of the T (T − 1) interactions of ∆yit and yit :

E[∆yityij ] j = 1, . . . , T, t = 2, . . . , T (3)

can be used to construct functions which identify the parameter of interest θ. We do not use

products of ∆yit to identify θ since we would need further assumptions, i.e. homoscedasticity

or initial condition assumptions, see e.g. Han and Phillips (2010).

Two different sets of moment conditions, which are functions of the moments in (3), are

commonly used to identify θ :

1. Difference (Dif) moment conditions:

E[yij(∆yit − θ∆yit−1)] = 0 j = 1, . . . , t− 2; t = 3, . . . , T, (4)

as proposed by e.g. Anderson and Hsiao (1981) and Arellano and Bond (1991). The

Dif moment conditions solely result from the conditions in (2).

2. Level (Lev) moment conditions:

E[∆yit−1(yit − θyit−1)] = 0 t = 3, . . . , T, (5)

as proposed by Arellano and Bover (1995), see also Blundell and Bond (1998). Besides

the conditions in (2), the Lev moment conditions use

E [∆yitci] = 0, (6)

3The extension to other explanatory variables would depend on the nature of these. For some settings such

an extension would be trivial but for others not so.
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which implies that the original data in levels have constant correlation over time with

the individual-specific effects. This assumption implies the following for yi1:

yi1 = µi + ui1, i = 1, . . . , N, (7)

with ci = µi(1− θ0), which is often referred to as mean stationarity.

The Dif and Lev moments can be used separately or jointly to identify θ. When we use

the moment conditions in (4) and (5) jointly, we refer to them as system (Sys) moment

conditions,4 see Arellano and Bover (1995) and Blundell and Bond (1998). Another set of

nonlinear (NL) moment conditions, which just like the Dif moments only use the conditions

in (2), results from Ahn and Schmidt (1995):

E[(yit − θyit−1)(∆yit−1 − θ∆yit−2)] = 0 t = 4, . . . , T. (8)

The NL moments can be used separately or jointly with the Dif moments to identify θ.

When we use the moment conditions in (4) and (8) jointly, we refer to them as Ahn-Schmidt

(AS) moment conditions. Ahn and Schmidt (1995) show that these (combined) AS moment

conditions exhaust the information on θ in the moment conditions (2) and are therefore

complete. Mean stationarity adds one moment condition (6) to the moment conditions in

(2). Hence, the complete set of moment conditions under (2) and (6) equals the AS moment

conditions and (6). Upon rewriting we can show that these combined moment conditions are

identical to the Sys moment conditions so they are complete under (2) and (6).

The Dif moment conditions do not identify θ when its true value is equal to one while the

Lev moment conditions are supposed to do, see Arellano and Bover (1995) and Blundell and

Bond (1998). Also the NL (and hence AS) moment conditions are considered to identify θ

when its true value is one but since these moment conditions are quadratic in θ, they are less

commonly used than the linear Dif, Lev, and Sys moment conditions, see Ahn and Schmidt

(1995). The identification results in Blundell and Bond (1998) and Ahn and Schmidt (1995)

are, however, silent about their sensitivity with respect to the initial observations. In the

next Section we analyze the (non-) robustness with respect to the initial observations in more

detail for T = 3 time periods, and show that identification by the Lev moment conditions is

arbitrary in case of highly persistent panel data.

3 Identification: An illustrative example

In this Section we introduce our asymptotic sampling scheme which consists of drifting se-

quences for the autoregressive parameter and variance of the initial observation. Furthermore,
4We could extend the Lev moment conditions to 1

2
(T − 1)(T − 2) sample moments by including additional

interactions of ∆yit−j and yit−θyit−1, for j = 2, . . . , t−2. It can be shown, however, that all conditions on top

of those in (5) can be constructed as linear combinations of the Dif conditions in (4) and the Lev conditions

in (5).
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we use it in an illustrative example to analyze the limiting behavior of Dif and Lev moment

conditions when T = 3.5

The Dif and Lev moment conditions that we use to identify θ are semi-parametric with

respect to the individual specific fixed effects, variances and initial observations so they

identify θ for a variety of different specifications of them. These specifications, however,

influence the identification of θ for persistent values of it, i.e. values that are close to one.6

To exemplify this, we first consider the simplest setting which has T equal to three. We also

note that, since we use the Lev moment conditions, we assume mean stationarity (6)-(7).

When there are three time series observations, the Dif and Lev moment conditions read:

Dif: E[yi1(∆yi3 − θ∆yi2)] = 0

Lev: E[∆yi2(yi3 − θyi2)] = 0,
(9)

with Jacobians:

Dif: −E[yi1∆yi2] = −E((µi + ui1)((θ0 − 1)ui1 + ui2)

Lev: −E[yi2∆yi2] = −E((ci + θ0y1i + ui2)((θ0 − 1)ui1 + ui2)),
(10)

where θ0 is the true value of θ. For many data generating processes for the initial observations,

the Jacobian of the Dif moment condition in (10) is equal to zero when θ0 is equal to one.7

The Dif moment condition does then not identify θ when θ0 is equal to one for these DGPs.

Under mean stationarity (6)-(7), the Jacobian of the Lev moment condition is such that

E(yi2∆yi2) = (θ0 − 1)θ0E(u2
i1) + E(u2

i2) 6= 0, when θ0 = 1, (11)

so the Lev moment condition seems to identify θ irrespective of the value of θ0, see Arellano

and Bover (1995) and Blundell and Bond (1998). There is a caveat though since for many

data generating processes yi1 does not have a finite mean and/or variance when θ0 is equal to

one and, despite that yi1 and ui2 are uncorrelated, we then do not know the value of E(yi1ui2)

which is both an element of the moment equation (upon recurrent substitution) in (9) and

the Jacobian in (11). To ascertain the identification of θ by the Lev moment conditions when

θ0 is equal to one, we therefore consider a joint limit process where both θ0 converges to one

and the sample size goes to infinity. In order to do so, we first make a technical assumption

about the variance of the idiosyncratic part of the initial observation under mean stationarity

(6)-(7).

5We postpone discussion of the Sys moment conditions for T = 3 until the next Section, while the NL, and

hence also AS, moment conditions are available for T > 3 only.
6 In Section 5.1, we show that similar identification problems occur when θ is smaller than one, but the

variance of the individual specific effects is large.
7Exceptions are when mean stationarity (6)-(7) does not hold, see e.g. Hayakawa (2009), or, for example,

in case of covariance stationarity so var(ui1) = σ2

1−θ20
.
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Assumption 1. The limit behavior of the variance of (1− θ0)ui1, with ui1 the disturbance

in the mean stationarity conditions (6)-(7), when θ0 goes to one is such that

E(limθ0↑1((1− θ0)ui1)2) = 0. (12)

Assumption 1 is necessary for the Dif and Lev moment conditions to hold when θ0 = 1

and mean stationarity (6)-(7) applies.

Furthermore, we make an assumption on the variance of the product of the initial obser-

vation yi1 and the disturbances uit :

Assumption 2.

var(uityi1) = var(uit)var(yi1), t = 2, . . . , T. (13)

A condition under which this assumption holds is independence of uit and yi1 but it can

also hold under less stringent conditions. In the sequel, we analyze the identification of θ

when the variance of the initial observations gets large compared to that of the subsequent

disturbances. The assumption in (13) enables such settings.

We analyze the large sample behavior of the Lev sample moment, 1
N

∑N
i=1 ∆yi2(yi3−θyi2),

and its derivative, − 1
N

∑N
i=1 yi2∆yi2, when θ0 converges to one (we rule out explosive values

of θ0) and mean stationarity (6)-(7) applies. In order to do so we first list their relevant

elements for the large sample behavior under some DGP for the initial observations:

limθ0↑1
1
N

∑N
i=1 ∆yi2(yi3 − θyi2) ≈ (1− θ)

{
1
N

∑N
i=1 u

2
i2 + limθ0↑1

1
N

∑N
i=1 ui2yi1+

limθ0↑1
1
N

∑N
i=1(1− θ0)ui1yi1

}
limθ0↑1

1
N

∑N
i=1 yi2∆yi2 ≈ 1

N

∑N
i=1 u

2
i2 + limθ0↑1

1
N

∑N
i=1 ui2yi1+

limθ0↑1
1
N

∑N
i=1(1− θ0)ui1yi1.

(14)

We dropped all elements in (14) that do not affect the large sample behavior when θ0 goes

to one,8 at least not under our drifting parameter sequences as defined below. What is left

over are terms with non-zero mean and/or depending on the initial observations yi1. Since

ui2 and yi1 are uncorrelated and under (13), it holds that

h(θ0) 1√
N

∑N
i=1 ui2yi1 →

d
ψ2, (15)

with ψ2 a normal random variable with mean zero and variance σ
2
2 =var(ui2) and h(θ0)−2 =var(yi1).

We analyze a setting in which both θ0 and the variance of the initial observations are

functions of the sample size which we indicate by θ0,N and hN (θ0,N ) respectively. When the

sample size gets large, these sequences behave according to

limN→∞ θ0,N = 1

limN→∞ hN (θ0,N ) = d,
(16)

8This explains why we use the “≈”sign instead of the “=”sign.
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with d a finite possibly zero constant. The sequences in (16) allow the variance of the initial

observations to be large in combination with a large value for the autoregressive parameter.

The limit sequences in (16) are such that (15) remains to hold so

hN (θ0,N ) 1√
N

∑N
i=1 ui2yi1 →

d
ψ2, (17)

and which explains why 1
N

∑N
i=1 ui2yi1 appears in (14).

When d in (16) equals zero, the rate at which hN (θ0,N ) goes to zero, or the variance of

the initial observation goes to infinity, determines the behavior of the sample moments in

(14). For example, when these sequences are such that

hN (θ0,N )
√
N →

N→∞
∞, (18)

it holds that

1
N

∑N
i=1 yi2∆yi2 = 1

N

∑N
i=1 u

2
i2 + 1

hN (θ0,N )
√
N

[
hN (θ0,N ) 1√

N

∑N
i=1 ui2yi1

]
+

1
N

∑N
i=1(1− θ0,N )ui1yi1

→
p

σ2
2 + limN→∞E((1− θ0,N )u2

i1),

(19)

while when
hN (θ0,N )

√
N →

N→∞
0, (20)

the large sample behaviors of the Lev sample moment and its Jacobian are characterized by

hN (θ0,N ) 1√
N

∑N
i=1 ∆yi2(yi3 − θyi2) = (1− θ)

{
hN (θ0,N )

√
N
[

1
N

∑N
i=1 u

2
i2

]
+

hN (θ0,N )
√
N
[

1
N

∑N
i=1(1− θ0,N )ui1yi1

]
+[

hN (θ0,N ) 1√
N

∑N
i=1 ui2yi1

]}
→
d

(1− θ)ψ2

hN (θ0,N ) 1√
N

∑N
i=1 yi2∆yi2 = hN (θ0,N )

√
N
[

1
N

∑N
i=1 u

2
i2

]
+

hN (θ0,N )
√
N
[

1
N

∑N
i=1(1− θ0N )ui1yi1

]
+

hN (θ0N ) 1√
N

∑N
i=1 ui2yi1

→
d

ψ2.

(21)

Hence, when (20) holds:

1
N

∑N
i=1 ∆yi2(yi3 − θyi2) = 1

hN (θ0,N )
√
N

hN (θ0,N )√
N

∑N
i=1 ∆yi2(yi3 − θyi2)

→
N→∞

∞
1
N

∑N
i=1 yi2∆yi2 = 1

hN (θ0,N )
√
N

hN (θ0,N )√
N

∑N
i=1 yi2∆yi2

→
N→∞

∞

(22)
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so the sample moments of the Lev population moment and Jacobian go to infinity when

the sample size increases. It implies that the Lev population moment and Jacobian are not

defined. In this case we conclude that θ is not identified.

Since any assumption about the convergence rates of the sample size and the variance of

the initial observations is kind of arbitrary, also the identification of θ by the Lev moment

conditions is arbitrary for DGPs for which θ0 is close to one and the variance of the initial

observations is infinite when θ0 equals one. Some plausible DGPs, all of which accord with

mean stationarity (6)-(7), for the initial observations belong to this category:

DGP 1. σ2
c =var(ci), h(θ0,N ) = (1− θ0,N )/σc.

DGP 2. σ2
c =var(ci), σ2

1 = σ2

1−θ2
0,N
, h(θ0,N ) = (1− θ0,N )/σc.

DGP 3. σ2
µ =var(µi), σ

2
1 = σ2

1−θ2
0,N
, h(θ0,N ) = 1

σ

√
1− θ2

0,N .

DGP 4. σ2
µ =var(µi), σ

2
1 = σ2 1−θ2(g+1)

0,N

1−θ2
0,N

, h(θ0,N ) = 1
σ

√
1−θ2

0,N

1−θ2(g+1)
0,N

.

DGP 5. σ2
c =var(ci), σ2

1 = σ2 1−θ2(g+1)
0,N

1−θ2
0,N

, h(θ0,N ) = (1− θ0,N ) /σc.

DGPs 4 and 5 characterize an autoregressive process of order one that has started g

periods in the past while the initial observations that result from DGP 2 and 3 result from

an autoregressive process that has started an infinite number of periods in the past. DGPs 2

and 3 are also used by Blundell and Bond (1998) while Arellano and Bover (1995) use DGP

2.

For DGPs 1-5 to accord with (20), the limiting sequence θ0,N (16) is such that:

DGP 1, 2, 5 : (1− θ0,N )
√
N →

N→∞
0 or θ0,N = 1− e

N
1
2 (1+ε)

DGP 3 : (1− θ2
0,N )N →

N→∞
0 or θ0,N = 1− e

N1+ε

DGP 4 : N
g →
N→∞, g→∞

0,

(23)

with e a constant and ε some real number larger than zero. In case of DGP 4, (23) implies

that the process has been running longer than the sample size N. Kruiniger (2009) uses the

above specification of DGP 3 with ε = 0 and DGP 4 with N/g converging to a constant to

construct local to unity asymptotic approximations of the distributions of two step GMM

estimators that use the Dif, Lev and/or Sys moment conditions.

We do not confine ourselves to a specific DGP for the initial observations so we obtain

results that apply generally. While the (non-) identification conditions for identifying θ that

result from the above data generating processes might be (in)plausible, it is the arbitrariness

of them which is problematic. Additionally, the identification condition might hold but it

can still lead to large size distortions of Wald test statistics.
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4 Identification from general moment conditions

We just showed that the Lev and Dif moment conditions do not identify θ when θ0 is close

to one and T = 3. To analyze the identification of θ by the different moment conditions

for a general number of time periods T , we start out with a representation theorem. For

the different moment conditions, it states the behavior of the sample moments and their

derivatives under the previously defined limit sequences. Throughout we assume that the

mean stationarity conditions (6)-(7) apply, so the Lev and Sys moment conditions are valid

too.

Theorem 1 (Representation Theorem). Under Assumptions 1 and 2, the conditions in

(2), mean stationarity (6)-(7), finite fourth moments of ci and uit, i = 1, . . . , N, t = 2, . . . , T,

T ≥ 3, we can characterize the large sample behavior of the Dif, Lev, NL, AS and Sys sample

moments and their derivatives for values θ0 that drift to one according to (16) and (20) by:(
f jN (θ)

qjN (θ)

)
=

(
Ajf (θ)

Ajq(θ)

)[
1

hN (θ0,N )
√
N
ψ + ι

(
limN→∞E((θ0,N − 1)u2

i1)
)]

+(
µjf (θ, σ2)

µjq(θ, σ2)

)
+ 1√

N

(
Bj
f (θ)

Bj
q(θ)

)
ψuu,

(24)

with j = Dif, Lev, NL, AS, Sys. Furthermore, µjf (θ, σ2) and µjq(θ, σ2) are constants,

σ2 = (σ2
2 . . . σ

2
T ), ψ and ψuu are mean zero finite variance normal random variables, ι is a

vector of ones and the dimensions of ι and ψ are T − 1 for Dif, AS and Sys and T − 2 for

Lev and NL.

The specifications of Ajf (θ), Ajq(θ), B
j
f (θ), Bj

q(θ), µ
j
f (θ, σ2), µjq(θ, σ2), ψ and ψuu for values

of T equal to 4 and 5 are stated in Appendix A.

Proof. see Appendix A.

The representation theorem in Theorem 1 is reminiscent of the cointegration represen-

tation theorem, see e.g. Engle and Granger (1987) and Johansen (1991). Identical to that

representation theorem, Theorem 1 shows that the behavior of the moment series changes

over different directions.

The representation theorem shows that the sample moment and its derivative diverge

in the direction of
(Ajf (θ)

Ajq(θ)

)
since the latter components get multiplied by 1

h(θ0,N )
√
N
ψ, which

under (20) goes to infinity when the sample size increases. The only identifying information

for θ therefore results from that part of the sample moment which does not depend on ψ.

Since ψ only affects the part of the sample moments spanned by Ajf (θ), the sample moments

are independent of ψ in the direction of the orthogonal complement of Ajf (θ).
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When we pre-multiply the sample moments by the orthogonal complement of Ajf (θ), we

obtain

Ajf (θ)′⊥f
j
N (θ) ≈ Ajf (θ)′⊥µ

j
f (θ, σ2) + 1√

N
Ajf (θ)′⊥B

j
f (θ)ψcu, (25)

with Ajf (θ)⊥ the orthogonal complement of A
j
f (θ), i.e. Ajf (θ)′⊥A

j
f (θ) ≡ 0. Compared with the

expression in Theorem 1 (24), the elements multiplied by Ajf (θ) have both dropped out since

Ajf (θ)′⊥A
j
f (θ) = 0. The right hand side of (25) now contains all remaining identifying elements

of the original moment conditions. From expression (25), it is seen that identification results

only when Ajf (θ)⊥ is a well defined matrix and, furthermore, µ
j
f (θ, σ2) is non-zero. We next

briefly discuss what this implies for different moment conditions discussed previously.

Dif and Lev conditions When T = 3 or 4, the specifications of
(µjf (θ,σ2)

µjq(θ,σ2)

)
and

(Ajf (θ)

Ajq(θ)

)
for

the Dif and Lev moment conditions, which are stated in the proof of Theorem 1 in Appendix

A9, are:

Dif: T = 3
(µDiff (θ,σ2)

µDifq (θ,σ2)

)
= (0 0)′, ADiff (θ) = (−θ 1), ADifq (θ) = (−1 0).

T = 4
(µDiff (θ,σ2)

µDifq (θ,σ2)

)
= (0 . . . 0)′, ADiff (θ) =

 −θ 1 0

0 −θ 1

0 −θ 1

 , ADifq (θ) = −

 1 0 0

0 1 0

0 1 0

 .

Lev: T = 3
(µLevf (θ,σ2)

µLevq (θ,σ2)

)
=

(
σ2

2

(
1− θ

1

))
, ALevf (θ) = 1− θ, ALevq (θ) = −1.

T = 4
(µLevf (θ,σ2)

µLevq (θ,σ2)

)
=

((
1− θ

1

)
⊗
(
σ2

2

σ2
3

))
, ALevf (θ) =

(
1− θ 0

0 1− θ

)
,

ALevq (θ) = −I2.

(26)

The expressions of ADiff (θ) and ALevf (θ) in (26) are all square or rectangular matrices. When

T exceeds four, the expressions of ALevf (θ) remain square matrices10 so the Lev moment

conditions do not identify θ since ALevf (θ)⊥ does not exist. When T = 3 or T > 4, the

expressions of ADiff (θ) are not square so the orthogonal complement of ADiff (θ), ADiff (θ)⊥,

is well defined. However, since µDiff (θ, σ2) equals zero, ADiff (θ)′⊥µ
Dif
f (θ, σ2) = 0 so the Dif

moment conditions still do not identify θ for any value of T. Summarizing we have:

Dif, T = 4: ADiff (θ)⊥ does not exist. No identification when T = 4.

Dif, T = 3, T > 4: ADiff (θ)′⊥µ
Dif
f (θ, σ2) = 0. No identification when T = 3, T > 4.

Lev: ALevf (θ)⊥ does not exist. No identification when T ≥ 3.

(27)

9The proofs in the Appendix A do not cover T = 3 since it straightforwardly results from T = 4.
10We refer to the proof of Theorem 1 for the expressions of ADiff (θ) and ALevf (θ) when T = 5.
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NL condition The NL moment condition is not defined for T = 3. When T = 4, the

expressions of
(µjf (θ,σ2)

µjq(θ,σ2)

)
and

(Ajf (θ)

Ajq(θ)

)
read

NL:
(µNLf (θ,σ2)

µNLq (θ,σ2)

)
=
((1−θ)(σ2

3−θσ2
2)

2(θ−1)σ2
2−σ2

3

)
,
(ANLf (θ)

ANLq (θ)

)
=

(
θ(θ − 1) 1− θ
2θ − 1 −1

)
. (28)

Since there is only one sample moment, the specification of ANLf (θ) shows that there are more

diverging components than sample moments so the NL moment condition does not identify

θ.

The expression of ANLf (θ) for a larger number of time series observations11 are also such

that the number of divergent components exceeds the number of sample moments. Hence for

larger values of T, the NL moment conditions also do not identify θ.

AS and Sys conditions The expressions of
(µjf (θ,σ2)

µjq(θ,σ2)

)
and

(Ajf (θ)

Ajq(θ)

)
when T = 4 for the AS

and Sys moment conditions result from stacking those of the Dif and NL and Dif and Lev

moment conditions respectively:

AS: T = 4 µASf (θ, σ2) =


0

0

0

(1− θ)
(
σ2

3 − θσ2
2

)

 , AASf (θ) =


−θ 1 0

0 −θ 1

0 −θ 1

θ(θ − 1) 1− θ 0

 ,

µASq (θ, σ2) =


0

0

0

2 (θ − 1)σ2
2 − σ2

3

 , AASq (θ) =


1 0 0

0 1 0

0 1 0

2θ − 1 −1 0

 .

Sys: T = 3 µSysf (θ, σ2) = (1− θ)
(

0

σ2
2

)
, ASysf (θ) =

(
−θ 1

1− θ 0

)
,

µSysq (θ, σ2) =

(
0

σ2
2

)
, ASysq (θ) =

(
1 0

−1 0

)
.

11The expression for T = 5 is stated in the proof of Theorem 1 in Appendix A.
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Sys: T = 4 µSysf (θ, σ2) = (1− θ)


0

0

0

σ2
2

σ2
3

 , ASysf (θ) =


−θ 1 0

0 −θ 1

0 −θ 1

1− θ 0 0

0 1− θ 0

 ,

µSysq (θ, σ2) =


0

0

0

σ2
2

σ2
3

 , ASysq (θ) =


1 0 0

0 1 0

0 1 0

−1 0 0

0 −1 0

 .

(29)

When T = 3, ASysf (θ) is a square matrix so its orthogonal complement is not defined. It

implies that the Sys moment conditions do not identify θ when T = 3. When T equals 4, the

specification of Ajf (θ) is a rectangular matrix both for the AS and Sys moment conditions.

It implies that the orthogonal complement of Ajf (θ), Ajf (θ)⊥, is a well defined matrix. Fur-

thermore, the specification of µjf (θ, σ2) for the AS and Sys moment conditions in (29) is such

that Ajf (θ)′⊥µ
j
f (θ, σ2) 6= 0. It implies that although the AS and Sys sample moments diverge

in the direction of Ajf (θ), so that part cannot be used to identify θ, the AS and Sys sample

moments identify θ by their part which is spanned by the orthogonal complement of Ajf (θ).

The expressions of µjf (θ, σ2) and Ajf (θ, σ2) in the proof of Theorem 1 in Appendix A show

that this argument extends to all values of T larger than three.

Corollary 1 (Identification of θ). Under the assumptions of Theorem 1, θ is identified

by the AS and Sys moment conditions when T exceeds three but is not identified by the Dif,

Lev and NL moment conditions for any value of T.

Corollary 1 shows that the identification issues for the Sys moment conditions with T = 3

do not extend to more time series observations. Hence, θ is identified by the Sys moment

conditions when there are more than three time periods. It also shows that θ is identified

by the AS moment conditions. We used mean stationarity to construct the large sample

behavior in Theorem 1 and Corollary 1. Unlike the Sys moment conditions, the AS moment

conditions do, however, not need mean stationarity to hold. It shows that assuming mean

stationarity for constructing moment conditions does not help to identify θ when θ0 = 1 since

the same identification results are obtained from moment conditions that do not assume mean

stationarity. When mean stationarity does not hold both the Dif and NL, and consequently

the AS, moment conditions identify θ when θ0 = 1.

Corollary 1 shows that the AS and Sys moment conditions identify θ when T exceeds

three. This does, however, not imply that GMM estimators based on these moment conditions

behave in the manner that we are used to when estimating parameters which are identified

by moment conditions. We distinguish two different cases:
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1. The convergence rate accords with (18) so ψ vanishes from the large sample behavior

of the moment conditions in Theorem 1. It leads to standard behavior of one and two step

GMM estimators.

2. The convergence rate accords with (20). Only the part of the moment conditions in the
direction of Ajf (θ)⊥ (25) now identifies θ. One step and two step GMM estimators, however,

use both the part of the sample moment that lies in the direction of Ajf (θ), which diverges,

and the part which lies in the direction of its orthogonal complement, which identifies θ.

Usage of the first part results in an inconsistency so one and two step GMM estimators are

inconsistent and have non-standard limiting distributions. To exemplify this, Corollary 2

states the limiting distribution of the one step estimator based on the Sys moment conditions

which results in a straightforward manner from Theorem 1 since the Sys moment conditions

are linear in θ.

Corollary 2. Under the conditions of Theorem 1, the limiting behavior of the one step

estimator for the Sys moment conditions is characterized by

θ̂
Sys

1s →
d

1− (ψ′ASysq (1)′ASysq (1)ψ)−1ψ′ASysq (1)′ASysf (1)ψ, (30)

which is inconsistent since ASysf (1) does not equal zero.

Corollary 2 shows that the one step estimator based on the Sys moment conditions is

inconsistent despite that the Sys moment conditions identify θ. It also shows that the limiting

distribution of the one step estimator is non-standard. Similar results hold for the one step

GMM estimator based on the AS moment conditions and the two step GMM estimator based

on either the AS or Sys moment conditions. These are more involved to obtain since the AS

moment conditions are a quadratic function of θ and we have to involve a covariance matrix

estimator for the two step GMM estimators. For reasons of brevity, we therefore refrain from

constructing these.

Corollary 2 shows that the identification of θ by the AS and Sys moment conditions when

T exceeds three does not automatically lead to standard behavior of one and two step GMM

estimators. It can be shown that, under the conditions of Theorem 1, the limiting behavior

of one- and two-step GMM estimators is similar to the non-standard results in e.g. Madsen

(2003) or Kruiniger (2009). Conducting inference based on these estimators exploiting the

usual Wald or t statistic is therefore hard when θ0 is close to one.

In order to fully exploit the identification for the AS and Sys moment conditions, we

therefore make use of several identification robust GMM statistics, i.e. the GMM-AR statistic

of Anderson and Rubin (1949) and Stock and Wright (2000), the GMM-LM statistic of Newey

and West (1987) and the KLM statistic of Kleibergen (2005). These identification robust
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GMM statistics, which are defined in Appendix B, are size correct for all values of θ0.
12 Since

θ is identified by the AS and Sys moment conditions, they also have discriminatory power.

For settings of θ0 and the nuisance parameters for which no identification issues exist,

both the GMM-LM and KLM statistics are effi cient and more powerful than the GMM-AR

statistic. This standard notion of effi ciency does, however, not apply to values of θ0 close to

one which is also revealed by the inconsistency of the one and two step GMM estimators. To

establish a sense of effi ciency or optimality, we therefore in the next Section determine the

maximal attainable power for testing values of θ under the worst case settings where its true

value is one and the variance of the initial observations accords with (20).

5 Maximal attainable power in worst case setting

In this Section we construct the maximal attainable power curve under the worst case setting

which results from the identifying part of the sample moments as in equation (25). As

discussed previously, only the orthogonal complements with respect to Ajf (θ) of the AS and

Sys sample moments identify θ when T is larger than three. Expressions of the orthogonal

complements of Ajf (θ) for T = 4 and 5 for the AS and Sys moment conditions are stated in

Appendix A. In general they can be specified as

Ajf (θ)⊥ = (Gjf,T (θ)
... Gj2,T ) (31)

where T indicates the number of time periods and Gj2,T is such that G
j′
2,Tµ

j
f (θ, σ2) = 0. Fur-

thermore, Gjf,T (θ) is the only part of Ajf (θ)⊥ that depends on θ. The orthogonal complements

are such that the rotated robust AS and Sys moment conditions are quadratic in θ :

gf,T (θ) = Af (θ)j′⊥fN (θ) = aθ2 + bθ + d, (32)

with for

T=4: Sys a = 1
N

∑N
i=1

(
(∆yi2)2

0

)
, b = − 1

N

∑N
i=1

((yi3−yi1)2

∆yi2∆yi3

)
, d = 1

N

∑N
i=1

((yi4−yi1)∆yi3
∆yi3∆yi4

)
.

AS a = 1
N

∑N
i=1

(
(yi3−yi1)∆yi2

0

)
, b = − 1

N

∑N
i=1

((yi3−yi1)∆yi3+(yi4−yi1)∆yi2
∆yi2∆yi3

)
,

d = 1
N

∑N
i=1

((yi4−yi1)∆yi3
∆yi3∆yi4

)
.

T=5: Sys a = 1
N

∑N
i=1


(∆yi2)2

(yi3 − yi1)∆yi3

(∆yi3)2

0

0

 , b = − 1
N

∑N
i=1


(yi3 − yi1)2

(yi4 − yi1)(yi4 − yi2)

(yi4 − yi2)2

∆yi2∆yi4

∆yi3∆yi4

 ,

12The GMM-LM statistic is size correct in this case because under the null hypothesis no parameters are

estimated.
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d = 1
N

∑N
i=1


(yi4 − yi1)∆yi3

(yi5 − yi1)∆yi4

(yi5 − yi2)∆yi4

∆yi2∆yi5

∆yi3∆yi5

 .

AS a =
∑N

i=1


(yi3 − yi1)∆yi2

(yi4 − yi1)∆yi3

(yi4 − yi2)∆yi3

0

0

 , b = − 1
N

∑N
i=1


(yi4 − yi1)∆yi2 + (yi3 − yi1)∆yi3

(yi4 − yi1)∆yi4 + (yi5 − yi1)∆yi3

(yi4 − yi2)∆yi4 + (yi5 − yi2)∆yi3

∆yi2∆yi4

∆yi3∆yi4

 ,

d = 1
N

∑N
i=1


(yi4 − yi1)∆yi3

(yi5 − yi1)∆yi4

(yi5 − yi2)∆yi4

∆yi2∆yi5

∆yi3∆yi5

 .

The limiting sequence in (20) characterizes the worst case for identifying θ. The robust

moment condition in (32) is the only part of the AS and Sys moment conditions that identifies

θ in this worst case setting. We can therefore use it to obtain the maximal attainable power

(MAP) of tests using the AS or SYS moment conditions of H0 : θ = θ0 with 95% significance

against the alternative (worst case) hypothesis H1 : θ = 1 with nuisance parameters that are

characterized by (20), see Lehmann and Romano (2005):

MAP j(θ0|H1) = limN→∞maxTS Pr
[
ts(θ0) > acts(θ0)|H1

]
j = AS, Sys

= limN→∞maxTS minS Pr
[
ts(θ0) > acts(θ0)|θ = 1

]
j = AS, Sys

(33)

where TS is the set of statistics testing H0, ts(θ0) is an element of the set TS, i.e. a statistic

that tests H0, acts(θ0) the 95% asymptotic critical value of ts(θ0) and S the set of processes

for the initial observations that satisfy Assumption 1 and the mean stationarity conditions

(6)-(7). We refer to the power function in (33) as the maximal attainable power curve. It

just focuses on the alternative hypothesis H1 : θ = 1 since the identification issues are most

relevant at this value of θ. The standard optimality results, if any exist, do not apply under

these conditions so we use the robust moments in (32) to establish them.

To construct the maximal attainable power curve, we first have to determine the slowest

rate at which the hypothesized value of θ under H0 can drift away from one, whilst the true

value of θ equals one, such that the sample moment (32) converges to a random variable that

is non-degenerate and remains finite with probability one. To determine this rate, we first

state the probability limits of a, b and d when the true value of θ is one.
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Theorem 2. Under Assumptions 1 and 2, the conditions in (2), finite fourth moments

of ci and uit, i = 1, . . . , N, t = 2, . . . , T, and ω = limθ0→1E((ci − (1 − θ0)yi1)2), the limit

behavior of the different components of gf,T (θ) when the true value of θ is equal to one is

characterized by:

T=4, Sys: a→
p

(ω+σ2
2

0

)
, b→

p
−
(

(4ω+σ2
2+σ2

3)
ω

)
, d→

p

(
3ω+σ2

3
ω

)
.

T=4, AS: a→
p

(2ω+σ2
2

0

)
, b→

p
−
(

(5ω+σ2
2+σ2

3)
ω

)
, d→

p

(
3ω+σ2

3
ω

)
.

T=5, Sys: a→
p


ω + σ2

2

2ω2 + σ2
3

ω2 + σ2
3

0

0

 , b→
p
−


4ω + σ2

2 + σ2
3

6ω + σ2
3 + σ2

4

4ω + σ2
3 + σ2

4

ω

ω

 , d→
p


3ω + σ2

3

4ω + σ2
4

3ω + σ2
4

ω

ω

 .

T=5, AS: a→
p


2ω + σ2

2

3ω + σ2
3

2ω + σ2
3

0

0

 , b→
p
−


5ω + σ2

2 + σ2
3

7ω + σ2
3 + σ2

4

5ω + σ2
3 + σ2

4

ω

ω

 , d→
p


3ω + σ2

3

4ω + σ2
4

3ω + σ2
4

ω

ω

 .

Proof. see Appendix A.

The parameter ω in Theorem 2 reflects the deviation from mean stationarity. Mean

stationarity corresponds with a zero value of ω. Theorem 3 states the convergence rate for

the local to unity asymptotics that we employ to obtain the maximal attainable power curve.

Theorem 3. Under the conditions of Theorem 2, the drifting sequence for θ under H 0 for

the robust moments gf,T (θ) is such that:

1. When ω = 0, σ2
t = σ2, t = 2, . . . T : θ = 1 + e

4√N
,

2. When ω 6= 0 or σ2
t 6= σ2, for at least one value of t, t = 2, . . . T − 1 : θ = 1 + e√

N
,

with e < 0 a finite constant.

Proof. see Appendix A.

The quartic root convergence rate in Theorem 3 results since the robust moment equation

(32) is quadratic in θ. When we specify θ as 1 + e
Nξ and ω = 0, σ2

t = σ2, t = 2, . . . T, all

elements which are linear in e cancel out in the limit. We are then left with the quadratic

term in e and components that converge at the rate 1√
N
. A quartic root convergence rate,

i.e. ξ = 1
4 , then makes all these components of the same order of magnitude in the sample

size.
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Instead of using the robust moment equation in (32) for testing hypotheses on θ, it can

also be used to estimate θ. The estimator that results from it, is, however, a worst case

estimator since it only does relatively well under worst case DGPs. For DGPs with values of

θ less than one, estimators based on the other moment conditions outperform it. Alongside

this suboptimality also its large sample distribution is, identical to the standard one-step

and two-step GMM estimators, non-standard. This holds since the expected value of the

discriminant of the quadratic equation (32) is equal to zero under the worst case DGPs, i.e.

case 1 in Theorem 3. The estimator then has a quartic root convergence rate and a non-

standard large sample distribution. Remarkably, a quartic root convergence rate is also found

by Ahn and Thomas (2006) and Kruiniger (2013, Theorem 4) for random effects maximum

likelihood estimators.

Theorem 3 shows that mean stationarity (6)-(7), under which ω = 0, and variances that

are constant over time lead to the slowest convergence rate for θ. It implies that jointly with

(20) this setting provides the worst case data generating process under θ0 = 1. Therefore,

to construct the maximal attainable power curve, we first obtain an approximation of the

finite sample distribution of the GMM-AR statistic which tests H0 : θ = 1 + e
4√N

just using

the robust moments in (32) whilst the true value of θ is equal to one jointly with (20). This

particular statistic can be written as:

GMM-AR(e) = Ngf,T (e)′V̂gg(e)−1gf,T (e), (34)

with gf,T (e) the moments in (32) evaluated at θ = 1 + e
4√N

and V̂gg(e) the (Eicker-White)

covariance matrix estimator of the covariance matrix of gf,T (e). The next Theorem states its

large sample distribution.

Theorem 4. Under the conditions of Theorem 2 and when the true value of θ is equal to

one, ω = 0, σ2
t = σ2, t = 2, . . . T, the large sample distribution of the GMM-AR statistic (34)

for testing the hypothesis H 0 : θ = 1 + e
4√N

, is characterized by

χ2(δ, pmax), (35)

with e4E(a)′ [B(N)′VabdB(N)]−1E(a), pmax the number of elements gT (θ), so when T = 4,

pmax = 2 or when T = 5, pmax = 5, δ = (eσ)4
(
ιp
0

)′
(B(N)′VabdB(N))−1

(
ιp
0

)
,

B(N) = (ι3 ⊗ Ipmax) + e
4√N

[
(2 + e

4√N
)(e1,3 ⊗ Ipmax) + (e2,3 ⊗ Ipmax)

]
, (36)

Vabd the covariance matrix of a, b and d, ι3 a 3 × 1 dimensional vector of ones, Ipmax the

pmax× pmax dimensional identity matrix, e1,3 and e2,3 the first and second 3× 1 dimensional

unity vectors and χ2(δ, pmax) a non-central χ2 distribution with non-centrality parameter δ

and degrees of freedom parameter pmax.
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Proof. see Appendix A.

The expression of the large sample distribution in Theorem 4 depends on the sample size.

When the sample size goes to infinity, e
4√N

converges to zero so B(N) converges to (ι3⊗Ipmax).

For most sample sizes, e
4√N

is, however, non-negligible and therefore important to incorporate

in the expression of the large sample distribution to obtain an accurate approximation of the

finite sample distribution of the GMM-AR statistic.

There are more moment conditions in gf,T (e) than the number of elements of θ, which is

one, so they over identify θ. More powerful statistics for testing a point null hypothesis on θ

can therefore be constructed using a weighted average of the moments gf,T (e) instead of all

of them. We construct the maximal attainable power curve using the (infeasible) weighted

average of the robust sample moments in the GMM-AR statistic (34) that leads to the largest

value of the non-centrality parameter of the large sample distribution.

Theorem 5. Under the conditions of Theorem 2 and when the true value of θ is equal to

one, the maximal attainable power curve for testing H 0 : θ = 1 + e
4√N

is

χ2(δ, 1), (37)

with δ = e4
(
ιp
0

)′
(B(N)′VabdB(N))−1

(
ιp
0

)
, ιp a p × 1 dimensional vector of ones and p equals

1 when T = 4 and 3 when T = 5.

Proof. see Appendix A.

Figure 1 shows the maximal attainable power curves that result from the AS and Sys

moment conditions when T = 4 and 5. Figure 1 shows that the maximal attainable power

curves that result from the AS and Sys moment conditions are identical which is surprising.

Apparently no power is lost by exploiting the AS moment conditions only. This novel result

documents that imposing mean stationarity is not only unnecessary, but also superfluous.

Furthermore, Figure 1 also shows that the maximal attainable power curves that result for

a larger number of time series observations dominate those that result for smaller number of

time series observations.
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Figure 1. Power envelope for testing H0 : θ = 1 + e
4√N
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Note: 95% significance level, true value of θ is one, N=500, Sys & T=4 (dashed), AS & T=4 (dotted),

Sys & T=5 (solid), AS & T=5 (dash-dotted).

5.1 Large individual fixed effect variance

Sofar we have focused on highly persistent panel data resulting from a large autoregressive

parameter. However, the representation of the moment conditions and their derivatives in

Theorem 1 applies to any setting where the variance of the initial observations gets large.

The expression of the initial observation in (7) shows that its variance becomes large when

either the variance of the initial disturbance term, ui1, or the individual specific fixed effect,

µi, become large. Theorem 1 and the resulting subsequent Theorems focus on a large variance

that results from the initial disturbance term. This occurs when the initial observation results

from the unconditional distribution of an AR(1) model and the autoregressive parameter is

close to unity. Theorem 1 does, however, extend to the case where jointly with the sample

size, the individual specific effect variance becomes large in such a manner that (20) holds.

This drifting sequence applies to any value of the autoregressive parameter so the resulting

identification issues are then no longer confined to the unit root value. Hence, they also apply

to cases with only moderate autoregressive dynamics, but a large variance of the unobserved

heterogeneity.

For Theorem 1 and subsequent Theorems to cover a large individual fixed effect vari-

ance, we have to minorly change the specification of Af (θ, θ0), Aq(θ, θ0), Bf (θ, θ0), Bq(θ, θ0),
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µf (θ, θ0, σ
2) and µq(θ, θ0, σ

2)13 accordingly. For example, the expressions of Af (θ, θ0) when

T = 4 for the AS and Sys moment conditions are:

AS: AASf (θ, θ0) =


θ0 − 1− θ 1 0

(θ0 − θ)(θ0 − 1) θ0 − 1− θ 1

θ0(θ0 − θ)(θ0 − 1) θ0(θ0 − 1− θ) θ0

(1− θ)(θ0 − θ − 1) 1− θ 0

 ,

Sys: ASysf (θ, θ0) =


θ0 − 1− θ 1 0

(θ0 − θ)(θ0 − 1) θ0 − 1− θ 1

θ0(θ0 − θ)(θ0 − 1) θ0(θ0 − 1− θ) θ0

1− θ 0 0

(1− θ)(θ0 − 1) 1− θ 0

 .

(38)

The expressions in (38) are identical to those in (29) when θ0 = 1. Interestingly, the part of

the orthogonal complement of Af (θ, θ0) which depends on θ, i.e. Gjf,T (θ) in (31) , remains

unchanged:

AS: GASf,T=4(θ) =


−(1− θ)

0

0

1

 , GAS2,T=4 =


0

−θ0

1

0



Sys: GSysf,T=4(θ) =


− (1− θ)

0

0

−θ
1

 , GSys2,T=4 =


0

−θ0

1

0

0

 .

(39)

The robust moments which result from the orthogonal complement in (32) are therefore

insensitive to two sets of nuisance parameters: the initial observations and the individual

specific fixed effects. The robust moments still constitute a quadratic polynomial. Theorem

3 shows that the resulting convergence speed (of an estimator or a local-to-true-value hypoth-

esized parameter value) is of a lower order in the sample size when the expected value of the

discriminant of the quadratic polynomial equals zero. This occurs under a unit root value of

the autoregressive parameter paired with mean-stationarity and constant variances over time.

The expected value of the discriminant also equals zero when the autoregressive parameter is

zero again paired with mean-stationarity and constant variances over time. Hence, the worst

case data generating processes at a zero value of the autoregressive parameter also imply a

quartic root convergence rate. For all other values of the autoregressive parameter besides

zero and one, the expected value of the discriminant is not equal to zero so the convergence

13 Instead of Af (θ), Bf (θ), . . . we now use Af (θ, θ0), Bf (θ, θ0), . . . since the results no longer apply to just

the unit root value of θ0.
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rate is then equal to the square root of the sample size under the worst case data generating

processes. The slower convergence rate at a zero value of the autoregressive parameter results

because of the identification issues that occur for large values of the variance of the individual

specific fixed effect. Since these are considered less pervasive then those that occur because

of the unit root value, we have only covered them briefly here.

6 Power envelope and maximal attainable power curve

Theorems 1, 4 and the convergence rate of the maximal attainable power curve in Theorem

3 show that the limiting behavior of estimators is not uniform since it depends on the data

generating process at hand. Wald statistics are then size distorted. Under the null hypothesis,

the limiting distributions of the GMM-AR, GMM-LM and KLM statistics based on the AS

or Sys moment conditions do not depend on nuisance parameters so they remain size correct

irrespective of the data generating process. The recommended statistic to use amongst these

is then the one which has the largest discriminatory power.

When the true value of θ is less than one, so θ is identified by all moment conditions, both

the GMM-LM and KLM statistics are effi cient and so are Wald statistics based on estimators

that result from the moment conditions. When θ = 1, it is, however, not obvious which

statistic is optimal. We therefore construct the lower envelope of the power curves of the

GMM-AR14, GMM-LM and KLM statistics to determine which one, if any, coincides with

the maximal attainable power curve. The lower envelope of power curves results from the

worst case setting. The worst case large sample distributions of the GMM-AR, GMM-LM

and KLM statistics are stated in Theorem 6.

Theorem 6. Under the conditions from Theorem 2, the worst case large sample distribu-

tions, which apply under (20), mean stationarity (6)-(7) and σ2
t = σ2, t = 2, . . . T, of the

GMM-AR, GMM-LM and KLM statistics for testing the hypothesis H 0 : θ = 1 + e
4√N

whilst

the true value of θ equals one are characterized by

GMM-AR(e) : χ2(δGMM -AR, pGMM -AR)

KLM(e) : χ2(δKLM , 1)

GMM-LM(e) : χ2(δGMM -LM , 1),

(40)

14We note that this is the GMM-AR statistic that is based on all sample moments which is defined in

Appendix B. It therefore differs from the one in (34).
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with pGMM -AR = 1
2(T + 1)(T − 2) for the Sys moment conditions, pGMM -AR = 1

2(T + 1)(T −
2)− 1 for the AS moment conditions,

δGMM -AR = (eσ)4
(
ιp
0

)′
(B(N)′VabdB(N))−1

(
ιp
0

)
δKLM = δGMM -AR

δGMM -LM = (eσ)4
(
ιp
0

)′
(B(N)′VabdB(N))−

1
2 P

(B(N)′VabdB(N))−
1
2 (Gf (e)′Aqψ

0
)

(B(N)′VabdB(N))−
1
2
(
ιp
0

)
T > 4

= δGMM -AR T = 4,

(41)

with p equal to 1 when T = 4 and 3 when T = 5, ψ an independent normal (T − 2)-

dimensional random vector with mean zero and covariance matrix

limN→∞ var

hN (θ0,N )


y1iui2
...

y1iuiT


 . (42)

Proof. see Appendix A.

Theorem 6 shows that the lower power envelope of the KLM statistic coincides with the

maximal attainable power curve as described in Theorem 5. For the GMM-LM statistic this

only occurs when T = 4. It shows that the KLM statistic is, in a sense, optimal when θ is

equal to one. Since the KLM statistic is also effi cient when θ is less than one, it is effi cient

both when θ is less than one or equal to one.

Figures 2 and 3 show the power envelopes of 95% significance tests using the GMM-AR,

GMM-LM and KLM statistics for the AS and Sys moment conditions under a worst case

DGP when T equals four and five respectively. The worst case DGP that we use results from

DGP 1 in Section 3 with a large value of σ2
c (ten) compared to σ

2
t , t = 1, . . . , T (one). The

results of Theorems 5 and 6 follow from a quartic root convergence rate, and to provide a

numerical assessment we therefore fix N = 2000, a relatively large value. We next simulate

for a wide range of values for θ, which together with N provides a mapping to the constant

e in Figures 2 and 3 (horizontal axis).

Since the Sys moment conditions do not identify θ when its true value is equal to one

and T equals three, all rejection frequencies under a worst case DGP are flat at 5% when T

equals three. To reiterate that the Dif, Lev or non-linear part of the AS moment conditions

by themselves do not identify θ when its true value is one, Figures 2 and 3 below also include

the rejection frequencies that result from the GMM-AR statistic with Dif moment conditions.

These rejection frequencies equal 5% for all values of θ which shows that the Dif moment

conditions do not identify θ when its true value is equal to one. The same results are obtained

when we use the Lev or NL moment conditions or instead of the GMM-AR statistic use the

GMM-LM or KLM statistic.
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Figures 2 and 315 provide a numerical proof of the main results from Theorems 5 and 6.

Figure 2 shows that, when T = 4, the power envelopes of the KLM and GMM-LM statistics

are on the maximal attainable power curve when we use the Sys or AS moment conditions

as stated in Theorem 6. The power envelopes of the GMM-AR statistic are below this power

curve. Figure 2 also shows that the power envelope of the GMM-AR statistic which uses the

AS moment conditions is slightly above the one which results from the GMM-AR statistic

that uses the Sys moment conditions. This results since, as stated in Theorem 6, the degrees

of freedom parameter of the non-central χ2 large sample distribution in case of the AS moment

conditions is one less than the one which results for the Sys moment conditions while they

have the same non-centrality parameter.

Figure 2: Power envelopes and maximal attainable power curve when T = 4

­2.5 ­2 ­1.5 ­1 ­0.5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e

R
ej

ec
tio

n 
fr

eq
ue

nc
y

Note: Sys moment conditions: KLM statistic (dashed), GMM-AR (solid with plusses),

GMM-LM (solid with triangles), maximal attainable power curve (solid).

AS moment conditions (dotted lines); Dif moment conditions: GMM-AR (solid with diamonds). N=2000.

15For every statistic and the maximal attainable power curve, we use both the Sys and AS moment condi-

tions. For all of these, the results from the AS moment conditions are reflected by a dotted line so there are

four dotted lines. Most of these dotted lines are not visible since they are on top of some of the other lines in

the figures.
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Figure 3: Power envelopes and maximal attainable power curve when T = 5
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Note: Sys moment conditions: KLM statistic (dashed), GMM-AR (solid with plusses),

GMM-LM (solid with triangles), maximal attainable power curve (solid).

AS moment conditions (dotted lines); Dif moment conditions: GMM-AR (solid with diamonds). N=2000.

Figure 3 shows that, when T = 5, the power envelopes that result from using the KLM

statistic with either the AS or Sys moment conditions are on the maximal attainable power

curve. Figure 3 also shows that the power envelopes which result from the GMM-LM and

GMM-AR statistics are below this power curve which is in line with Theorem 6 since the

simplification of the worst case large sample distribution of the GMM-LM statistic only

applies to T = 4. The power envelopes that result from using either the AS or Sys moment

conditions are the same for the KLM and GMM-LM statistics while those that result from

the GMM-AR statistic using the AS moment conditions are slightly above the ones for the

GMM-AR statistic using the Sys moment conditions. This again results from the smaller

degrees of freedom parameter of the worst case non-central χ2 limiting distribution of the

GMM-AR statistic when we use the AS moment conditions compared to the Sys moment

conditions while they have identical non-centrality parameters.
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7 Conclusions

We show that the Dif, Lev and NL moment conditions separately do not identify the parame-

ters in dynamic panel data models for a general number of time periods. This results from the

divergence of the initial observations for some plausible data generating processes involving

highly persistent panel data. When there are more than three time periods, however, the AS

and Sys moment conditions do lead to identification.

Despite identification from four time periods onwards, GMM estimators based on the AS

and Sys moment conditions behave in a non-standard manner so inference based on standard

Wald statistics is diffi cult. We therefore use size correct GMM statistics to conduct inference.

To recommend which one to use, we compare their worst case rejection frequencies with the

maximal attainable power curve under worst case settings. The resulting rejection frequencies

of the GMM-AR statistic are below this power curve whilst the rejection frequencies of the

GMM-LM statistic are on it when there are four time periods and below it for more time

periods. The rejection frequencies of the KLM statistic are always on the maximal attainable

power curve for all number of time periods. This makes it our recommended statistic since

it is also effi cient for smaller values of the autoregressive parameter.

The maximal attainable power curves under worst case settings that result for the AS

and Sys moment conditions coincide for all number of time periods. It shows that the ad-

ditional assumption of mean stationarity made by the Sys moment conditions is not helpful

for identification. This results since the worst case DGPs all satisfy the mean stationarity

conditions.

The worst case DGPs imply a large variance of the initial observations which hampers

identification. This large variance can either result from the disturbance term of the initial

observation or from the individual specific fixed effect. In the first case, the identification

issues are confined to the unit root value of the autoregressive parameter. In the second case,

they can occur at any value of the autoregressive parameter. The first case is considered

more pervasive so we primarily focus on it. Our results, however, extend in a straightforward

manner to the second case as well.

We have analyzed identification in a worst case scenario setting. The identification is-

sues of the autoregressive parameters at the unit root value are resolved when the mean-

stationarity condition is violated (in which case we cannot use the Lev and Sys moment

conditions) or when the variances of the disturbances are not constant over time.

Finally, for expository purposes we only have analyzed the first-order autoregressive panel

data model. The extension to panel data models with multiple endogenous regressors, e.g.

dynamic models with additional endogenous regressors, is an important area for future re-

search.

27



Appendix A. Proofs

Proof of Theorem 1. T=4. We can write the Dif sample moments and their derivatives
as

fDifN (θ) = 1
N

∑N
i=1

 yi1∆yi3 − θyi1∆yi2

yi1∆yi4 − θyi1∆yi3

yi2∆yi4 − θyi2∆yi3


= 1

N

∑N
i=1

 θ0,N − 1− θ 1 0

(θ0,N − θ) (θ0,N − 1) θ0,N − 1− θ 1

(θ0,N − θ) θ0,N (θ0,N − 1) θ0,N (θ0,N − 1− θ) θ0,N


 yi1ui2

yi1ui3

yi1ui4

+

(θ0,N − θ)(θ0,N − 1)yi1ui1

 1

θ0,N

θ2
0,N

+ 1
N

∑N
i=1

 0

0

(ui2 + (θ0 − 1)ui1)(∆yi4 − θ∆yi3)

 ,

qDifN (θ) = − 1
N

∑N
i=1

 yi1∆yi2

yi1∆yi3

yi2∆yi3


= − 1

N

∑N
i=1

 1 0 0

θ0,N − 1 1 0

θ0,N (θ0,N − 1) θ0,N 0


 yi1ui2

yi1ui3

yi1ui4

− (θ0,N − 1)yi1ui1

 1

θ0,N

θ0,N


− 1
N

∑N
i=1

 0

0

(ui2 + (θ0,N − 1)ui1)∆yi3

 .

Under (16) and (20), these expressions are approximately equal to:

fDifN (θ) ≈ 1
N

∑N
i=1

 −θ 1 0

0 −θ 1

0 −θ 1



 yi1ui2

yi1ui3

yi1ui4

− ι3 limN→∞E((1− θ0,N )u2
i1

+

1
N

∑N
i=1

 0

0

(ui2 + (θ0,N − 1)ui1)(ui4 − θui3)

 ,

qDifN (θ) ≈ − 1
N

∑N
i=1

 1 0 0

0 1 0

0 1 0



 yi1ui2

yi1ui3

yi1ui4

− ι3 limN→∞E((1− θ0,N )u2
i1)


− 1
N

∑N
i=1

 0

0

(ui2 + (θ0,N − 1)ui1)ui3

 .

28



Since

hN (θ0,N )√
N

N∑
i=1

 yi1ui2

yi1ui3

yi1ui4

→
d

 ψyi1ui2
ψyi1ui3
ψyi1ui4

 = ψ,

√
N



1

N

N∑
i=1



ui1ui2

ui1ui3

ui1ui4

u2
i2

ui2ui3

ui2ui4

u2
i3

ui3ui4


−



0

0

0

σ2
2

0

0

σ2
3

0




→
d



ψui1ui2
ψui1ui3
ψui1ui4
ψui2ui2
ψui2ui3
ψui2ui4
ψui3ui3
ψui3ui4


= ψuu,

with ψ and ψuu normally distributed random variables, it is readily seen that

ADiff (θ) =

 −θ 1 0

0 −θ 1

0 −θ 1

 , BDif
q (θ) =

 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

 ,

ADifq (θ) =

 1 0 0

0 1 0

0 1 0

 , BDif
f (θ) =

 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −θ 1 0 0

 ,

µDiff (θ, σ2) =

 0

0

0

 , µDifq (θ, σ2) =

 0

0

0

 ,

CDiff (θ) = ADiff (θ)ι3, C
Dif
q (θ) = ADifq (θ)ι3.

since Assumption 1 implies that limθ0,N↑1E((1− θ0,N )ui1uij) = 0, j = 2, 3.

We can write the Lev sample moments and their derivatives as

fLevN (θ) = 1
N

∑N
i=1

(
yi3∆yi2 − θyi2∆yi2

yi4∆yi3 − θyi3∆yi3

)

= 1
N

∑N
i=1

(
1− θ 0 0

(1− θ)(θ0,N − 1) 1− θ 0

) yi1ui2

yi1ui3

yi1ui4

+ (1− θ)(θ0,N − 1)yi1ui1

(
1

θ0,N

)
+

1
N

∑N
i=1

(
(1 + (θ0,N − θ))(θ0,N − 1)ui1∆yi2 + (θ0,N − θ)ui2∆yi2 + ui3∆yi2

(1 + (θ0,N − θ)(1 + θ0,N ))(θ0,N − 1)ui1∆yi3 + (θ0,N − θ)ui3∆yi3

)
+

1
N

∑N
i=1

(
0

(θ0,N − θ)θ0,Nui2∆yi3 + ui4∆yi3

)
,
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qLevN (θ) = − 1
N

∑N
i=1

(
yi2∆yi2

yi3∆yi3

)

= − 1
N

∑N
i=1

(
1 0 0

θ0,N − 1 1 0

) yi1ui2

yi1ui3

yi1ui4

− (θ0,N − 1)yi1ui1

(
1

θ0,N

)

− 1
N

∑N
i=1

(
(θ0,N − 1)ui1∆yi2 + ui2∆yi2

(1 + θ0,N )(θ0,N − 1)ui1∆yi3 + ui3∆yi3 + θ0,Nui2∆yi3

)
.

Under (16) and (20), these expressions are approximately equal to:

fLevN (θ) = 1
N

∑N
i=1

(
1− θ 0 0

0 1− θ 0

)
 yi1ui2

yi1ui3

yi1ui4

− ι3 limN→∞E((1− θ0,N )u2
i1)

+

1
N

∑N
i=1

(
(1− θ)u2

i2 + ui2ui3

(1− θ)u2
i3 + (1− θ)ui2ui3 + ui3ui4

)
,

qLevN (θ) = − 1
N

∑N
i=1

(
yi2∆yi2

yi3∆yi3

)

= − 1
N

∑N
i=1

(
1 0 0

0 1 0

)
 yi1ui2

yi1ui3

yi1ui4

− ι3E(limθ0,N↑1(1− θ0,N )u2
i1)


− 1
N

∑N
i=1

(
u2
i2

u2
i3 + ui2ui3

)
,

so this implies that

ALevf (θ) =

(
1− θ 0

0 1− θ

)
,

BLev
f (θ) =

(
0 0 0 1− θ 1 0 0 0

0 0 0 0 1− θ 0 1− θ 1

)
,

ALevq (θ) =

(
1 0 0

0 1 0

)
,

BLev
q (θ) =

(
0 0 0 1 0 0 0 0

0 0 0 0 1 0 1 0

)
,

µLevf (θ, σ2) = (1− θ)
(
σ2

2

σ2
3

)
, µLevq (θ, σ2) =

(
σ2

2

σ2
3

)
.

30



We can write the NL sample moment and its derivative as

fNLN (θ) = 1
N

∑N
i=1 (yi4 − θyi3) (∆yi3 − θ∆yi2)

= 1
N

∑N
i=1

(
(1− θ)(θ0,N − θ − 1) (1− θ) 0

) yi1ui2

yi1ui3

yi1ui4

+ (θ0,N − 1)(θ0,N − θ)(1− θ)yi1ui1

+ 1
N

∑N
i=1

(
(θ0,N − 1)(1 + (θ0,N − θ)(1 + θ0,N ))ui1 + θ0,N (θ0,N − θ)ui2

)
(∆yi3 − θ∆yi2) ,

+ 1
N

∑N
i=1((θ0,N − θ)ui3 + ui4) (∆yi3 − θ∆yi2)

qNLN (θ) = − 1
N

∑N
i=1

(
θ0,N − 2θ 1 0

) yi1ui2

yi1ui3

yi1ui4

+ (θ0,N − 1)(1 + θ0,N − 2θ)yi1ui1

− 1
N

∑N
i=1 [(θ0,N − 1)(1 + (θ0,N − 2θ)(1 + θ0,N ))ui1 + θ0,N (θ0,N − 2θ)ui2 + (θ0,N − 2θ)ui3 + ui4] ∆yi2

− 1
N

∑N
i=1 [(1 + θ0,N )(θ0,N − 1)ui1 + θ0,Nui2 + ui3] ∆yi3.

Under (16) and (20), these expressions are approximately equal to:

fNLN (θ) = 1
N

∑N
i=1

(
θ(θ − 1) 1− θ 0

)
 yi1ui2

yi1ui3

yi1ui4

− ι3E(limθ0,N↑1(1− θ0,N )u2
i1)

+

1
N

∑N
i=1 ((1− θ)ui2 + (1− θ)ui3 + ui4) (ui3 − θui2) ,

qNLN (θ) = − 1
N

∑N
i=1

(
1− 2θ 1 0

)
 yi1ui2

yi1ui3

yi1ui4

− ι3E(limθ0,N↑1(1− θ0,N )u2
i1)


− 1
N

∑N
i=1((1− 2θ) (ui2 + ui3) + ui4)ui2

− 1
N

∑N
i=1 [ui2 + ui3]ui3,

so this implies that:

ANLf (θ) =
(
θ(θ − 1) 1− θ

)
,

BNL
f (θ) =

(
0 0 0 −θ(1− θ) (1− θ)2 −θ 1− θ 1

)
,

ANLq (θ) =
(

2θ − 1 −1
)
,

BNL
q (θ) =

(
0 0 0 2θ − 1 2θ − 2 −1 −1 0

)
,

µNLf (θ, σ2) = (1− θ)
(
σ2

3 − θσ2
2

)
, µNLq (θ, σ2) = 2 (θ − 1)σ2

2 − σ2
3.
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Finally, regarding AS and Sys moment conditions we simply have

ASysf (θ) =

 ADiff (θ)

ALevf (θ)
... 0

 , ASysq (θ) =

(
ADifq (θ)

ALevq (θ)
... 0

)
,

BSys
f (θ) =

(
BDif
f (θ)

BLev
f (θ)

)
, BSys

q (θ) =

(
BDif
q (θ)

BLev
q (θ)

)
,

µSysf (θ, σ2) =

(
µDiff (θ, σ2)

µLevf (θ, σ2)

)
, µSysq (θ, σ2) =

(
µDifq (θ, σ2)

µLevq (θ, σ2)

)
.

AASf (θ) =

 ADiff (θ)

ANLf (θ)
... 0

 , AASq (θ) =

(
ADifq (θ)

ANLq (θ)
... 0

)
,

BAS
f (θ) =

(
BDif
f (θ)

BNL
f (θ)

)
, BAS

q (θ) =

(
BDif
q (θ)

BNL
q (θ)

)
,

µASf (θ, σ2) =

(
µDiff (θ, σ2)

µNLf (θ, σ2)

)
, µASq (θ, σ2) =

(
µDifq (θ, σ2)

µNLq (θ, σ2)

)
.

T=5. Using similar calculations we can write:

ψ =


ψyi1ui2
ψyi1ui3
ψyi1ui4
ψyi1ui5

 ,

ADiff (θ) =



−θ 1 0 0

0 −θ 1 0

0 −θ 1 0

0 0 −θ 1

0 0 −θ 1

0 0 −θ 1


, µDiff (θ, σ2) =



0

0

0

0

0

0


,

ALevf (θ) =

 1− θ 0 0 0

0 1− θ 0 0

0 0 1− θ 0

 , µLevf (θ, σ2) = (1− θ)

 σ2
2

σ2
3

σ2
4

 ,

ANLf (θ) =

(
θ(θ − 1) 1− θ 0 0

0 θ(θ − 1) 1− θ 0

)
, µNLf (θ, σ2) = (1− θ)

(
σ2

3 − θσ2
2

σ2
4 − θσ2

3

)
.

General T. We have for linear moment conditions, i.e. j = Dif, Lev, Sys, that

µjf (θ, σ2) = (1− θ)µjq(θ, σ2),

with kj the number of moment conditions. Furthermore, due to linearity of the Dif, Lev and

Sys moment conditions µjq(θ, σ2) and Ajq(θ) do not depend on θ.
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Orthogonal complements of AASf (θ) and ASysf (θ) for T = 4 and 5. We specify the

orthogonal complements as in (31), which we repeat here for convenience:

Ajf (θ)⊥ = (Gjf,T (θ)
... Gj2,T ),

where T indicates the number of time periods and Gj2,T is such that G
j′
2,Tµ

j
f (θ, σ2) = 0. This

notation is used in the proofs of subsequent theorems.

T=4. From the expressions of Ajf (θ) and µjf (θ, σ2) in (29), Gjf,T=4(θ) and Gj2,T=4 for j = AS,

Sys result as:

GASf,T=4(θ) =


−(1− θ)

0

0

1

 , GAS2,T=4 =


0

1

−1

0

 ,

GSysf,T=4(θ) =


− (1− θ)

0

0

−θ
1

 , GSys2,T=4 =


0

1

−1

0

0

 .

From these expresssions it follows that Ajf (θ)′⊥µ
j
f (θ, σ2) 6= 0, for j = AS, Sys.

T=5. The expressions for Ajf (θ), µjf (θ, σ2), Gjf,T=5(θ) and Gj2,T=5 for j = AS, Sys are:

AASf (θ) =



−θ 1 0 0

0 −θ 1 0

0 −θ 1 0

0 0 −θ 1

0 0 −θ 1

0 0 −θ 1

θ(θ − 1) 1− θ 0 0

0 θ(θ − 1) 1− θ 0


, µASf (θ, σ2) = (1− θ)



0

0

0

0

0

0

σ2
3 − θσ2

2

σ2
4 − θσ2

3


,

GASf,T=5(θ) =



−(1− θ) 0 0

0 −(1− θ) 0

0 0 −(1− θ)
0 0 0

0 0 0

0 0 0

1 0 0

0 1 1


, GAS2,T=5 =



0 0

0 0

0 0

1 0

−1 1

0 −1

0 0

0 0


,
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ASysf (θ) =



−θ 1 0 0

0 −θ 1 0

0 −θ 1 0

0 0 −θ 1

0 0 −θ 1

0 0 −θ 1

1− θ 0 0 0

0 1− θ 0 0

0 0 1− θ 0


, µSysf (θ, σ2) = (1− θ)



0

0

0

0

0

0

σ2
2

σ2
3

σ2
4


,

GSysf,T=5(θ) =



−(1− θ) 0 0

0 −(1− θ) 0

0 0 −(1− θ)
0 0 0

0 0 0

0 0 0

−θ 0 0

1 −θ −θ
0 1 1


, GSys2,T=5 =



0 0

0 0

0 0

1 0

−1 1

0 −1

0 0

0 0

0 0


,

From these expresssions it follows that Ajf (θ)′⊥µ
j
f (θ, σ2) 6= 0, for j = AS, Sys.

The above specification of Ajf (θ)⊥ as equal to (Gjf,T (θ)
... Gj2,T ) is such that (Ajf (θ)

...

Ajf (θ)⊥) is not invertible for the AS moment conditions both when T = 4 and 5. The invert-

ibility of (Ajf (θ)
... Ajf (θ)⊥) is not needed for the construction of the maximal attainable power

curve. It is, however, needed for obtaining the worst case large sample distributions of the

GMM-AR, GMM-LM and KLM statistics. Instead of the current specifcation of Ajf (θ)⊥, we

then use a specification of Ajf (θ)⊥ :

Ajf (θ)⊥ = (Gjf,T (θ)
... Gj2,T )Q,

with Q an identity matrix for the Sys moment conditions and a 2 × 1 matrix for the AS

moment conditions when T = 4 and a 5× 4 matrix when T = 5 which are such that

Q =
( 1
−(GAS′2,T=4V̂ff (θ)GAS2,T=4)−1GAS′2,T=4V̂ff (θ)GASf,T=4(θ)

)
T = 4

=
( I4

−((1
0)G

AS′
2,T=4V̂ff (θ)GAS2,T=4(

1
0))−1(1

0)
′
GAS′2,T=4V̂ff (θ)(GASf,T=4(θ)

... Gj2,T (0
1))

)
T = 5.

The specification of Q intends to economize on notation for the proof of Theorem 9. The

proof of Theorem 9 constructs the worst case large sample distributions of the GMM-AR,

GMM-LM and KLM statistics. The specification of Q stated above implies that the same

expressions can be used when these statistics use either the Sys or AS sample moments.
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Proof of Theorem 2. Since

∆yi2 = ci − (1− θ0)yi1 + ui2

∆yi3 = θ0(ci − (1− θ0)yi1) + (θ0 − 1)ui2 + ui3

∆yi4 = θ0(ci − (1− θ0)yi1) + θ0(θ0 − 1)ui2 + (θ0 − 1)ui3 + ui4

∆yi5 = θ0(ci − (1− θ0)yi1) + θ0(θ0 − 1)ui2 + θ0(θ0 − 1)ui3 + (θ0 − 1)ui4 + ui5

yi3 − yi1 = (1 + θ0)(ci − (1− θ0)yi1) + θ0ui2 + ui3

yi4 − yi1 = (1 + θ0 + θ0)(ci − (1− θ0)yi1) + θ0ui2 + θ0ui3 + ui4

yi4 − yi2 = (θ0 + θ0)(ci − (1− θ0)yi1) + (θ0 − 1)ui2 + θ0ui3 + ui4

yi5 − yi1 = (1 + θ0 + θ0 + θ0)(ci − (1− θ0)yi1) + θ0ui2 + θ0ui3 + θ0ui4 + ui5

yi5 − yi2 = (θ0 + θ0 + θ0)(ci − (1− θ0)yi1) + (θ0 − 1)ui2 + θ0ui3 + θ0ui4 + ui5

it holds that for

T=4, Sys:
a→

p

(E((ci−(1−θ0)yi1)2)+σ2
2

0

)
b→
p

(−(1+θ0)2E((ci−(1−θ0)yi1)2)−θ2
0σ

2
2−σ2

3

−θ2
0E((ci−(1−θ0)yi1)2)

)
d→

p

(θ0(1+θ0+θ2
0)E((ci−(1−θ0)yi1)2)+θ2

0(θ0−1)σ2
2+θ0σ2

3

θ3
0E((ci−(1−θ0)yi1)2)

)
.

T=4, AS:
a→

p

((1+θ0)E((ci−(1−θ0)yi1)2)+θ0σ2
2

0

)
b→
p

(−((1+θ0)2+1)E((ci−(1−θ0)yi1)2)−θ0(2θ0−1)σ2
2−σ2

3

−θ2
0E((ci−(1−θ0)yi1)2)

)
d→

p

(θ0(1+θ0+θ2
0)E((ci−(1−θ0)yi1)2)+θ2

0(θ0−1)σ2
2+θ0σ2

3

θ3
0E((ci−(1−θ0)yi1)2)

)
.
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T=5, Sys:

a→
p


E((ci − (1− θ0)yi1)2) + σ2

2

(1 + θ0)E((ci − (1− θ0)yi1)2) + θ0(θ0 − 1)σ2
2 + σ2

3

θ2
0E((ci − (1− θ0)yi1)2) + (θ0 − 1)2σ2 + σ2

3

0

0



b→
p
−


(1 + θ0)2E((ci − (1− θ0)yi1)2) + θ2

0σ
2
2 + σ2

3

(1 + θ0 + θ2
0)(θ0 + θ2

0)E((ci − (1− θ0)yi1)2) + θ2
0(θ2

0 − 1)σ2
2 + θ2

0σ
2
3 + σ2

4

(θ0 + θ2
0)2(θ0 + θ2

0)E((ci − (1− θ0)yi1)2) + (θ2
0 − 1)2σ2

2 + θ2
0σ

2
3 + σ2

4

θ2
0E((ci − (1− θ0)yi1)2)

θ3
0E((ci − (1− θ0)yi1)2)



d→
p


θ0(1 + θ0 + θ2

0)E((ci − (1− θ0)yi1)2) + θ2
0(θ0 − 1)σ2

2 + θ0σ
2
3

θ2
0(1 + θ0 + θ2

0 + θ3
0)E((ci − (1− θ0)yi1)2) + θ4

0(θ0 − 1)σ2
2 + θ2

0(θ0 − 1)σ2
3 + θ0σ

2
4

θ2
0(θ0 + θ2

0 + θ3
0)E((ci − (1− θ0)yi1)2) + θ0(θ0 − 1)(θ3

0 − 1)σ2
2 + θ2

0(θ0 − 1)σ2
3 + θ0σ

2
4

θ3
0E((ci − (1− θ0)yi1)2)

θ4
0E((ci − (1− θ0)yi1)2)

 .

T=5, AS:

a→
p


(1 + θ0)E((ci − (1− θ0)yi1)2) + σ2

2

θ0(1 + θ0 + θ2
0)E((ci − (1− θ0)yi1)2) + θ2

0(θ0 − 1)σ2
2 + θ0σ

2
3

θ2
0(1 + θ0)E((ci − (1− θ0)yi1)2) + (θ2

0 − 1)(θ0 − 1)σ2 + θ0σ
2
3

0

0



b→
p
−


−((1 + θ0)2 + 1)E((ci − (1− θ0)yi1)2)− θ0(2θ0 − 1)σ2

2 − σ2
3

(θ0 + 2θ2
0(1 + θ0 + θ2

0))E((ci − (1− θ0)yi1)2) + 2θ3
0(θ0 − 1)σ2

2 + θ0(2θ0 − 1)σ2
3 + σ2

4

θ2
0(1 + 2θ0(1 + θ0))E((ci − (1− θ0)yi1)2) + (2θ3

0 − θ0 − 1)(θ0 − 1)σ2
2 + θ0(2θ0 − 1)σ2

3 + σ2
4

θ2
0E((ci − (1− θ0)yi1)2)

θ3
0E((ci − (1− θ0)yi1)2)



d→
p


θ0(1 + θ0 + θ2

0)E((ci − (1− θ0)yi1)2) + θ2
0(θ0 − 1)σ2

2 + θ0σ
2
3

θ2
0(1 + θ0 + θ2

0 + θ3
0)E((ci − (1− θ0)yi1)2) + θ4

0(θ0 − 1)σ2
2 + θ2

0(θ0 − 1)σ2
3 + θ0σ

2
4

θ2
0(θ0 + θ2

0 + θ3
0)E((ci − (1− θ0)yi1)2) + θ0(θ0 − 1)(θ3

0 − 1)σ2
2 + θ2

0(θ0 − 1)σ2
3 + θ0σ

2
4

θ3
0E((ci − (1− θ0)yi1)2)

θ4
0E((ci − (1− θ0)yi1)2)

 .

Proof of Theorem 3. The components a, b and d in (32) are all sample averages so we

can characterize their large sample behavior by

a =
a
E(a) + εa√

N
, b =

a
E(b) + εb√

N
, d =

a
E(d) + εd√

N
,

36



with εa, εb and εd converging to mean zero random variables and the expressions for E(a),

E(b) and E(d), when the true value of θ is one, are stated in Theorem 5. To determine the

appropriate rate for the local to unity asymptotics regarding θ, we insert

θ = 1 + e
Nξ

in (32) and determine the appropriate value of ξ :

(1 + e
Nξ )2(E(a) + εa√

N
) + (1 + e

Nξ )(E(b) + εb√
N

) + E(d) + εd√
N
.

When ω = 0, σ2
t = σ2 and ξ = 1

4 :

(1 + e
4√N

)2(E(a) + εa√
N

) + (1 + e
4√N

)(E(b) + εb√
N

) + E(d) + εd√
N

=

E(a) + E(b) + E(d) + 1√
N

(εa + εb + εd + e2E(a))+
e

4√N
(E(b) + 2E(a)) + e√

N 4√N
(εb + 2εa) + e2εa

N =

1√
N

(εa + εb + εd + e2E(a)) + e√
N 4√N

(εb + 2εa) + e2εa
N

since E(a) + E(b) + E(d) = 0 and E(b) = −2E(a) so the appropriate specification for θ

follows from θ = 1 + e
4√N

.

When ω 6= 0, or σ2
t 6= σ2

j , for at least one t 6= j, and ξ = 1
2 :

(1 + e√
N

)2(E(a) + εa√
N

) + (1 + e√
N

)(E(b) + εb√
N

) + E(d) + εd√
N

=

E(a) + E(b) + E(d) + 1√
N

(εa + εb + εd + e(E(b) + 2E(a)))+
e
N (2εa + εb + eE(a)) + e2εa

N
√
N

=
1√
N

(εa + εb + εd − e(E(b) + 2E(a)))− e
N (2εa + εb − eE(a)) + e2εa

N
√
N

since E(a) + E(b) + E(d) = 0 but E(b) 6= −2E(a) so θ = 1 + e√
N
.

Proof of Theorem 4. Denote with gf,T (e) the moments in (32) evaluated at θ = 1 + e
4√N
.

When ω = 0 and σ2
t = σ2, gf,T (e) is characterized by

gf,T (e) = (1 + e
4√N

)2(E(a) + 1√
N
εa) + (1 + e

4√N
)(E(b) + 1√

N
εb) + E(d) + 1√

N
εd

= 1√
N

(εa + εb + εd + e2E(a)) + e√
N 4√N

(εb + 2εa) + e2εa
N .

Therefore, we have

√
Ngf,T (e) = e2E(a) + (εa(1 + 2e

4√N
+ e2εa√

N
) + εb(1 + e

4√N
) + εd,

and √
Ngf,T (e) ' N(e2E(a), B(N)′VabdB(N)),

with

B(N) = (ι3 ⊗ Ipmax) + e
4√N

[
(2 + e

4√N
)(e1,3 ⊗ Ipmax) + (e2,3 ⊗ Ipmax)

]
,
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and Vabd the covariance matrix of (a′
... b′

... d′)′, ι3 a 3 × 1 dimensional vector of ones, Ipmax

the pmax × pmax dimensional identity matrix, pmax equals the number of elements of a and

e1,3 and e2,3 the first and second 3× 1 dimensional unity vectors.

The individual moments gf,n(e) (gf,T (e) =
N∑
n=1

gf,n(e)) can be specified as:

gf,n(e) = (1 + e
4√N

)2an + (1 + e
4√N

)bn + dn

= (1 + e
4√N

)2[E(a) + εan ] + (1 + e
4√N

)[E(b) + εbn ] + [E(d) + εdn ]

= (E(a) + E(b) + E(d)) + e
4√N

(2E(a) + E(b)) + e2√
N
E(a)+

εan + εbn + εdn + e
4√N

(2εan + εbn) + e2√
N
εan

= e2√
N
E(a) + εan + εbn + εdn + e

4√N
(2εan + εbn) + e2√

N
εan ,

with a = 1
N

N∑
n=1

an, b = 1
N

N∑
n=1

bn, d = 1
N

N∑
n=1

dn, εan = an − E(a), εbn = bn − E(b), εdn =

dn − E(d), so taking gt,n(e) is deviation from its sample average gf,T (e) results in

gf,n(e)− gf,T (e) = εan + εbn + εdn + e
4√N

(2εan + εbn)− 1√
N

((εa(1 + 2e
4√N

+ e2εa√
N

) + εb(1 + e
4√N

) + εd)

From the above, it then straightforwardly follows that

V̂gg(e) = 1
N

∑N
i=1 (gf,n(e)− gf,T (e)) (gf,n(e)− gf,T (e))′ ' B(N)′VabdB(N),

so the large sample distribution of the GMM-AR statistic is characterized by

χ2(δ, pmax),

with δ = e4E(a)′ [B(N)′VabdB(N)]−1E(a).

Proof of Theorem 5. When we instead of the full vector gf,T (e) use a linear combination

of it, say w′gf,T (e) with w an orthonormal pmax×1 vector, the approximating distribution of

the GMM-AR statistic for testing H0 : θ = 1 + e
4√N

that uses w′gf,T (e) as the moment vector

reads

χ2(e4(w′E(a))′ [w′B(N)′VabdB(N)w]−1 (w′E(a)), 1).

The optimal combination w is the one that leads to the largest value of the non-centrality

parameter. The non-centrality parameter can be specified as

e4(w′E(a))′ [w′B(N)′VabdB(N)w]−1 (w′E(a)) = e4 (w′E(a))2

w′B(N)′VabdB(N)w .

The maximal value of (w′E(a))2

w′B(N)′VabdB(N)w results from the largest root of the generalized eigen-

value problem ∣∣λB(N)′VabdB(N)− E(a)E(a)′
∣∣ = 0
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and the optimal value of w equals the eigenvector associated with the largest root. Since

E(a) is only a vector, just one root of the generalized eigenvalue problem is non-zero so it is

also the largest one. This root results from using

w = (B(N)′VabdB(N))−1E(a)

and the largest root then equals

λmax = E(a)′(B(N)′VabdB(N))−1E(a)

so the maximal value of the non-centrality parameter is

δ = e4E(a)′(B(N)′VabdB(N))−1E(a) = (eσ)4
(
ιp
0

)′
(B(N)′VabdB(N))−1

(
ιp
0

)
since E(a) = σ2

(
ιp
0

)
with ιp a p× 1 dimensional vector of ones and p the number of columns

of Gf,T (θ).

Proof of Theorem 6. GMM-AR statistic To construct the worst case limiting distri-

bution of the GMM-AR statistic to test H0 : θ = 1 + e
4√N

whilst the true value of θ equals

one, we first specify the GMM-AR statistic as

GMM-AR(e) = NfN (e)′V̂ff (e)−1fN (e)

=

[√
N(hN (θ0,N )Af (e)

... Af (e)⊥)′fN (e)

]′
[
(hN (θ0,N )Af (e)

... Af (e)⊥)′V̂ff (e)(hN (θ0,N )Af (e)
... Af (e)⊥)

]−1

[√
N(hN (θ0,N )Af (e)

... Af (e)⊥)′fN (e)

]
.

We now determine the limit behavior of the different components under the limit sequence

in (20). The specification of Af (e)⊥ that we use is such that

Af (e)⊥ = (Gjf,T (e)
... Gj2,T )Q,

with Q equal to the identity matrix for the Sys moment conditions and equal to the speci-

fications stated in the proof of Theorem 4 for the AS moment conditions. The large sample

behavior of the different components of Q for the AS moment conditions are such that

GAS′2,T V̂ff (e)GAS2,T ≈
(

0
Ipmax−p

)′
B(N)′VabdB(N)

(
0

Ipmax−p

)
GAS′2,T V̂ff (e)GASf,T (θ) ≈

(
0

Ipmax−p

)′
B(N)′VabdB(N)

(
Ip
0

)
,

with p the number of columns of GASf,T (e) so the limit behavior of Q is

Q ≈
( 1

−
(

( 0
Ipmax−p

)
′
B(N)′VabdB(N)( 0

Ipmax−p
)
)−1

( 0
Ipmax−p

)
′
B(N)′VabdB(N)(Ip0 )

)
, T = 4

≈
( I4

−
(

(1
0)
′
( 0
Ipmax−p

)
′
B(N)′VabdB(N)( 0

Ipmax−p
)(1

0)
)−1

(1
0)(

0
Ipmax−p

)
′
B(N)′VabdB(N)

(
(Ip0 )

... (0
1)

)), T = 5

= Q̄,
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and Q̄ equals the identity matrix for the Sys moment conditions. Our specification of Af (e)⊥

is such that √
NAf (e)′⊥fN (e) = Q′

(√
Ngf,T (e)

)
,

so using the limit behavior of
√
Ngf,T (e) stated in Theorem 7, we have that

√
NAf (e)′⊥fN (e)→

d
Q̄′

e2σ2
(
ιp
0

)
+B(N)′

 εa

εb

εd


 .

The limit behavior of
√
NhN (θ0,N )Af (e)′fN (e) accords with

√
NhN (θ0,N )Af (e)′fN (e)→

d
Af (e)′Af (e)ψ,

so combining,

[√
N(hN (θ0,N )Af (e)

... Af (e)⊥)′fN (e)

]
→
d


Af (e)′Af (e)ψ

Q̄′

e2σ2
(
ιp
0

)
+B(N)′

 εa

εb

εd




 .
Under mean stationarity, ω = 0 and gf,T (e) does not depend on the initial observations yi1.

This implies that the (normalized) covariance of Af (e)′fN (e) and Af (e)′⊥fN (e) equals zero:

hN (θ0,N )Af (e)′V̂ff (e)Af (e)⊥ →
p

0.

Under the worst case setting (20) also

hN (θ0,N )2Af (e)′V̂ff (e)Af (e)→
p

Af (e)′Af (e)

limN→∞ var(hN (θ0,N )


y1iui2
...

y1iuiT

)


Af (e)′Af (e)

Af (e)′⊥V̂ff (e)Af (e)⊥ →
p

Q̄′B(N)′VabdB(N)Q̄

so

(hN (θ0,N )Af (e)
... Af (e)⊥)′V̂ff (e)(hN (θ0,N )Af (e)

... Af (e)⊥)→
p Af (e)′Af (e)

limN→∞ var(hN (θ0,N )


y1iui2
...

y1iuiT

)

Af (e)′Af (e) 0

0 Q̄′B(N)′VabdB(N)Q̄

 .
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Because Af (e)′fN (e) and Af (e)′⊥fN (e) are uncorrelated under (20),[
(hN (θ0,N )Af (e)

... Af (e)⊥)′V̂ff (e)(hN (θ0,N )Af (e)
... Af (e)⊥)

]
is block diagonal and the limit behavior of the GMM-AR statistic consists of two components,

one resulting from the diverging part of the sample moments and one which results from the

stable/identifying part:

i.
[√

NhN (θ0,N )Af (e)′fN (e)
]′ [

hN (θ0,N )2Af (e)′V̂ff (e)Af (e)
]−1 [√

NhN (θ0,N )Af (e)′fN (e)
]

→
d
ψ′

limN→∞ var(hN (θ0,N )


y1iui2
...

y1iuiT

)


−1

ψ ∼ χ2(pGMM -AR − pmax)

ii.
(√

NAf (e)′⊥fN (e)
)′ [

Af (e)′⊥V̂ff (e)Af (e)⊥
]−1 (√

NAf (e)′⊥fN (e)
)

→
d
χ2(δ, pmax)

with pGMM -AR = 1
2(T + 1)(T − 2) for the Sys moment conditions and pGMM -AR = 1

2(T +

1)(T − 2)− 1 for the AS moment conditions and when T = 4 : p = 1, pmax = 1 for AS and 2

for Sys, T = 5 : p = 3, pmax = 5 for Sys and 4 for AS and

δ = e4σ4
(
ιp
0

)′
Q̄
(
Q̄′B(N)′VabdB(N)Q̄

)−1
Q̄
(
ιp
0

)
= e4σ4

(
ιp
0

)′
(B(N)′VabdB(N))−1 (ιp

0

)
.

The latter result can be shown using the partitioned inverse of (B(N)′VabdB(N))−1 since(
ιp
0

)′
(B(N)′VabdB(N))−1 (ιp

0

)
=

ι′p

[(
Ip
0

)′
(B(N)′VabdB(N))

(
Ip
0

)
−
(
Ip
0

)′
B(N)′VabdB(N)

(
0

Ipmax−p
)

[(
0

Ipmax−p
)′
B(N)′VabdB(N)

(
0

Ipmax−p
)]−1 (

0
Ipmax−p

)′
B(N)′VabdB(N)

(
Ip
0

)]−1

ιp =

ι′p

[(
Ip
0

)′
(B(N)′VabdB(N))−

1
2 M

(B(N)′VabdB(N))−
1
2 ( 0
Ipmax−p

)
(B(N)′VabdB(N))−

1
2
(
Ip
0

)]−1

ιp =(
ιp
0

)′
Q̄
(
Q̄′B(N)′VabdB(N)Q̄

)−1
Q̄
(
ιp
0

)
,

which uses that Q̄ represents a weighted regression of columns of G2,T on Gf,T (θ) and the

remaining columns of G2,T using B(N)′VabdB(N) as weight matrix. Taken alltogether, the

worst case large sample distribution of the GMM-AR statistic test H0 : θ = 1 + e
4√N

reads

GMM-AR(e)→
d

χ2(δ, pGMM -AR).

GMM-LM statistic To obtain the large sample behavior of the GMM-LM statistic to test

H0 : θ = 1 + e
4√N

when θ0 is one and under the limiting sequence in (20), we determine the

behavior of the different components of:

(hN (θ0,N )Af (e)
... Af (e)⊥)′qN (e)
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for which we use the representation of qN (e).

hN (θ0,N )′Af (e)′qN (e) : Under the worst case DGPs characterized by (20):

√
NhN (θ0,N )Af (e)′qN (e) ≈ Af (e)′ [Aq(e)ψ+

hN (θ0,N )
√
N(µq(e, σ

2) +Aq(e)ι
(
limθ0↑1E((θ0 − 1)u2

i1)
)
) + hN (θ0,N )Bq(e)ψcu

]
≈ Af (e)′Aq(e)ψ,

since under (20):

√
NhN (θ0,N )(µq(e, σ

2) +Aq(e)ι
(
limθ0↑1E((θ0 − 1)u2

i1)
)
)→ 0, hN (θ0,N )

√
N → 0.

Af (e)′⊥qN (e) : We distinguish between the AS and Sys moment conditions. For the Sys

moment conditions:

Af (e)′⊥qN (e) = Q̄

(
Gf,T (e)′qN (e)

G′2,T qN (e)

)
≈ Q̄′

 1
hN (θ0,N )

√
N
Gf (e)′Aq(e)ψ − e

4√N
σ2ιp + 1√

N
εaq

1√
N
εbq

 ,

since for the Sys moment conditions G′2,TAq(e) = 0, G′2,Tµ(e, σ2) = 0, Gf,T (e)′Aq(e)ιp = 0,

Gf,T (e)′µ(e, σ2) = − e
4√N

σ2ιp and εaq = Gf (e)′Bq(e)ψcu and εbq = G2,T
′Bq(e)ψcu are mean

zero normal random variables that capture the remaining random parts.

For the AS moment conditions:

Af (e)′⊥qN (e) ≈ Q̄′
 1

hN (θ0,N )
√
N
Gf (e)′Aq(e)ψ − e

4√N
ιp
[
2σ2 − limθ0↑1E((θ0 − 1)u2

i1)
]

+ 1√
N
εaq

1√
N
εbq

 ,

since for the AS moment conditions G′2,TAq(e) = 0, G′2,Tµ(e, σ2) = 0, Gf,T (e)′Aq(e)ι = e
4√N

ιp,

Gf (e)′µ(σ2) = − 2e
4√N

σ2ιp and εaq = Gf (e)′Bq(e)ψcu and εbq = G′2,TBq(e)ψcu are mean zero

normal random variables that capture the remaining random parts.

Overall, we can specify Af (e)′⊥qN (e) for both the AS and Sys moment conditions as

Af (e)′⊥qN (e) ≈ Q̄′
 1

hN (θ0,N )
√
N
Gf (e)′Aq(e)ψ − ē

4√N
ιp + 1√

N
εaq

1√
N
εbq

 ,

with
ē = eσ2 Sys moment conditions

= e
[
2σ2 − limθ0↑1E((θ0 − 1)u2

i1)
]

AS moment conditions.

Combining:

(hN (θ0,N )Af (e)
... Af (e)⊥)′qN (e) = (hN (θ0,N )Af (e)

... (Gf,T (e)
... G2,T )Q)′qN (e)

≈

 1√
N
Af (e)′Aq

Q̄′
( 1

hN (θ0,N )
√
N
Gf (e)′Aq

0

)
ψ +

 0

Q̄′
(− ē

4√
N
ιp+ 1√

N
εaq

1√
N
εbq

)  .
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Using that (which results from the derivations for the GMM-AR statistic)

√
N((hN (θ0,N )Af (e)

... Af (e)⊥)′V̂ff (e)(hN (θ0,N )Af (e)
... Af (e)⊥))−1(hN (θ0,N )Af (e)

... Af (e)⊥)′fN (e)

→
d



(Af (e)′Af (e))−1

limN→∞ var(hN (θ0,N )


y1iui2
...

y1iuiT

)


−1

ψ

(
Q̄′B(N)′VabdB(N)Q̄

)−1
Q̄′

e2σ2
(
ιp
0

)
+B(N)′

 εa

εb

εd





,

we now construct the limit behavior of hN (θ0,N )NqN (e)′V̂ff (e)−1fN (e) :

hN (θ0,N )NqN (e)′V̂ff (e)−1fN (e) = hN (θ0,N )
√
N

[
(hN (θ0,N )Af (e)

... Af (e)⊥)′qN (e)

]′
((hN (θ0,N )Af (e)

... Af (e)⊥)′V̂ff (e)(hN (θ0,N )Af (e)
... Af (e)⊥))−1(hN (θ0,N )Af (e)

... Af (e)⊥)′
√
NfN (e) ≈( hN (θ0,N )Af (e)′Aq(e)

Q̄′
(Gf (e)′Aq

0

) )
ψ + hN (θ0,N )

√
N

 0

Q̄′
(− ē

4√
N
σ2ιp+ 1√

N
εaq

1√
N
εbq

) ′


(Af (e)′Af (e))−1

limN→∞ var(hN (θ0,N )


y1iui2
...

y1iuiT

)


−1

ψ

(
Q̄′B(N)′VabdB(N)Q̄

)−1
Q̄′

e2σ2
(
ιp
0

)
+B(N)′

 εa

εb

εd





→
d

(
Gf (e)′Aq(e)ψ

0

)′
Q̄′
(
Q̄′B(N)′VabdB(N)Q̄

)−1
Q̄′

e2σ2
(
ιp
0

)
+B(N)′

 εa

εb

εd


 =

(
Gf (e)′Aq(e)ψ

0

)′
(B(N)′VabdB(N))−1

e2σ2
(
ιp
0

)
+B(N)′

 εa

εb

εd


 ,

where Q̄ drops out for the same reason as discussed for the GMM-AR statistic. The elements

multiplied by hN (θ0,N ) or hN (θ0,N )
√
N are under (20) of a smaller order of magnitude and

therefore drop out.
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The limit behavior of hN (θ0,N )2NqN (e)′V̂ff (e)−1qN (e) results in a similar manner:

hN (θ0,N )2NqN (e)′V̂ff (e)−1qN (e) = hN (θ0,N )2N

[
(hN (θ0,N )Af (e)

... Af (e)⊥)′qN (e)

]′
((hN (θ0,N )Af (e)

... Af (e)⊥)′V̂ff (e)(hN (θ0,N )Af (e)
... Af (e)⊥))−1(hN (θ0,N )Af (e)

... Af (e)⊥)′qN (e)

→
d

(
Gf (e)′Aq(e)ψ

0

)′
Q̄
(
Q̄′B(N)′VabdB(N)Q̄

)−1
Q̄′

(
Gf (e)′Aq(e)ψ

0

)
=(

Gf (e)′Aq(e)ψ

0

)′
(B(N)′VabdB(N))−1

(
Gf (e)′Aq(e)ψ

0

)
,

where again Q̄ drops out for the same reason as discussed for the GMM-AR statistic.

Combining everything, we obtain the limit behavior of the GMM-LM statistic to test

H0 : θ = 1 + e
4√N

under (20):

GMM-LM(e)→
d
η′P

(B(N)′VabdB(N))−
1
2 (Gf (e)′Aq(e)ψ

0
)
η

with

η ∼ N(e2σ2 (B(N)′VabdB(N))−
1
2
(
ιp
0

)
, Ipmax)

and independent from ψ, so

GMM-LM(e)→
d
χ2(δ(ψ), 1),

with δ(ψ) = e4σ4
(
ιp
0

)′
(B(N)′VabdB(N))−

1
2 P

(B(N)′VabdB(N))−
1
2 (Gf (e)′Aq(e)ψ

0
)

(B(N)′VabdB(N))−
1
2
(
ιp
0

)
.

The simplification of the non-centrality parameter for the GMM-LM statistic when T = 4 re-

sults since Gf (e)′Aqψ is then a scalar so
(Gf (e)′Aqψ

0

)
=
(
ιp
0

)
Gf (e)′Aqψ and Gf (e)′Aqψ cancels

out of the expression of the non-centrality parameter.

KLM statistic. To obtain the large sample distribution of the KLM statistic to test H0 :

θ = 1+ e
4√N

when θ0 is equal to one and under the limiting sequence in (20), we first determine

the behavior of

(hN (θ0,N )Af (e)
... Af (e)⊥)′V̂θf (e)(hN (θ0,N )Af (e)

... Af (e)⊥)→
p(

Af (e)′Aq

Q̄′
( 1
hN (θ0,N )

Gf (e)′Aq

0

) )
limN→∞ var(hN (θ0,N )


y1iui2
...

y1iuiT

)


 Af (e)′Af (e)

0

0


′

+

(
0 0

0 Q̄′
(Vaq,abdB(N)
Vbq,abdB(N)

)
Q̄

)
,

with Vaq,abd, Vaq,abd the covariance between εaq and (ε′a
... ε′b

... ε′d)
′ and εbq and (ε′a

... ε′b
... ε′d)

′

respectively.
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Combining with the limit behavior of
√
N((hN (θ0,N )Af (e)

...Af (e)⊥)′V̂ff (e)(hN (θ0,N )Af (e)
... Af (e)⊥))−1(hN (θ0,N )Af (e)

... Af (e)⊥)′fN (e) :

√
N((hN (θ0,N )Af (e)

... Af (e)⊥)′V̂ff (e)(hN (θ0,N )Af (e)
... Af (e)⊥))−1(hN (θ0,N )Af (e)

... Af (e)⊥)′fN (e)

→
d



(Af (e)′Af (e))−1

limN→∞ var(hN (θ0,N )


y1iui2
...

y1iuiT

)


−1

ψ

(
Q̄′B(N)′VabdB(N)Q̄

)−1
Q̄′

e2σ2
(
ιp
0

)
+B(N)′

 εa

εb

εd





so

√
N(hN (θ0,N )Af (e)

... Af (e)⊥)′V̂θf (e)V̂ff (e)−1fN (e) =
√
N(hN (θ0,N )Af (e)

... Af (e)⊥)′V̂θf (e)(hN (θ0,N )Af (e)
... Af (e)⊥)

((hN (θ0,N )Af (e)
... Af (e)⊥)′V̂ff (e)(hN (θ0,N )Af (e)

... Af (e)⊥))−1(hN (θ0,N )Af (e)
... Af (e)⊥)′fN (e)

→
d

(
Af (e)′Aq

Q̄′
( 1
hN (θ0,N )

Gf (e)′Aq

0

) )ψ +

(
0

Q̄′
(Vaq,abdB(N)
Vbq,abdB(N)

)
Q̄

)

(
Q̄′B(N)′VabdB(N)Q̄

)−1
Q̄′

e2σ2
(
ιp
0

)
+B(N)′

 εa

εb

εd


 .

Upon combining with the limit behavior of
√
N(hN (θ0,N )Af (e)

... Af (e)⊥)′qN (e), the conver-

gence behavior of 4
√
N(hN (θ0,N )Af (e)

... Af (e)⊥)′D̂N (e) then results as

4
√
N(hN (θ0,N )Af (e)

... Af (e)⊥)′D̂N (e) = 1
4√N

{[√
N(hN (θ0,N )Af (e)

... Af (e)⊥)′qN (e)−

√
N(hN (θ0,N )Af (e)

... Af (e)⊥)′V̂θf (e)V̂ff (e)−1fN (e)

]
≈
(

0

Q̄′
((

ιp
0

)
ē+ 1

4√N
ν
) )

→
d

(
0

Q̄′
(
ιp
0

) ) ē,
where we have rescaled since all the higher order terms have dropped out and

ν =
(
Q̄′
(Vaq,abdB(N)
Vbq,abdB(N)

)
Q̄
) (
Q̄′B(N)′VabdB(N)Q̄

)−1
Q̄′
(
ιp
0

)
+

Q̄′

( εaq

εbq

)
− Q̄′

(Vaq,abdB(N)
Vbq,abdB(N)

)
Q̄
(
Q̄′B(N)′VabdB(N)Q̄

)−1
Q̄′B(N)′

 εa

εb

εd


 .
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We obtain the limit behavior of
√
ND̂N (e)′V̂ff (e)−1DN (e) from:

√
ND̂N (e)′V̂ff (e)−1D̂N (e) =

[
4
√
N(hN (θ0,N )Af (e)

... Af (e)⊥)′D̂N (e)

]′
((hN (θ0,N )Af (e)

... Af (e)⊥)′V̂ff (e)(hN (θ0,N )Af (e)
... Af (e)⊥))−1

[
4
√
N(hN (θ0,N )Af (e)

... Af (e)⊥)′D̂N (e)

]
≈
[(
ιp
0

)
ē+ 1

4√N
ν
]′
Q̄
(
Q̄′B(N)′VabdB(N)Q̄

)−1
Q̄′
[(
ιp
0

)
ē+ 1

4√N
ν
]

→
p
ē2
(
ιp
0

)′
Q̄
(
Q̄′B(N)′VabdB(N)Q̄

)−1
Q̄′
(
ιp
0

)
and

N
3
4 D̂N (e)′V̂ff (e)−1fN (e) =

[
4
√
N(hN (θ0,N )Af (e)

... Af (e)⊥)′D̂N (e)

]′
((hN (θ0,N )Af (e)

... Af (e)⊥)′V̂ff (e)(hN (θ0,N )Af (e)
... Af (e)⊥))−1

√
N

[
(hN (θ0,N )Af (e)

... Af (e)⊥)′fN (e)

]
≈
[(
Q̄B(N)′VabdB(N)Q̄

)− 1
2 Q̄′

[(
ιp
0

)
ē+ 1

4√N
ν
]]′

(
Q̄′B(N)′VabdB(N)Q̄

)− 1
2 Q̄′

e2σ2
(
ιp
0

)
+B(N)′

 εa

εb

εd




→
d

(
ιp
0

)′
Q̄
(
Q̄′B(N)′VabdB(N)Q̄

)−1
Q̄′

e2σ2
(
ιp
0

)
+B(N)′

 εa

εb

εd




Upon combining everything, we obtain the limit behavior of the KLM statistic to test H0 :

θ = 1 + e
4√N

under (20):

KLM(e)→
d
η′P

(Q̄′B(N)′VabdB(N)Q̄)
− 1

2 Q̄(ιp0 )ē
η

with

η ∼ N(
(
Q̄′B(N)′VabdB(N)Q̄

)− 1
2 Q̄
(
ιp
0

)
, Ipmax)

so since ē is a scalar it cancels out and

KLM(e)→
d

χ2(δKLM , 1)

because

δKLM = (eσ)4
(
ιp
0

)′
Q̄
(
Q̄′B(N)′VabdB(N)Q̄

)− 1
2 P

(Q̄′B(N)′VabdB(N)Q̄)
− 1

2 Q̄(ιp0 )(
Q̄′B(N)′VabdB(N)Q̄

)− 1
2 Q̄
(
ιp
0

)
= (eσ)4

(
ιp
0

)′
Q̄(Q̄′B(N)′VabdB(N)Q̄)−1Q̄

(
ιp
0

)
= (eσ)4

(
ιp
0

)′
(B(N)′VabdB(N))−1

(
ιp
0

)
,

where the last equality has been shown for the GMM-AR statistic.
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Appendix B. Definitions
In GMM, we consider a k-dimensional vector of moment conditions, see Hansen (1982):

E[fi(θ0)] = 0, i = 1, . . . , N, (43)

which are a function of observed data and the unknown parameter vector θ. The moment

conditions are only satisfied at the true value of the p-dimensional vector θ, θ0, and k is at

least as large as p. We analyze the first-order autoregressive panel data model so p = 1. The

population moments in (43) are estimated using the average sample moments,

fN (θ) = 1
N

∑N
i=1 fi(θ). (44)

The k × p dimensional matrix qN (θ) contains the derivative of fN (θ) with respect to θ :

qN (θ) = ∂
∂θ′
fN (θ) = 1

N

∑N
i=1 qi(θ), (45)

with qi(θ) = ∂
∂θ′
qi(θ).

The two step estimator results by minimizing the objective function:

Q(θ, θ1) = NfN (θ)′V̂ff (θ̂
1
)−1fN (θ), (46)

with V̂ff (θ) the Eicker-White covariance matrix estimator:

V̂ff (θ) = 1
N

∑N
i=1(fi(θ)− fN (θ))(fi(θ)− fN (θ))′. (47)

The two step estimator, θ̂2step, uses the one step estimator θ̂1step which equals the minimizer

of (46) when we replace V̂ff (θ)−1 by the identity matrix.

The expressions of the different statistics to test H0 : θ = θ0 that we use read:

1. Two step Wald statistic:

W2step(θ0) = N(θ̂2step − θ0)′qN (θ̂2step)
′V̂ff (θ̂2step)

−1qN (θ̂2step)(θ̂2step − θ0). (48)

2. The GMM-LM statistic of Newey and West (1987):

LM(θ0) = NfN (θ0)′V̂ff (θ0)−1qN (θ0)
[
qN (θ0)′V̂ff (θ0)−1qN (θ0)

]−1

qN (θ0)′V̂ff (θ0)−1fN (θ0).
(49)

3. The KLM statistic of Kleibergen (2005):

KLM(θ0) = NfN (θ0)′V̂ff (θ0)−1D̂N (θ0)
[
D̂N (θ0)′V̂ff (θ0)−1D̂N (θ0)

]−1

D̂N (θ0)′V̂ff (θ0)−1fN (θ0),
(50)
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with D̂N (θ) a k × p dimensional matrix,

vec(D̂N (θ)) = vec(qN (θ))− V̂qf (θ)V̂ff (θ)−1fN (θ) (51)

and

V̂qf (θ) = 1
N

∑N
i=1 vec[qi(θ)− qN (θ)](fi(θ)− fN (θ))′. (52)

4. The GMM extension of the Anderson-Rubin statistic, see Anderson and Rubin (1949)

and Stock and Wright (2000):

GMM -AR(θ) = NfN (θ)′V̂ff (θ)−1fN (θ) = Q(θ, θ). (53)

We use these four statistics for five different sets of moment conditions (labeled Dif,

Lev, NL, AS and Sys, see Section 2). For the Dif moment conditions in (4), kDif equals
1
2(T − 2)(T − 1) and the specifications of fDifi (θ) and qDifi (θ) read

fDifi (θ) = ZDifi ϕDifi (θ)

qDifi (θ) = −ZDifi ∆y−1,i,
(54)

with ϕDifi (θ) = (∆yi3 − θ∆yi2 . . .∆yiT − θ∆yiT−1)′, ∆y−1,i = (∆yi2 . . .∆yiT−1)′ and

ZDifi =



yi1 0 . . . 0 0

0
. . . 0

0 0 . . . 0


yi1
...

yiT−2




: 1

2(T − 1)(T − 2)× (T − 2). (55)

For the Lev moment conditions in (5), kLev equals T − 2 while the moment functions can be

specified as
fLevi (θ) = ZLevi ϕLevi (θ)

qLevi (θ) = ZLevi y−1,i,
(56)

with ϕLevi (θ) = (yi3 − θyi2 . . . yiT − θyiT−1)′, y−1,i = (yi2 . . . yiT−1)′, and

ZLevi =


∆yi2 0 . . . 0 0

0
. . . 0

0 0 . . . 0 ∆yiT−1

 : (T − 2)× (T − 2). (57)

For the NL moment conditions in (8), kNL equals T − 3 while the moment functions can be

specified as
fNLi (θ) = ZNLi ϕNLi (θ)

qNLi (θ) = ZNLi
∂
∂θϕ

NL
i (θ),

(58)
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with ϕNLi (θ) = (ui4(ui3 − ui2) . . . uiT (uiT−1 − uiT−2)′ and

ZNLi =


1 0 . . . 0 0

0
. . . 0

0 0 . . . 0 1

 : (T − 3)× (T − 3). (59)

The specification of the moment functions for the AS moment conditions results by stacking

the moment conditions in (54) and (58) so kAS equals 1
2(T−1)(T−2)+T−3. The specification

of the Sys moment conditions results by stacking the moment conditions in (54) and (56) so

kSys equals 1
2(T + 1)(T − 2).
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