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Abstract

Returns to education are variable within the same educational group. If uncer-

tain payo�s are a concern to individuals when selecting education, wage variance

is relevant. It is the resultant of unobserved heterogeneity and pure uncertainty.

The �rst element is known to the individual, but unknown to the researcher, the

second is unknown to both. If individuals exploit private information to select

their level of education the variance observed in the data will overestimate the real

magnitude of educational uncertainty and the impact that risk has on educational

decisions. In this paper we will apply a semi parametric estimator to tackle the

selectivity issues. This method does not rely on the joint normality of errors in the

selection and wage equations and is robust to misspeci�cation of the errors distri-

bution. Results suggest that pure risk tends to increase with education. Private

information accounts for a bigger share of total wage variance observed in the data

than previously thought.
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1 Introduction

Empirical evidence suggests that earnings inequality has increased in the US in the second half

of the past century (Katz and Autor, 1999; Angrist et al., 2006). This observation involves

both between and within educational group inequality (Acemoglu, 1999; Autor et al., 2006)

and has attracted attention to the link between wage variance and schooling: if wage variance

increases with schooling level and individuals are risk-averse, the increasing di�erences might

re�ect compensation for risk.

The identi�cation of the causal e�ect of risk on education attainments is complicated by

selection biases (Acemoglu, 2002). Observed wage inequality is calculated from truncated

wages distributions. The truncation is an e�ect of private information: individuals possess

information about their tastes and inclinations and might use this information to select their

level of education assuring them the best risk/pay-o� pro�le. Since this information is not

observed, researchers have to rely on the revealed schooling choices and observed wages

and they should not make the mistake to confuse total observed variance with risk. In our

terminology wage uncertainty or risk is the part of wage variability which is not foreseeable by

the individual even with the superior knowledge that he possesses about himself. Unobserved

heterogeneity, instead, is that part of wage variability that depends on factors known to

the individual, but not observable by the researcher. Forgetting to disentangle risk and

heterogeneity will cause an overestimation of real risk and, in turn, an underestimation of

risk premium o�ered in the labor market in the form of higher wages.

Our two main goals are to establish a causal relation between education and wage in-

equality and to estimate a proper measure of risk that various educational categories entail

disentangling it from unobserved heterogeneity. The literature on this issue is scarce. Chen

(2008) tackles the issues of selectivity and unobserved heterogeneity taking dispersion of

wages as the outcome of interest implementing a standard parametric selection model based

on normal distributions with instrumental variables as originally proposed by Heckman (1979)

and extending it to the polychotomous case. We apply the same formalization, but we depart

from it in an essential aspect: we do not impose restriction of normality on the distribution

of disturbances in the primary and secondary equation.

Parametric methods have undergone increasing criticism for imposing excessive restric-

tions on a model (Goldberger, 1983; Vella, 1998; Moretti, 2000). The main issue being that

incorrect speci�cation of joint distribution of errors of wage and selection equation may lead to

inconsistent estimates. This criticism spurred a growing literature (Robinson, 1988; Cosslett,

1991; Ahn and Powell, 1993; Newey, 2009) proposing alternative and usually semi-parametric

estimation methods.

In this paper we apply a two stage semi parametric estimation method. Similarly to the

two step Heckman method we �rst estimate a selection equation from which we build four
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selection correction terms, one for each category of schools, and include them as additional

regressors in the outcome equation to re-establish zero conditional mean of the error term.

We do so by exploiting the semi parametric1 estimator developed by Gallant and Nychka

(1987) in the �rst stage and a procedure proposed by Cosslett (1983; 1991) in the second.

Additionally, we propose an alternative method to correct for self-selection via the direct

inclusion of estimates of the expected value of unobserved heterogeneity obtained by Gallant

and Nychka's procedure in the wage equation. In the continuation of this paper we refer to

this method as Olsen method since it relies on assumptions of linearity of the error term �rst

discussed in Olsen (1980). Both estimates are robust to misspeci�cation of error distribution

functions and allow us to minimize the distributional assumptions.

To our knowledge, this is the �rst paper dealing with both issues of self-selection and

unobserved heterogeneity semiparametrically. Chen (2008) deals with both issues, but strictly

parametrically, while the semiparametric methods proposed in the literature tackle either self-

selection or unobserved heterogeneity. Chen and Khan (2007) use kernel weighting schemes

and symmetry conditions on the joint distribution of outcome and selection equation errors

obtaining estimates for wage inequality among college graduates corrected for selection, but

do not examine the impact of unobserved heterogeneity. Abadie (2002) proposes a method

based on instrumental variables concerned with estimation of causal e�ects on the entire

distribution and not only mean e�ects, while Abadie et al. (2002) propose a generalization of

the quantile treatment e�ect estimator for the case that selection into treatment is endogenous

where the �rst step of the econometric model is estimated non parametrically. Abadie (2002)

and Abadie et al. (2002) do not distinguishing between intrinsic heterogeneity and uncertain

shocks.

Our empirical analysis is based on the National Longitudinal Survey of Youth (NLSY).

We �rst obtain estimates of potential wages inequality robust to selection and truncation

biases and then distinguish between the two components of inequality, heterogeneity and

risk, semiparametrically. Results suggest that observed inequality and potential inequality

are maximum for high school and college drop outs. Pure risk increases with college entry

while unobserved heterogeneity accounts for a larger share of potential wage variability than

previously thought.

2 Econometric speci�cation

To identify the magnitude of risk in each education and its impact on individual choices and

wages, two obstacles have to be bypassed: a) observed wage inequality is not the correct

quanti�cation of real wage inequality due to self-selection and b) even if we were able to

1Gallant and Nychka (1987) refer to their method as "semi-non parametric". Since we use both semiparametric and semi-non
parametric methods to estimate our model, we use only the term semiparametric to refer to it.
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correct for self-selection the corrected wage inequality would still pool real risk and unob-

served heterogeneity together. The Chen (2008) model, that we use as a starting point, o�ers

a solution to both of these identi�cation puzzles. Chen (2008) procedure is divided in two

separate parts. First wage inequality corrected for self-selection is identi�ed and then unob-

served heterogeneity is separated from risk. The model exploits the panel structure of NLSY

to control for time invariant individual �xed e�ects, as for example taste for education, which

are not observable and therefore would bias estimates if not accounted for. By di�erencing

�xed e�ects out consistent estimates are obtained.

2.1 The model

The model presented in Chen (2008) is an extension of a classical Roy model (Roy, 1951)

with four possible choices, in which the choice for "occupation" is substituted with a choice

for educational level. In this model individuals (i) have four possible schooling choices (si):

no high school diploma (si = 0); high school diploma (si = 1); some college (si = 2); and four

years of college or more (si = 3). Individuals are observed for T periods; each time period is

indexed by subscript (t). The total number of individuals in the sample will be indicated by

N .

For each individual we will observe one wage yit for each time period t given and the time

invariant educational level si. Which of the four possible wages is observed is determined by

the relation:

yit = y0itI{si = 0}+ y1itI{si = 1}+ y2itI{si = 2}+ yitI{si = 3},

where I{.} is the indicator function equal to one if that particular schooling level is selected
and zero otherwise.

The potential wage (ysit) is a latent variable and represents the wage that we would

observe in each category if the subject would have chosen that particular level. In other

words, the potential wage is the hypothetical wage that the subject would earn if, instead of

the educational choice he actually made, he had chosen any of the other three counterfactuals.

It is determined by the regression model:

ysit = αs + xitβs + σsesi + ψstεit if si = s, (1)

αs is a schooling speci�c constant; βs is a schooling speci�c vector of coe�cients for the matrix

of observable covariates xit; the individual �xed e�ect is represented by the time invariant

term (σsesi) and it is allowed to correlate with xit; the error term ψstεit denotes transitory

shocks uncorrelated with personal characteristics and across time; esi and εit are random

variables uncorrelated with each other. Inequality in potential wages within schooling levels
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equals σ2
s + ψ2

st: the sum of a permanent component created by variation in individual spe-

ci�c e�ect and a transitory component incorporating institutional or macroeconomic shocks

uncorrelated with the individual e�ects.

Individuals �rst select into an education according to their personal tastes and inclinations,

in the second step their wage is revealed and they earn a wage dependent on their schooling

choice. Speci�cally, we observe the wage yit.

The assignment to one of the four schooling categories is governed by the rule:

si = s if asi ≤ νi < as+1,i for s = 0, 1, 2, 3 (2)

In this expression νi is the unobserved schooling factor known to the individual that includes

taste for educations, motivation and all other factors in�uencing the educational choice of

the individual. νi is unobservable to the researcher. asi is the minimal or maximum level of

νi for individuals that choose schooling level s and it is determined by the relation:

asi = κs − ziθ. (3)

The vector zi contains all observable characteristics xit plus an instrument for education2; θ is

the vector of coe�cients for zi and κs is a constant with κ0 = −∞ and κ4 =∞, respectively.

We assume νi to be uncorrelated with the transitory shocks εit, but to be correlated with the

�xed e�ect esi. The correlation coe�cient is indicated by ρs.

In order to be able to disentangle the share of wage variance due to real uncertainty from

that caused by unobserved heterogeneity, we will have to rely on some additional assumption

regarding the disturbances in the primary and selection equation. Following Olsen (1980)

and Maddala (1983) we assume linearity of the conditional expectations of esi given νi so

that:

σsesi = σeνsνi + ξs (4)

with E[ξs|νi] = 0, V ar[esi|xit,zit] = σ2
es, V ar[ξs] = σ2

ξ and Cov[esi, νi] = σενs = ρsσsσν .

From the individual viewpoint the expected value of future wages is given by3:

E[ysit|zi, xit, νi] = αs + xitβs + γsνi (5)

where γs ≡ σsσνρs. This decomposition of expected wages introduces an important feature

of the model. When selection is positive (i.e.: ρs > 0) the labor market rewards workers with

a high taste for education whilst the opposite occurs when selection is negative (i.e.: ρs < 0).

2Identi�cation of true parameters β might be achieved even with xi = zi through nonlinearity in the inverse Mills ratios. In
practice the inverse Mills ratio is close to linear and the degree of identi�cation weak, resulting in in�ated second step standard
errors and unreliable estimates of β (Vella, 1998; Cameron and Trivedi, 2005).

3See the appendix for derivation.
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Since individuals posses a more accurate assessment of their own abilities then researchers,

private information (νi) has to be accounted in order to build a true measure of risk. Wage

uncertainty is the variance of permanent and transitory component from the individual view-

point that has to be separated from unobserved heterogeneity. Following Chen (2008), we

indicate wage uncertainty or risk with τ . Using equation (4) and our distributional assump-

tions on disturbances, given above, we obtain4 an expression for risk as the variance of wage

uncertainty given observed and unobserved heterogeneity:

τ 2
s = V ar[σsesi + ψstεit|zi, xit, νi] = σ2

s(1− ρ2
s) + ψ2

st (6)

Remembering that the extent of predictability of wage uncertainty from the personal stand-

point is expressed by the correlation coe�cient ρs equation (6) makes the formal link between

uncertainty and private information explicit. In fact, if the correlation between unobserved

schooling factor (νi) and permanent component of wage inequality (esi) is perfect (i.e.: ρs = 1)

the subject can predict exactly the permanent part of his wage variability and uncertainty

is only caused by transitory shocks (ψ2
st). On the other hand, if correlation is absent (i.e.:

ρs = 0) the subject does not posses any additional information compared to the researcher

and wage uncertainty is observed in the data.

Rearranging equation (6) as σ2
s + ψ2

st = γ2
s + τ 2

s helps us visualizing how potential wage

inequality (σ2
s + ψ2

st) is the sum of two elements: variance of unobserved heterogeneity (γ2
s )

and wage uncertainty (τ 2
s ). Note also that if correlation between schooling and unobserved

tastes for education exists (i.e.: ρs 6= 0) potential wage inequality overstates the real degree

of risk (τ 2
s < σ2

s + ψ2
st).

3 Semiparametric estimation

In the previous section we have discussed the potential source of self-selection. In presence

of self-selection the zero conditional mean of the error term in the outcome equation is

violated leading to inconsistent parameters estimates if an OLS regression is used. The �rst

solution to correct for sample selection bias has been introduced by Heckman(1974; 1976;

1979). Heckman's approach restores the zero conditional mean of errors in the outcome

equation via the inclusion of a selection correction term λi. Under normality, the selection

correction term is proportional to the hazard rates and depends only on parameters of the

selection equation: λi =
φ(z′iθ)

Φ(z′iθ)
with φ and Φ denoting the probability density and cumulative

distribution functions of the standard normal distribution, respectively.

The wide success that Heckman's estimator has encountered in the literature can be

explained with the readiness of application. The procedure provides consistent estimates

4Details of derivation in the appendix.
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given a valid exclusion restriction of one variable in zi from xi; additionally, the error terms

in the selection and outcome equation need to have a bivariate normal distribution. However,

if the true joint distribution of the error terms is not correctly speci�ed, the proceadure

produces inconsistent estimates. This lead to a criticism of the Heckman model to be too

restrictive to be able to eliminate the selection bias (Goldberger, 1983; Hussinger, 2008).

A fertile line of research (Cosslett, 1983; Robinson, 1988; Powell, 1989; Cosslett, 1991; Ahn

and Powell, 1993; Dahl, 2002; Newey, 2009) o�ers new semiparametric methods to correct for

self-selection with more limited reliance on distributional assumptions. Generally all these

methods imply a two-step approach, with a speci�ed selection and structural equation and

generic selection correction function and error term density. The assumption that those

methods usually imply is:

E[νi|a < νi < b;xi, zi] = g(z′iθ)

with g some unknown function. The semiparametric approach di�ers from the parametric

one in two important dimensions: a) no distributional assumption on νi is speci�ed and

thus no assumption can be exploited to estimate θ; b) it is not possible to use distributional

relationships between the error terms in the selection and outcome equation to estimate

E[σsesi + ψstεit|a ≤ νi < b].

To overcome the �rst complication we adopt the semiparametric estimation strategy pro-

posed by Gallant and Nychka (1987) (GN). This estimator does not require assumptions

on the distribution of the error term νi in the selection equation to estimate θ. The un-

derlying idea of this methodology is to approximate the true density by the product of an

order K series of polynomials and a normal density. In this way, many di�erent features of

the unknown density - the density itself, its mean, variance and higher moments - can be

consistently estimated. The approximation is speci�ed as:

fK(ν) =
1

π

2K∑
k=0

ι∗kν
kφ(ν) (7)

where:

π =

∞̂

−∞

(
K∑
k=o

ιkν
k

)2

φ(ν) (8)

and

ι∗k =
bk∑
i=ak

ιiιk−i (9)

7



with ak = max(0, k − K) and bk = min(k,K). φ(ν) is the standard normal density. The

inclusion of π assures a proper approximation of the density function (i.e.: a function inte-

grating to 1).

The corresponding cumulative function is then given by:

FK(u) =
1

θ

2K∑
k=0

ι∗k

uˆ

−∞

νkφ(ν)dν (10)

Gallant and Nychka (1987) show that estimates of θ are consistent provided that the

order of polynomials K increases with sample size. The choice of K is a standard model

selection problem that we tackle by applying two di�erent model selection criteria: the

Akaike information criterion (AIC) and the Bayesian information criterion (BIC) and chose

the preferred one according to these measures. In principle any moment generating density

other than the normal could be used; the normal density is a convenient choice since this

form nests the ordered Probit model which becomes a special case with K = 1 and K = 2

(Stewart, 2004).

We overcome the second complication caused by the non reliance on normality in two

di�erent ways. First we apply the method proposed by Cosslett (1991). With this procedure,

after having estimated θ̂ via the GN estimator in the �rst step, the selection correction term

to be included in the primary equation is approximated by J indicator variables {I(ziθ̂ ∈ Îj)}.
The correction term in our case assumes the form:

g(ziθ) =
J∑
j=1

bjIij(ẑiθ) (11)

the unknown parameters bj can be estimated by OLS. Again, consistency requires the order

of approximation (J) to increase with sample size. Inclusion of the correction term in the

primary equation reestablishes the zero conditional mean on the error term. The estimated

equation takes the form:

yit = αs + xitβs + γs
J∑
j=1

bjIij(ẑiθ) + ωit (12)

In this equation, by construction, we have that E[ωis|si = s;xit, zi] = 0 and we can apply

OLS to obtain consistent estimates of the vector β.

For comparison, we adopt an alternative strategy in the second step as well. Gallant and

Nycha's method allows us to produce an estimate of E[νi|a ≤ νi < b]. The inclusion of these

estimates in the wage equation is su�cient to reestablish the zero conditional mean on the

error term and the wage equation can be safely estimated by OLS. The exact speci�cation

of the alternative estimation of the primary equation is:
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yit = αs + xitβs + γsE[νi|a ≤ νi < b] + ωit (13)

The variance of observed wage is expressed by5:

V ar[σsesi + ψstεit|a ≤ νi < b] = σ2
s(1− ρ2

sδsi) + ψ2
st (14)

δsi is referred to as the truncation adjustment. Its expression is: δsi = V ar[νi|a ≤ νi < b]−σ2
ν

with σ2
ν indicating the unconditional variance of νi. The sign of δsi determines whether

observed wage inequality will understates or overstates potential wage inequality. In fact, in

case δsi > 0 (i.e.: V ar[νi|a ≤ νi < b] > σ2
ν) observed wage inequality is greater than potential

wage inequality while the opposite occurs when δsi < 0.

We can then identify identify the transitory component via a �xed-e�ect model. The

�xed-e�ect model allow us to �lter out the individual permanent component σsesi. In this

way we identify the transitory component ψ2
st. De�ning ζsit ≡ ψstεit, our model takes the

form:

(yit − ȳi) = (xit − x̄i)βs + (ζsit − ζ̄si) if si = s, (15)

ȳi, x̄i and ζ̄si denote the average over time of the corresponding variables. The transitory

component of wage inequality will be identi�ed as the variance of the error term in equation

(15).

The permanent component will be identi�ed through a between individual model:

yi = αs + xiβs + γsg(ziθ) + ωi (16)

Where g(ziθ) =
∑J
j=1 bjIij(ẑiθ) in the Cosslett speci�cation and g(ziθ) = E[νi|a ≤ νi < b]

in the alternative speci�cation. Consequently, the permanent component of wage inequality

is identi�ed as6:

σ̂2
s = γ̂2

s δ̂s + V̂ ar[ωsi|a ≤ νi < b]−
∑
t ψ̂

2
st

T
(17)

The parameter γ̂2
s is estimated as the coe�cient for the correction terms distinguished by

schooling level in an OLS regression.; V̂ ar[ωsi|a ≤ νi < b] is estimated as the mean squared

of the error term with the between individual estimator T ≡ (
∑
i T
−1
i /N)−1 and δ̂s is the

sample average of the truncation adjustment. We now have all elements to identify wage

uncertainty as de�ned in equation (6): τ̂ 2
s = σ̂2

s− γ̂2
s + ψ̂2

st. To obtain a separate identi�cation

for the two components of γs we need to substitute equation (17) in the expression for

5See the appendix for derivation.
6See the appendix for derivation.
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V ar[σsesi|a ≤ νi < b] and we obtain: ρ̂2
s = 1− σ̂2

ξs

σ̂2
s
.

As a result, all parameters of interest - σs, ψst, τs and ρs - are identi�ed.

4 Data

We use the National Longitudinal Survey of Youth 1979 (NLSY79) to estimate the parameters

of interest. The survey is a widely exploited data set of 12,686 young American citizens

who were 14 to 22 years old in 1979. The participants to the survey were interviewed

annually from 1979 until 1994 and biennially from then on. NLSY79 provides information

on schooling, labor market experiences, training expenses, family income, health condition,

household composition, geographical residence and environmental characteristics.

We will restrict our analysis to male between the survey years 1991 and 2000 (calendar

years 1990 to 1999). By selecting men only we do not have to worry about issues of labor

market participation decisions that would rise if also women were included, while the wave

restriction will allow us to focus on individuals already out of school and into the labor

market. Additionally, we will exclude respondents who do not provide information about

parental education, highest grade completed, exact work experience history, hourly rate of

pay and ability index as de�ned below. After having selected the sample according to these

guidelines, we have a balanced panel sample consisting of 3,373 individuals observed in 7

susequent waves.

Our dependent variables are two: schooling for the choice equation and earnings for the

outcome equation. Schooling is measured as highest schooling level completed in 1990. From

this information we construct four dummies for the highest educational achievement: no high

school, high school, college drop outs and college graduates or beyond. Earnings are de�ned

as the logarithm of hourly earnings in 1992 dollars.

The control variables added both to the schooling and wage equations and presented in

table 1, are the highest education completed for both parents, the Armed Forces Quali�cation

Test score (AFQT), the family income, the number of siblings and the ethnic origin. All these

variables are meant to control for intrinsic ability and family background of the individual.

To control for characteristics of the geographical area of origin we include a set of dummies

for urban area and for the region of residence at 14 (Northeast, North central, South or

West).

The AFQT is a series of four tests in mathematics, science, vocabulary and automotive

knowledge. The test was administered in 1980 to all subjects regardless their age and school-

ing level. For this reasons it can include age and schooling e�ects in the ability index that

the test is meant to construct. To correct for this undesired e�ects we follow Kane and Rouse

(1995) and Neal and Johnson (1996). First we regress the original test score on age dummies
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Table 1: Summary statistics
Time Invariant Variables

(a) Schooling Variables Number of siblings 3.63
Years of schooling 13.33 (2.52)

(2.30) Family income (1999 dollars) 23,320
Categorical education: (16,941)
No high school .15 Black .25

(.36) (.42)
High school .39 Hispanic .14

(.49) (.35)
Some college .23 (c) Geographic Controls at age 14

(.42) Urban .79
Four year college or beyond .23 (.41)

(.42) Residence in Northeast .19
(b) Ability and Family Background (.39)
Armed Forces Qualifying Test score (adjusted) 43.30 Residence in South .33

(29.21) (.47)
Highest grade mother 11.10 Residence in West .19

(3.20) (.39)
Highest grade father 11.12 (d) Instrument for Schooling

(3.93) Average unemployment rate (%) 7.32
(.75)

Time Variant Variables
Calendar year 1990 1993 1995 1997 1999
Actual work experience 10.03 12.77 14.40 16.09 17.93

(3.58) (4.05) (4.35) (4.68) (5.04)
Log hourly earnings 2.18 2.16 2.28 2.26 2.21

(.98) (1.06) (1.06) (1.14) (1.25)
Unemployment rate (%) 5.81 8.70 6.01 5.59 4.12

(2.13) (2.51) (1.74) (1.87) (1.05)
Note: Standard deviations in parentheses. Unemployment rates calculated from CPS data.

and quarter of birth, then we replace the original test score with the residuals obtained from

this regression.

For family income we intend family income at age 17. If no measure for family income at

17 is recorded, we plug in the family income at the closest age to 17 available.

Besides the aforementioned controls common to choice and wage equation, the latter is

augmented by the inclusion of experience in the labor market. Work experience is here

de�ned as the cumulative number of working weeks divided by 49: the amount of working

weeks in a calendar year. In this way we transform work weeks in work years.

The instrument for schooling that we exploit for identi�cation is the average national un-

employment rate in the economy during the years that each respondent spent in school after

mandatory schooling age. The last year of mandatory schooling is also included in the aver-

age. 205 individuals dropped out of school before mandatory schooling years were completed,

therefore we exclude them from our analysis reducing the sample to 3,168 individuals. The

intuition behind this instrument is that the unemployment rate that an individual would have
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to face in the labor market in�uences his outside option making the possibility to drop out of

school more or less attractive. To our knowledge, the only paper exploiting the same instru-

ment is Arkes (2010), but with state level information on youth unemployment. Information

about unemployment rates are taken from the Current Population Survey (CPS). The CPS

is freely accessible from the Internet7 and is conducted by the American Bureau of Census

for the Bureau of Labor Statistics on a sample of 50,000 American families each month for

the last 50 years. Since it is possible that past level of unemployment a�ect current levels

and thus wages and that labor market conditions at entry might carry over in subsequent

years, we include the unemployment rate for the same years wages are observed directly in

the wage equation. The assumption is then that conditional on present unemployment rates,

past unemployment rates have no e�ect on present wages.

Means and standard deviations of dependent and independent variables are given in Ta-

ble 1. We see that distribution among the four educational category is quite equal, but a

substantial share stopped after high school, African-Americans are overrepresented and the

large majority of respondents was raised in a urban environment.

5 Empirical results

As described in section 3, we �rst estimate the two stages of the selection model estimated on

NLSY79 data and then we identify the key parameters of our model: permanent component

(σ2
s); transitory component (ψ2

st); unobserved heterogeneity (νi) and wage uncertainty (τ 2
s ).

5.1 Selection of the preferred model and �rst stage

In the �rst stage we estimate the choice equation via the Gallant and Nychka (1987) method

discussed in section 3. In this way we obtain estimates for the density function of the

unobserved heterogeneity component and we can substitute these estimates in the wage

equation reestablishing the zero conditional mean of the error term. In this method it is

essential for the degree of polynomial K to increase with sample size. To select the best

approximation we apply two standard methods for selection: AIC and BIC8. The two methods

di�er on how steeply they penalize model complexity. AIC tends to penalize complexity less

than BIC, thus if parsimony is important BIC should be the preferred criteria. In table 2 we

present the two criteria.

We start from the 3rd degree polynomial since this is the �rst model generalizing the

ordered probit (OP) to the semiparametric case. We can see that two out of three tests

conducted - likelihood ratio and AIC criterion - select the 8th degree polynomial. BIC on the

other hand prefers the 6th degree polynomial. We choose the former as our preferred model

7http://data.bls.gov/data/ accessed the 15/06/2010.
8See Cameron and Trivedi (2005) for a textbook discussion of the two criteria.
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Table 2: Model comparison
K log likelihood LR-test of OP p-value LR-test of K-1 p-value AIC BIC
OP -20,573.45 41,202.91 41,424.66
3 -20,544.56 57.78 .000 57.78 .000 41,149.13 41,386.72
4 -20,504.04 138.82 .000 81.04 .000 41,070.08 41,315.6
5 -20,502.54 141.83 .000 3.01 .083 41,069.07 41,322.51
6 -20,493.57 159.78 .000 17.94 .000 41,053.13 41,314.48
7 -20,492.92 161.06 .000 1.29 .257 41,053.85 41,323.12
8 -20,489.37 168.17 .000 7.11 .008 41,048.73 41,325.92

and use this speci�cation to estimate the �rst stage of our selection model. We have not

carried on our test on higher order polynomials since the maximization of the log-likelihood

function with K = 9 does not converge9.

Results of ordered Probit model and for the Gallant and Nychka (GN) procedure at 3rd

and 8th degree polynomial are presented in table 3. It has to be noted that estimates of θs

cannot be compared directly across models because the variances di�er (Stewart, 2004). What

we can compare are ratios of di�erent coe�cients from di�erent models. For our purposes the

most relevant result concerns our instrument and its very strong impact on schooling choices

irrespective of the selected model. In the OP model, the t-statistic for the instrument is a

reassuring 29.08. Even stronger is the impact that average unemployment rate has in the

GN(8) model, which is our favorite model. In this model the t-statistic is 49.60. Remember

that as a rule of thumb an F-statistic bigger than 10 is deemed to be su�cient to rule out

concerns of weak instruments. We can safely assume that average unemployment rate in

the labor market correlate with schooling decision. The sign of the e�ect of our instrument

over schooling length is, as expected, positive. Our estimates con�rm the assumption that

pupils take current job market conditions into account when deciding whether to continue or

terminate their educational path.

The other covariates all show the expected signs. Mother education, ability and family

income are positively correlated with educational achievements while number of siblings

negatively so. Father education is not correlated with educational choice. The only surprising

results regards the coe�cients for African-American and Hispanic students. Belonging to a

ethnic minority encourages education at least in our sample. The surprising result is also

encountered by Cameron and Taber (2004) and Chen (2008) on the same data.

5.2 Identi�cation of selection correction term

Separate identi�cation of wage uncertainty (τ 2
s ) and unobserved heterogeneity (νi) requires

the estimation of four selection correction terms, one for each schooling level10. The Cosslett

procedure produces as many 'correction' dummies as intervals for which the distribution is

9The process was stopped after the 200th iteration. Data and programs are available on request.
10See section (2.1) and the appendix.
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Table 3: First stage estimates for di�erent values of K
OP GN(3) GN(8)

Avg. unemp. rate .889*** (.018) .975*** (.012) .934*** (.019)

Mother attended college .329*** (.028) .328*** (.028) .322*** (.029)
Father attended college .534*** (.027) .497*** (.029) .485*** (.031)

Highest grade mother .017*** (.004) .018*** (.004) .015*** (.004)

Highest grade father -.002 (.004) .002 (.003) .001 (.003)

Number of siblings -.024*** (.004) -.019*** (.004) -.018*** (.004)

Family income bottom quartile -.015 (.029) .023 (.029) .024 (.027)

Family income second quartile -.008 (.027) .013 (.026) .013 (.025)

Family income third quartile .002 (.028) .001 (.024) -.004 (.023)

Family income top quartile .187*** (.025) .182*** (.024) .181*** (.024)

AFQT score (adjusted) .025*** (.000) .023*** (.001) .023*** (.001)

Black .515*** (.023) .487*** (.025) .468*** (.028)

Hispanic .331*** (.030) .319*** (.029) .298*** (.030)

Cut-o� point (κ1) 6.621*** (.162) 6.621 6.621

Cut-o� point (κ2) 8.246*** (.165) 8.187*** (.030) 8.185*** (.046)

Cut-o� point (κ3) 9.192*** (.166) 9.158*** (.046) 9.122*** (.071)

Polynomial:

1 -.591*** (.064) -.306*** (.053)

2 .185*** (.043) .169*** (.064)

3 .019*** (.008) -.086 (.083)

4 -.121*** (.035)

5 .026 (.016)

6 .020*** (.005)

7 -.001 (.001)

8 -.001*** (.000)

Wald χ
2

8,693.37 9,911.69 3,785.80
Note: Geographic and cohort controls added. Geographic controls include the urban dummy and three regional

dummies for residence at 14. Cohort controls include a full set of birth cohort dummies and age in the initial survey

year. */**/*** indicate con�dence levels of 10/5/1 percent respectively. Standard errors in parentheses.
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partitioned into. In our case we have set each interval to contain 500 observations ordered

according to the estimated score in the �rst stage. Dividing the entire sample in groups of 500

observations generates 43 intervals: 7 for high school drop outs; 15 for high school graduates;

9 for college drop outs and 9 for college graduates. In order to reduce 43 correction coe�cients

to four we adopt a two step estimation strategy. First we include the dummy variables in the

wage equation di�erentiating for schooling level. In this way we obtain four correction terms

one for each educational category. In a second stage the four correction terms are included

in the a wage equation over the entire sample of individuals irrespective of educational level

along with three educational dummies. These are the corresponding coe�cients γs in table

4, Cosslett column.

5.3 Wage equation

In table 4 we report estimates of equation (16) with the two alternative speci�cation for

the function g(.) in columns 2 and 3 and the simple uncorrected between-individuals e�ect

model in column 1. The Cosslett speci�cation expresses the correction function as g(ziθ) =∑J
j=1 bjIij(ẑiθ) while what we refer to as Olsen estimation in table 4 augments the wage

equation with the inclusion of E[νi|a ≤ νi < b] calculated from the Gallant and Nychka

polynomial approximation in the �rst stage and assunmes linearity in the error terms. Both

estimates are based on a between-individual e�ect model and determine the causal impact

of education on wages. The parameters of interest here are the schooling coe�cients and the

four correction terms.

Column 2 and 3 show that GLS estimation underestimates the schooling coe�cients for

all categories except high school graduates for whom overestimation occurs. These results

are robust to the speci�cation of correction function. It has to be noted that, even if small,

the coe�cient for high school graduates shows an unexpected negative sign; nevertheless

the coe�cient is not signi�cantly di�erent from zero in the Olsen speci�cation and signi�cant

only at a 10% con�dence level for the Cosslett estimator. The other two schooling coe�cients

in column 2 are very precisely estimated and show an underestimation of schooling bene�t of

40% and 43% for college drop outs and college graduates respectively if self-selection issues are

not addressed. Comparable level of underestimation is also detected by the Olsen estimator

even though only the coe�cient for college graduates is estimated with enough precision.

The four correction terms in column 2 highlight the importance of accounting for self-

selection when studying the casual impact of education on wages. Coe�cients for three out

of four correction terms are positive, large and signi�cant the only exception is represented

by the coe�cient for college graduates. The Olsen speci�cation also reports large correction

coe�cients for high school graduates and college drop outs, but only the former is statistically

signi�cant and only at a 10% con�dence level while the latter presents huge standard errors.

15



Table 4: Wage equation
GLS Cosslett Olsen
(I) (II) (III)

High school .049*** -.071* -.054
(.013) (.015) (.097)

Some college .091*** .166*** .243
(.014) (.027) (.128)

4 yr. college or beyond .351*** .502*** .453***
(.017) (.034) (.079)

Experience .132*** .133*** .132***
(.005) (.005) (.005)

Experience2 -.001*** -.001*** -.001***
(.000) (.000) (.000)

AFQT score (adjusted) .005*** .004*** .005***
(.000) (.000) (.000)

Highest grade mother -.002 -.003 -.002
(.001) (.002) (.002)

Highest grade father -.000 -.001 -.000
(.001) (.002) (.001)

Number of siblings .003 .003* .003
(.002) (.002) (.002)

Family income bottom quartile .011 .012 .010
(.015) (.017) (.015)

Family income second quartile -.041*** -.041** -.041**
(.014) (.013) (.014)

Family income third quartile -.007 -.008 -.008
(.013) (.013) (.013)

Family income top quartile .065 .060*** .065***
(.013) (.013) (.013)

Unemployment rate -.001 -.001 -.001
(.002) (.002) (.002)

Black .047*** .035* .049**
(.016) (.017) (.016)

Hispanic .044 .039** .045**
(.017) (.017) (.017)

γ0 .860*** .089
(.186) (.158)

γ1 .407*** .835*
(.047) (.398)

γ2 .756*** -1.726
(.114) (1.575)

γ3 .031 -.047*
(.080) (.023)

R2 .391 .394 .391
N 20,398 20,398 20,398

Note: Geographic controls include the urban dummy and three regional dummies for residence at 14. Cohort
controls include a full set of birth cohort dummies and age in the initial survey year. */**/*** indicate con�-
dence levels of 10/5/1 percent respectively. Bootstrapped standard errors on 200 replications in parentheses.
Unemployment rate calculated on CPS data.
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Interestingly enough, the only coe�cient not signi�cant in the Cosslett speci�cation is now

negative and signi�cant albeit only at a 10% con�dence level.

The other covariates are very robust to speci�cation and beside the coe�cient for African-

Americans and Hispanic all show the expected sign.

Overall regression based on the Cosslett method appear to o�er the better �t: schooling

coe�cients are always signi�cant and correction terms, beside the one for college graduates,

as well. For this reason we base the identi�cation of our parameters of interest shown in

section 5.4 on these results.

5.4 Main results

The inequality measures for variance of wage residuals are: i) the observed wage inequality

given the choice of schooling (V ar[ysit|si = s, xit, zi]); ii) the potential wage inequality purged

of selection and truncation biases (σ2
s +ψ2

st); and iii) the uncertainty in potential wages, after

removing truncation and selection biases and incorporating unobserved heterogeneity factors

(τ 2
s ).

In table 5 panel A we report measures for the observed wage inequality. The observed

wage inequality is the sum of two factors σ2
s(1 − ρ2

s) and ψ2
st. The �rst is the permanent

component, identi�ed by the mean squared residuals in the between-individuals model not

corrected for selectivity. The second is the transitory component identi�ed by exploiting the

mean-squared errors of the �xed-e�ects model.

From table 5 we can see that high school graduates are those showing a lower variance both

in the permanent (panel A) and transitory (panel B) component. On the other hand, college

graduates have the highest variance. Observed wage inequality monotonically increases after

high school and the results holds for both of its components. This result is also encountered by

Chen (2008). College enrollment causes a 15% increase in inequality and college completion

an additional 23%.

If individuals act upon private information about their personal tastes and inclinations to

select the preferred risk/pay-o� pro�le, estimates presented in panel A are biased measures

of the real level of wage inequality that each schooling level entails. In panel C we show

our estimates of the permanent component corrected for selection and truncation biases.

It is immediately evident the huge underestimation of wage inequality if truncation and

selection biases are not taken into account. Observed wage inequality accounts for only 30%

of potential wage inequality in the case of high school and college drop outs and around 70%

for high school graduates. These results abundantly exceeds previous parametric estimations

(Chen, 2008) for which underestimation varies between 2% and 30% depending on educational

level.

On the contrary, observed wage inequality overstates potential inequality in the case of
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Table 5: Parameters of interest
Less than high

school
High school Some college 4 yr. college

and beyond

I. Observed wage inequality
A. Permanent component .308 .304 .352 .421
B.Transitory component (ψ2

st) .156 .131 .142 .207
Age 25-30 -.064 -.052 -.043 -.105
Age 31-36 -.060 -.054 -.047 -.110
Age 37-42 -.025 -.023 -.020 -.055

Observed inequality (A+B) .464 .435 .494 .628

II. Potential wage inequality
C. Permanent component (σ2

s) 1.007 .444 1.082 .311

D. Transitory component (same as B)

Potential wage inequality (C+D) 1.163 .575 1.224 .518

III. Wage uncertainty
E. Correlation coe�cient (ρs) .694 .494 .588 .045

F. Permanent component (C-CxE2) .521 .335 .707 .311

G. Transitory component (same as B)

Degree of wage uncertainty (τ2s ) .365 .363 .613 .420

Unobserved heterogeneity (νi) .486 .108 .374 .001

Note: Estimates of transitory volatility are obtained by regressing ψ2
st on age dummies and categorical

educational variables.

college graduates11. This result suggest that if we were to assign education randomly, intra

educational wage variability would be smaller than the observed variability for this category.

At �rst sight the result is puzzling and former parametric estimates (Chen, 2008) do not allow

for this possibility since in the parametric case with normal distribution of the error terms,

observed wage variability always understates potential wage variability by construction. Our

model does not impose such restriction. In reality we have no prior to suggest that observed

wage variability systematically understates potential wage variability. Even if individuals do

posses superior knowledge about themselves, we cannot assume that they will try to minimize

risk. It is reasonable to imagine that other more compelling factors enter their utility function

besides risk minimization and these other factors might o�set considerations of future wage

variability. If this is the case we cannot exclude a priori the apparently odd result that we

encounter.
11The terminology observed and potential wage inequality is misleading in some respect. Using this terminology can generate

the impression that potential wage inequality is the maximum wage inequality possible by de�nition. What we indicate with
potential wage inequality, instead, is within educational category wage variance in case education was randomly assigned. We
have decided to maintain this terminology since it has been already used in the literature.
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The hierarchical order of the four educational categories regarding potential wage vari-

ability is changed once truncation and selection biases are corrected for. If we control for

self-selection dropping out of college leads to the highest variance in the permanent compo-

nent. College entry yields an enormous 112% increase in wage variability. College completion,

on the other hand, diminishes variability by 64% the lowest level among the four groups. It

is worth nothing that the transitory component is not in�uenced by self selection since it is

modeled as exogenous shocks that individuals can not act upon by construction, therefore

all relative changes have to be attributed to the permanent component.

The permanent component presented in panel C is corrected for self-selection and trunca-

tion, but it does not account for unobserved schooling factor νi which is included in estimates

presented in panel F. It is interesting to compare the two estimates of panel C and panel F

since from this comparison we can already understand the importance of unobserved hetero-

geneity for wage variability. Controlling for unobserved heterogeneity considerably diminishes

all estimates of permanent component with the exception of college graduates who remain

una�ected. These results are due to the strength of correlation between wages and schooling

factor. The parameter ρs in panel E describes a positive and strong correlation between the

two for three out of four categories, but a weak one for college graduates. A positive ρs also

tell us that the labor market rewards people with a high unobserved schooling factor. This

result deviates from previous parametric estimates (Chen, 2008).

Estimates for unobserved heterogeneity in panel G con�rm the intuition. Unobserved

heterogeneity is an important element in explaining potential wage variability for the three

lowest educational categories. It explains a share varying between 42% and 18% of potential

wage inequality. Again, the lone exception is given by college graduates for whom accounting

for unobserved heterogeneity has no impact.

The decomposition of the two determinants of inequality - uncertainty and heterogeneity

- shows that private information has an important e�ect on the identi�cation of a causal

relation between risk and wages for three out of four categories. Even if risk explains most of

wage variability, or the totality of it in the case of college completion, for college drop outs and

high school graduates, in the case of high school drop outs is unobserved heterogeneity and not

risk the main contributor to wage variability. The contribution of unobserved heterogeneity

for the indenti�cation of the potential wage inequality measures encountered in our estimates

is well above the level that previous parametric estimates detected. The other side of the

coin is that the share of wage variability that can be attributed to uncertainty or risk is much

lower than what emerges from previous estimates (Chen, 2008). Risk is maximum for college

drop outs while heterogeneity peaks for high school drop outs.

With the exception of high school drop outs, the majority of wage variation that we

encounter in the data is anyhow due to wage uncertainty. As for the other parameters of
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interest risk increases with college entry. For risk-averse individuals this particular feature

of wage variability might discourage investment into further education in the absence of

compensating mechanisms. The most immediate compensation that comes to mind is via

higher wages, thus, the increase in category wage inequality that has characterized the US

economy in the past decades might be a compensation to superior risk. On the other hand,

college enrollment and even better, college completion, opens up more opportunities both

in terms of further education (i.e.: M.Sc. or PhD etc.) and in terms of possible careers.

The increased uncertainty might simply re�ect this larger choice set compared to high school

students and high school drop outs. Controlling for the number of occupational choices that

each education gives access too would shed some light on the exact mechanism, but that

exceeds the scope of the present paper.

Our results clearly show that potential and observed wage variability are prominent in the

two categories of drop outs, this is an interesting result, possibly related to some common

features of these two group of individuals. The level of unobserved heterogeneity detected in

our estimation is far from irrelevant and suggest that self-selection severely biases estimates

of the causal impact of schooling on risk. The low impact of unobserved schooling factor

and the overestimation of potential by observed wage inequality for college graduates suggest

that the use that individuals make of private information when selecting a university degree

might not be at odd with assumptions of risk minimizing agents at least for this speci�c

category.

6 Conclusion

In this paper we apply two semiparametric techniques developed by Cosslett (1983) and

Gallant and Nychka (1987) to distinguish various components of wage variance. We extend

the original technique from the dichotomous to the polychotomous case providing consistent

estimates of: within education potential wage variation, accounting for selection and trunca-

tion biases; degree of private information owned by the individuals and used to select their

favorite level of education; magnitude of pure risk that every education level entails.

Our results indicate that all decompositions of wage uncertainty (observed, potential and

the transitory component) are maximum for high school and college drop outs. Holding a

degree, either from high school or college, is found to decrease wage variability by half. This

is an aspect of nonlinear bene�ts of education rarely considered before.

Other important results are the much higher impact of unobserved heterogeneity on wage

variability and the �nding that in the case of college graduates, if education was randomly

assigned to individuals, their within educational wage variability would be reduced compared

to the status quo. We o�er two interpretations to this �nding: when selecting a college

degree individuals might not use their private information to minimize their future wage
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variability or they might not posses su�cient information on how their personal tastes and

inclination for schooling match with di�erent college degrees. This might not be the case for

the other three categories since the di�erent options in terms of educational paths that they

o�er are more limited. What is clear from our analysis is that investing in education has a

signi�cant impact on risk of future wages and this is especially true for college education if

not �nished. If compensation for risk exists in the labor market and if this compensation

works via higher wages for riskier occupations, our �ndings might contribute to explain the

increase of educational level inequality observed in the U.S. and other advanced economies

in the past 30 years.

Uncertainty might as well be more complex than mere wage variability across educational

categories. An obvious source of uncertainty is risk of unemployment. If more education

reduces the likelihood of unemployment spells, the increased uncertainty in pay-o�s that we

encounter in our estimates might be o�set by the prospective of a continuous work career.

A complete study of educational risk has to account for both sources of uncertainty: wage

variations and risk of unemployment. We let this task to future research.
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A Appendix: identi�cation of ρs and σs

To see how ρs and σs are identi�ed consider the model as formalized by Chen (2008):

ysi = xsiβs + σsesi + ψstεit, (18)
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s∗i = zsiθs + νi (19)

where s∗i = s if a ≤ νi ≤ b. This is the usual sample selection model with ordered censoring

rules. Following Olsen (1980) we make the following assumption on a part of the error term:

σsesi = σeνsνi + ξs (20)

where σeνs ≡ σsρs is the covariance coe�cient between the error term in the outcome equation

and the error term in the choice equation. As Chen (2008) does, we assume that the error

term νi in the choice equation is correlated with esi, but not with εit. We also assume that

ξs is independent of νi and that the ξs are uncorrelated across schooling levels. Additionally,

V ar[ξs] = σ2
ξs. From these assumptions we obtain that:

E[σsesi + ψstεit|a ≤ νi < b] = E[σsesi|a ≤ νi < b] = σsρsE[νi|a ≤ νi < b] (21)

V ar[σsesi|a ≤ νi < b] = σ2
eνsV ar[νi|a ≤ νi < b] + σ2

ξs (22)

To re-establish the zero conditional mean of the error term in the outcome equation (16)

in presence of self-selection, we need a correction term accounting for E[νi|a ≤ νi < b] and

an estimate for λs ≡ σsρs. In fact, the equation:

yis = αs + xitβs + λsg(ziθ) + ωis (23)

can be consistently estimated with OLS since E[ωis|xit, zi] = 0 by construction. g(ziθ) =

E[νi|a ≤ νi < b] is an unknown function entered using the method of Gallant and Nychka

(1987) or Cosslett (1983). We can obtain estimates for both E[νi|a ≤ νi < b] and V ar[νi|a ≤
νi < b] by approximating the unknown density function by a Hermite series of K degrees

polynomials.

Ê[νi|a ≤ νi < b] =

´ b
a
νifK(νi)dν

Pr[a ≤ νi < b]
(24)

V̂ ar[νi|a ≤ νi < b] = Ê[ν2
i |a ≤ νi < b]− Ê[νi|a ≤ νi < b]2 (25)

where K represent the degree of polynomial used and fK(νi) is a density function at νi

assuming the form:

fK(νi) =
1

π

2K∑
k=0

ι∗kν
k
i φ(νi) (26)
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π =
´ ∑2K

k=0 ι
∗
kν

k
i φ(νi)dν =

∑2K
k=0 ι

∗
kµk is a scaling factor ensuring a proper approximation for

the density function (i.e.: a function integrating to 1), µk is the kth moment of the standard

normal distribution and φ the standard normal density.

According to our distributional assumptions the variance of the permanent component

from an individual standpoint is given by: V ar[σsesi|xit] = V ar[σsρsνi+ξs|xit] = σ2
sσ

2
νρ

2
s+σ

2
ξs.

Remembering that V ar[σsesi|xit] = σ2
s we obtain:

σ2
ξs = σ2

s(1− ρ2
sσ

2
ν) (27)

Substituting (27) into (22) and rearranging, we obtain the variance of observed wages cor-

rected for truncation:

V ar[σsesi|a ≤ νi < b] = σ2
s(1− ρ2

sδsi) (28)

where we can estimate δsi by: δ̂si = V̂ ar[νi|a ≤ νi < b] − σ̂2
ν . The parameter γ̂s = ρ̂sσs is

estimated as the coe�cients for the correction terms distinguished by schooling level in an

OLS regression.

In this model the error term is composed by two elements, the permanent component

(σsesi), for which we have explicated the variance in (22), and the transitory shocks ψstεit.

The expression for the variance of the complete error term is:

V ar[σsesi + ψstεit|a ≤ νi < b] = V ar[σsesi|a ≤ νi < b] + ψ2
st = σ2

s(1− ρ2
sδsi) + ψ2

st (29)

γ̂s = ̂ρsσes; V ar[σsesi + ψstεit|a ≤ νi < b] = V ar[ωsi|a ≤ νi < b] can be consistently

estimated as the mean squared errors of the residuals in the between individual e�ects model

of expression (23). ψ2
st, as explained in Chen (2008), is identi�ed from the �xed-e�ect model

as the variance of residuals in equation (15). Substituting these elements into (29) and

rearranging we identify the permanent component of wage inequality corrected for truncation

as:

σ̂2
s = V̂ ar[ωsi|a ≤ νi < b]− (σ̂sρs)

2δ̂s −
∑
t ψ̂

2
st

T
(30)

With T ≡ (
∑
i T
−1
i /N)−1 and δ̂s is the sample average of the truncation adjustment.

Substituting (30) into (27) we obtain estimates for σ2
ξs and ρ̂

2
s =

σ̂2
s−σ̂2

ξ

σ̂2
s σ̂

2
ν
.

Note that we have identi�ed ρ2
s and σ2

s without assuming (joint) normality of the error

terms in the wage and choice equations. The only two assumptions that we need to establish

identi�cation are:

linearity in the equation of the error term (σses = ωενsνi + ξs);
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1. the distribution of ξs is independent of νi.

26


