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Abstract
We analyze the usefulness of the �rst stage F-statistic for detecting weak

instruments in the IV model with a nonscalar error covariance structure.
More in particular, we question the validity of the rule of thumb of a �rst
stage F-statistic of 10 or higher for models with correlated errors arising
from either a group structure or serial correlation. Using asymptotic expan-
sion techniques we derive bias approximations for IV and OLS estimators in
this generalized IV model. We relate these bias approximations to expected
values of both standard and robust versions of the �rst stage F-statistic.
Our theoretical and simulation results indicate that the standard �rst stage
F-statistic overestimates the strength of instruments. In addition, there
does not seem to be a close correspondence between the robust version of
the F-statistic and weak instruments as measured by relative bias of IV
with respect to OLS.
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1. Introduction

Well known in the literature on instrumental variables (IV) estimation is the issue
of weak instruments. When instruments are weak, i.e. only weakly correlated
with the endogenous regressors, the IV estimator can perform poorly in �nite
samples, see e.g. Bound et al. (1995), Staiger and Stock (1997) and Stock et al.
(2002). With weak instruments, the IV estimator is biased in the direction of the
ordinary least squares (OLS) estimator, and its distribution is non-normal which
a¤ects inference using Wald testing procedures.
Bound et al. (1995) and Staiger and Stock (1997) advocate use of the �rst-

stage F-statistic to investigate the strength of the instruments. It has been shown
that there is a close correspondence between the expected value of the �rst-stage
F-statistic and bias of the IV estimator, relative to the bias of the OLS estimator.
Using weak instrument asymptotics, Stock and Yogo (2005) tabulate critical values
for the �rst-stage F-statistic to test whether instruments are weak. They do this
separately for the maximum bias of the IV estimator, relative to the bias of the
OLS estimator, and for the maximum Wald test size distortion. They conclude
that the �rst stage F statistic should be large, typically exceeding the rule of
thumb of 10 proposed by Staiger and Stock (1997).
Applied researchers routinely report OLS estimation results of the �rst stage as

well as the value of the �rst stage F-statistic to assess the relevance of instruments.
For example, Bound et al. (1995) reexamine Angrist and Krueger�s (1991) IV
estimates of the returns to schooling and report �rst stage F-statistics for some
selected speci�cations of Angrist and Krueger (1991), who used quarter of birth
as instrument for education in wage equations. For most speci�cations Bound et
al. (1995) report rather low values for the �rst stage F-statistic indicating that
instruments based on quarter of birth are weak.
The above mentioned theoretical results on the relation between �rst stage

F-statistic and relative bias/size distortion have been established for models with
i.i.d. errors. In applied research, however, typically error terms are allowed to
have heteroskedasticity and/or serial correlation. Hence, quite often robust ver-
sions of the �rst stage F-statistic have been reported instead of the standard ver-
sion. For example, in contrast with the pioneering work of Angrist and Krueger
(1991) nowadays typically clustered standard errors are reported when analyzing
the returns to schooling. Examples are Oreopoulos (2006) and Pischke and von
Wachter (2008), who both analyze the returns to schooling using school leaving
age as instrument. The exogenous variation in the instrument typically arises from
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a change in compulsory schooling laws. Individual data are available and addi-
tional exogenous regressors are individual characteristics like age, gender, year of
birth, state of residence, etc. Pischke and von Wachter (2008) use individual data
and report �rst stage regression results with standard errors robust to clusters at
the state/year of birth level. Oreopoulos (2006) �rst aggregates the data into cell
means at the year of birth, nation, race, sex and survey year level. Next, �rst
stage regressions have been reported with standard errors robust for clusters at
the region/birth cohort level.
Several weak instrument robust inference procedures for testing hypotheses

about structural parameters have been developed for the IV model with a non-
scalar error covariance matrix (Kleibergen, 2007). However, not much is known
about the usefulness of the �rst stage F-statistic for detecting weak instruments
in case of IV models with a more general error covariance structure. In this study
we will provide both theoretical and simulation results on this relationship. We
will make use of asymptotic expansion techniques to approximate the IV and OLS
biases. Next, for two speci�c error covariance structures, i.e. grouped and autore-
gressive errors, we will obtain analytical formulae for the relative bias and the
expected value of both standard and robust versions of the �rst stage F-statistic.
For the IV model with i.i.d errors Staiger and Stock (1997) propose as rule

of thumb for the �rst stage F-statistic the critical value of 10. Stock and Yogo
(2005) conclude that the �rst stage F-statistic should be large, typically exceeding
the rule of thumb of 10. In this paper we want to analyze for the in case of a
nonscalar error covariance structure whether 10 is still a sensible critical value for
the �rst stage F-statistic. In addition, we want to verify whether reporting a �rst
stage F-statistic robust for heteroskedasticity and serial correlation makes sense
in terms of relative bias. The results in this study are thus complementary to the
generalization of weak instruments robust inference methods to IV models with a
nonscalar covariance structure (Kleibergen, 2007).
The setup of the paper is as follows. Section 2 discusses relative bias and �rst

stage F-statistic in the IV model with i.i.d. errors. Section 3 introduces the IV
model with nonscalar error covariance structure and standard/robust versions of
the �rst stage F-statistic. Also general formulae for approximating IV and OLS
biases are derived. Section 4 reports speci�c analytical results for the case of
grouped errors when analyzing cross-section data, while Section 5 deals with the
case of serial correlation in time series. Section 6 presents Monte Carlo results for
both applications, while Section 7 concludes.
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2. Relative bias and �rst stage F statistic

Consider the simple linear IV regression model with one endogenous regressor x
and kz instruments z

yi = xi� + ui (2.1)

xi = z0i� + vi;

for i = 1; :::; n where the (ui; vi) are independent draws from a bivariate normal
distribution with zero means, variances �2u and �

2
v, and correlation coe¢ cient �uv.

Stacking the observations we have

y = x� + u (2.2)

x = Z� + v; (2.3)

where y, x and u are the n-vectors (y1; :::; yn)
0, (x1; :::; xn)

0 and (u1; :::; un)
0 respec-

tively, and Z is the n�kz matrix (z1; :::; zn)0. The parameter � is estimated either
by OLS or 2SLS: b�OLS = x0y

x0x
;

b�2SLS = x0PZy

x0PZx
;

where PZ = Z (Z 0Z)
�1 Z 0.

It is well known that when instruments are weak, i.e. when they are only
weakly correlated with the endogenous regressor, the 2SLS estimator can perform
poorly in �nite samples, see e.g. Bound et al. (1995) or Staiger and Stock (1997).
With weak instruments, the 2SLS estimator is biased in the direction of the OLS
estimator, and its distribution is non-normal which a¤ects inference using the
Wald testing procedure.
A measure of the strength of the instruments is the concentration parameter,

which is de�ned as

� =
�0Z 0Z�

�2v
: (2.4)

When it is evaluated at the OLS, �rst stage, estimated parameters

b� = b�0Z 0Zb�b�2v ;
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it is clear that b� is equal to the Wald test for testing the hypothesis H0 : � = 0,
and b�=kz equals the F-test statistic de�ned as

F =
b�0Z 0Zb�=kzb�2v : (2.5)

Bound et al. (1995) and Staiger and Stock (1997) advocate use of the �rst-
stage F-statistic to investigate the strength of the instruments. The �rst stage F
statistic has a noncentral F distribution with noncentrality parameter equal to �.
Hence, we have the following approximate relation (Stock et al., 2002) between
the expected value of the �rst stage F statistic and the concentration parameter:

E [F ] � 1 + �

kz
: (2.6)

From this result it is seen that F � 1 can be interpreted as an estimator of �
kz
.

The concentration parameter � is a key quantity in describing the �nite sample
properties of the IV estimator. The approximate bias of the 2SLS estimator can
be obtained using higher order asymptotics based on the expansion of the 2SLS
estimation error, see Nagar (1959), Buse (1992) and Hahn and Kuersteiner (2002).
It follows that the approximate bias of the IV estimator can be expressed as

E
hb�2SLS � �i � (kz � 2)�uv

�0Z 0Z�
=
�uv
�2v

(kz � 2)
�

: (2.7)

Hence the bias is inversely proportional to the value of the concentration para-
meter. It does not only depend on the concentration parameter, but also on the
number of instruments kz and the degree of endogeneity embodied in the covari-
ance �uv. However, the relevance of the concentration parameter for �nite sample
bias becomes even more pronounced when we consider the bias of the IV estimator,
relative to that of the OLS estimator as de�ned by

RelBias =
E
hb�2SLS � �i

E
hb�OLS � �i ;

see e.g. Bound et al. (1995). The bias of the OLS estimator can be approximated
by (see e.g. Hahn and Kuersteiner (2002))

E
hb�OLS � �i � �uv

�2v

1
�
n
+ 1

;
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which is equal to inconsistency of OLS. The relative bias is then approximately
given by

RelBias �
(kz � 2)

�
�
n
+ 1
�

�
; (2.8)

i.e. a function of �, n, and kz only. Combining now the approximate results in
(2.6) and (2.8) we have for moderately large � that relative bias roughly equals
1
F
: Finally, the concentration parameter is an important element in describing size
distortions of t or Wald tests based on the 2SLS estimator, see the discussion in
Bun and Windmeijer (2010).
The results discussed above are based on conventional higher-order asymptot-

ics, i.e. assuming strong identi�cation. Hence, these higher-order approximations
may not always be informative in case of weak instruments. However, regarding
the relevance of the concentration parameter, weak instrument asymptotics as
derived by Staiger and Stock (1997) lead to similar conclusions compared with
conventional �xed-parameter higher-order asymptotics. Staiger and Stock (1997)
develop weak instrument asymptotics by setting � = �n = C=

p
n, in which case

the concentration parameter converges to a constant. They then show that 2SLS
is not consistent and has a nonstandard asymptotic distribution. These results
are of course di¤erent from conventional asymptotics. However, Staiger and Stock
(1997) show that the asymptotic bias of the 2SLS estimator, relative to that of the
OLS estimator again only depends on kz and �. Furthermore, the distributions
of the 2SLS t-ratio and Wald statistic only depend on �, kz and �uv.

3. IV model with a nonscalar covariance structure

All results in the previous section have been established under the assumption
that the error terms in both structural and reduced form equations are i.i.d. We
now consider the case where they have a nonscalar covariance matrix structure,
i.e. �

u
v

�
� N(0;
): (3.1)

We can further decompose 
 as follows


 =

�

u 
uv

uv 
v

�
=

�
�2u�u �uv�uv

�uv�uv �2v�v

�
: (3.2)

The case of i.i.d. disturbances is a special case where �u = �v = �uv = In
and, hence, the covariance matrix attains a Kronecker product form (see e.g.
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Kleibergen, 2007):


 =

�
�2u �uv
�uv �2v

�

 In:

Using the reduced form speci�cation (2.3) we can write for the estimation errors

b�OLS � � = �0Z 0u+ v0u

�0Z 0Z� + 2�0Z 0v + v0v
; (3.3)

b�2SLS � � = �0Z 0u+ v0PZu

�0Z 0Z� + 2�0Z 0v + v0PZv
: (3.4)

The approximate bias of the OLS and 2SLS estimators can be obtained us-
ing higher order asymptotics, see e.g. Nagar (1959). We will analyze such ap-
proximations assuming the nonscalar covariance structure (3.2) and that we have
nonstochastic instruments such that limn!1

1
n
Z 0Z is �nite and nonsingular.

The bias (inconsistency) of the OLS estimator can be approximated by

E
hb�OLS � �i � E [v0u]

�0QZZ� + E [v0v]
=

�uvn
�1tr(�uv)

�0QZZ� + �2vn
�1tr(�v)

; (3.5)

where QZZ = 1
n
Z 0Z: It is seen that the inconsistency does really only depend

explicitly on the contemporaneous correlation between the structural and reduced
error terms.
In the Appendix it is shown that we have the following 2SLS bias approxima-

tion:

E
hb�2SLS � �i = 1

n

�
tr(Q�1ZZQ

�
ZZ)

�0QZZ�
� 2�0Q�ZZ�

(�0QZZ�)
2

�
+ o(n�1); (3.6)

where Q�ZZ =
1
n
Z 0
uvZ. Below we will apply these results to some well known

speci�c covariance structures to assess relative bias.
Next consider �rst stage Wald statistics for testing H0 : � = 0 of the form

�̂0V̂ �1�̂ �̂:

F-statistics result when dividing by kz. When we use

V̂�̂ = �̂
2
v(Z

0Z)�1; (3.7)

we have the standard F-statistic, while using

V̂�̂ = (Z
0Z)�1

�
Z 0
̂vZ

�
(Z 0Z)�1; (3.8)
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a robust F stastictic results taking into account the nonscalar covariance structure
in the reduced form. In some applications (e.g. using grouped data) researchers
typically report this robust F-statistic rather the standard version. Below we will
analyze below what the consequences are of this choice for population versions,
i.e. assuming the covariance structure known.

4. grouped errors

Suppose we have cross-section data with a grouped error structure in both the
structural and reduced form. Denoting the individual observation i now with two
indices, i.e. g and m, we have for model (2.1)

ygm = xgm� + ugm (4.1)

xgm = z0gm� + vgm;

with g = 1; :::; G and m = 1; :::;Mg. For ease of exposition we assume equal group
size, henceMg =M and we have in total n = G�M observations. Also we assume

zgm = zg;

hence the value of the instruments is equal within groups (see e.g. Shore-Sheppard,
1996). In this case we have Z = Z� 
 �M with Z� = (z1; :::; zG)0 and we have

QZZ =
1

g
Z�0Z�:

Regarding the errors we assume an additive error components structure

ugm = �g + "gm (4.2)

vgm = �g + �gm: (4.3)

We further assume homoskedasticity and that all within group correlation is mod-
eled by the group e¤ects, hence de�ning �uv = ��� + �"� and �2v = �2� + �

2
� we

have


uv = IG 
 (����M �0M + �"�IM)

= �uv

�
IG 


�
IM +

���
�uv

(�M �
0
M � IM)

��
;

= �uv�uv
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vv = IG 

�
�2��M �

0
M + �

2
�IM

�
= �2v

�
IG 


�
IM +

�2�
�2v
(�M �

0
M � IM)

��
= �2v�v:

Because tr(�uv) = tr(�v) = n according to (3.5) the bias of the OLS estimator
can be approximated by

E
hb�OLS � �i � �uv

�0QZZ� + �2v
:

Regarding the approximate bias of the 2SLS estimator as described in (3.6)
we have

1

n
Z 0
uvZ = (M��� + �"�)

1

g
Z�0Z�;

and

M��� + �"� = �uv

�
1 +

(M � 1)���
�uv

�
:

Hence, we have

Q�ZZ = �uv

�
1 +

(M � 1)���
�uv

�
QZZ ;

and

E
hb�2SLS � �i = �1 + (M � 1)���

�uv

�
1

n

(kz � 2)�uv
�0QZZ�

+ o(n�1):

Now using the de�nition of � as in (2.4) the relative bias is approximately given
by

Relbias =
E
hb�2SLSi� �

E
hb�OLSi� � �

�
1 +

(M � 1)���
�uv

�
(kz � 2)

�
1
n
�+ 1

�
�

: (4.4)

In the i.i.d. case relative bias is a function of �, n, and kz only. However, when
errors in both structural and reduced form error exhibit within groups correlation
and group e¤ects are positively correlated (��� > 0) relative bias is always larger
keeping the value of the concentration parameter �xed.
Next we consider �rst stage F-statistics. In this application typically the clus-

ter robust F-statistic (see e.g. Arellano, 1987) using

V̂�̂ = (Z
0Z)�1

 X
g

Z 0gv̂gv̂
0
gZg

!
(Z 0Z)�1;
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is reported instead of the standard F-statistic. For the population standard F we
have

E [F pop] =
1

kz�2v
E [x0PZx]

=
1

kz�2v

�
�0Z 0Z� + kz�

2
v

�
1 +

(M � 1)�2�
�2v

��
=

�

kz
+ 1 +

(M � 1)�2�
�2v

;

hence compared with the i.i.d. case it is overestimating the strength of the instru-
ments for �xed concentration parameter. Regarding the population robust F we
have

E [F popr ] =
1

kz
E
h
x0Z (Z 0
vvZ)

�1
Z 0x
i

=
1

kz

�
�0Z 0Z (Z 0
vvZ)

�1
Z 0Z� + tr((Z 0
vvZ)

�1
Z 0E [vv0]Z)

�
=

1

kz

 
�0Z 0Z�

M�2� + �
2
�

+ kz

!
=

1�
1 + (M�1)�2�

�2v

� �
kz
+ 1;

where
1

n
Z 0
vvZ = (M�

2
� + �

2
�)
1

g
Z�0Z�;

and

M�2� + �
2
� = �

2
v

�
1 +

(M � 1)�2�
�2v

�
:

Hence, compared with the i.i.d. case it is not clear whether it is over- or un-
derestimating the strength of the instruments for a �xed concentration parameter.

5. serial correlation

Suppose we have stationary time-series data with serial correlation in both struc-
tural and reduced form errors. Denoting the individual observation i now with a
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time index t, we have for model (2.1)

yt = xt� + ut (5.1)

xt = z0t� + vt:

where t = 1; :::; n. We assume that the instruments follow the following �rst-order
autoregressive process

zt = �zIkzzt�1 + �t;

�t � IIN
�
0; �2�Ikz

�
:

Hence, we have
QZZ = E [ztz

0
t] = �

2
zIkz

Furthermore, we assume that both errors follow a �rst-order autoregressive process

ut = �uut�1 + "t

vt = �vvt�1 + �t;

where ("t; �t) are independent draws from a bivariate normal distribution with
zero means, variances �2" and �

2
� , and correlation coe¢ cient �"�. Hence, de�ning

�uv =
�"�

1�(�u�v)2
and �2v =

�2�
1��2v

we have


uv = �uv

266664
1 �v �2v �n�1v

�u 1 �v
�2u �u 1

�v
�n�1u �u 1

377775 ;


v = �
2
v

266664
1 �v �2v �n�1v

�v 1 �v
�2v �v 1

�v
�n�1v �v 1

377775 :
The bias of the OLS estimator can be approximated by

E
hb�OLS � �i � �uv

�0QZZ� + �2v
:
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Regarding the approximate bias of the 2SLS estimator as described in (3.6) we
have

Q�ZZ = �uv

�
1

1� (�v�z)2
+

1

1� (�u�z)2
� 1
�
QZZ + o(1):

Substituting this result into (3.6) we get

E
hb�2SLS � �i = � 1

1� (�v�z)2
+

1

1� (�u�z)2
� 1
�
(kz � 2)�uv
�0Z 0Z�

+ o(n�1):

Now using the de�nition of � as in (2.4) the relative bias is approximately
given by

Relbias �
�

1

1� (�v�z)2
+

1

1� (�u�z)2
� 1
�
(kz � 2)

�
1
n
�+ 1

�
�

: (5.2)

In the i.i.d. case relative bias is a function of �, n, and kz only. However, when
both instruments, structural errors and/or reduced form errors exhibit serial cor-
relation relative bias is always larger keeping the value of the concentration para-
meter �xed.
For the population standard F we have

E [F pop] =
1

kz�2v
E [x0PZx]

=
1

kz�2v

�
�0Z 0Z� + kz�

2
v

�
2

1� (�v�z)2
� 1
��

=
�

kz
+ 1 + 2

�
(�v�z)

2

1� (�v�z)2

�
;

hence compared with the i.i.d. case it is overestimating the strength of the instru-
ments for �xed concentration parameter. Regarding the population robust F we
have

E [F popr ] =
1

kz
E
h
x0Z (Z 0
vZ)

�1
Z 0x
i

=
1

kz

�
�0Z 0Z (Z 0
vZ)

�1
Z 0Z� + tr((Z 0
vZ)

�1
Z 0E [vv0]Z)

�
=

1

kz

�
1� (�v�z)2
1 + (�v�z)

2

�0Z 0Z�

�2v
+ kz

�
=

1� (�v�z)2
1 + (�v�z)

2

�

kz
+ 1;
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where
1

n
Z 0
vZ = �

2
v

1 + (�v�z)
2

1� (�v�z)2
QZZ + o(1):

Hence, compared with the i.i.d. case it is unclear whether it is over- or under-
estimating the strength of the instruments for �xed concentration parameter.

6. Monte Carlo results

In this section we report results from a limited simulation study. We generate
data from IV models with either a grouped error structure or autoregressive er-
rors. In order to assess our theoretical �ndings we have chosen for two di¤erent
con�gurations. First, we �x the concentration parameter � as de�ned in (2.4)
across experiments. We set �=kz = 9 which in the i.i.d. case corresponds to a
population �rst stage F-statistic of 10 and relative bias of around 10%. This rule
of thumb has been proposed by Staiger and Stock (1997). Second, we �x relative
bias at 10% using either (4.4) or (5.2). In this set up we can analyze what kind
of values for F-statistics are needed in case of correlated errors.

6.1. grouped data

We generate data voor y and x according to (4.1). Instruments and error terms
are drawn according to zg � IIN(0; Ikz), (�g; �g) � IIN(0;���) and ("gm; �gm) �
IIN(0;�"�). We take ��� = �"� = � with

� =

�
1 �
� 1

�
;

and � = 0:5. Hence, we have

�2� = �2� = �
2
" = �

2
� = 1;

��� = �"� = 0:5:

We set n = 500 while varying the number of groups and choosing M = n=G.
ChoosingM = 1 corresponds to the i.i.d. case, whileM > 1 introduces a grouped
error structure. In the latter case we have chosen M = f5; 10; 20g.
In Table 1 we report simulation results using 2000 Monte Carlo replications.

The results in the upper panel follow from �xing the concentration parameter,
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i.e. we set �=kz = 9. This implies for each element in the vector of reduced form
coe¢ cients that

�j =

s
�2� + �

2
�

n

�

kz
:

The results in the lower panel follow from �xing relative bias as de�ned in (4.4),
i.e. we set Relbias = 0:1. Using (4.4) we determine the resulting values for �
depending on the other parameter settings.

Table 1: bias and F statistic in case of grouped errors

M bias OLS bias IV relbias F Fr

�=kz = 9

1 0.459 0.037 0.080 10.04 10.45
5 0.460 0.096 0.210 12.12 4.86
10 0.459 0.162 0.353 15.15 3.90
20 0.460 0.266 0.579 22.72 4.52

Relbias = 0:1

1 0.470 0.051 0.108 7.42 7.72
5 0.412 0.041 0.099 25.23 10.11
10 0.338 0.035 0.105 57.01 14.71
20 0.191 0.022 0.117 203.37 40.49

Note: average numbers over 2000 replications

Regarding the robust F-statistic we used the robust covariance matrix estima-
tor of Arellano (1987). From Table 1 we see that the pattern of the simulation
results follows the theoretical predictions We have that in the i.i.d. case (M = 1)
results are similar to existing simulation results, i.e. F-statistics of 10 correspond
roughly with 10% relative bias. But more importantly for grouped errors (M > 1)
and for �xed � we have that relative bias and standard F-statistic increase rapidly.
Hence, the standard F-statistic is overestimating relative bias and, hence, strength
of instruments. The robust F-statistic decreases considerably, but from the lower
panel results it becomes clear that this decrease is not enough to o¤set the in-
creased relative bias. Fixing relative bias at 10% and allowing for grouped errors
leads to much larger F-statistics than in the i.i.d. case. For example, withM = 20
observations per group 10% relative bias corresponds to a value of around 200 for
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the standard F-statistic. Although using a robust F-statistic is a step in the right
direction, we still need a value of 40, i.e. considerably larger than 10, to be sure
that we have limited relative bias.

6.2. serial correlation

We generate data voor yt, xt and zt according to:

yt = xt� + u1t

xt = �xxt�1 + u2t

zt = �zIkzt�1 + u3t;

where 0@ u1t
u2t
u3t

1A � IIN

0@24 00
0

35 ;
24 �11 �12 00

�12 �22 �23�
0
kz

0 �23�kz �33Ikz

351A :
Exploiting u2t = �23

�33
u3t + �t the reduced form for xt is

xt = �xxt�1 +
�23
�33
zt � �z

�23
�33
zt�1 + �t:

We choose �x = �z = �, hence we have

xt =
�23
�33
zt + vt;

vt = �vt�1 + �t:

If we now use only zt as instruments we have serial correlation in the reduced
form. Of course, we could use xt�1 and zt�1 as instruments as well to circumvent
this problem. We set n = 500 while varying the value for �. Choosing � = 0
corresponds to the i.i.d. case, while 0 < � < 1 introduces serial correlation. We
set �11 = �22 = �33 = 1 and choose �12 = 0:5. This implies �23 = �23 for which we
have the following when we �x the concentration parameter � across experiments:

�23 =

s
�
nkz

1 + �
nkz

:

We set again �=kz = 9 which in the i.i.d. case corresponds to a population
�rst stage F-statistic of 10 and relative bias of around 10%. Alternatively, we �x
relative bias at 10% and let � vary according to (5.2). The upper and lower panels
of Table 2 report the simulation results for �xing � and relative bias respectively.
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Table 2: bias and F statistic in case of AR(1) errors

� bias OLS bias IV relbias F Fr

�=kz = 9

0 0.498 0.032 0.064 10.81 11.42
0.3 0.453 0.032 0.070 11.07 6.80
0.6 0.320 0.032 0.099 12.16 4.01
0.9 0.098 0.024 0.244 20.84 3.07

Relbias = 0:1

0 0.498 0.045 0.090 7.82 8.26
0.3 0.453 0.044 0.097 8.13 4.99
0.6 0.320 0.038 0.119 10.28 3.39
0.9 0.098 0.013 0.130 38.66 5.69

Note: average numbers over 2000 replications

Regarding the robust F-statistic we used the HAC estimator proposed by
Newey and West (1987) exploiting a lag length of 10. Indeed we see that the
pattern of the simulation results follows the theoretical predictions In the i.i.d.
case (� = 0) results are similar to existing simulation results on relative bias and
�rst stage F-statistic. But more importantly in case of serial correlation (� > 0)
and for �xed � we have that relative bias and standard F-statistic increase, while
the robust F-statistic decreases. Again we need a considerably larger standard
F-statistic compared with the i.i.d. case. However, contrary to the grouped error
design the decrease in the robust F-statistic is enough to o¤set the increase in
relative bias as can be seen from the lower panel of Table 2. Apparently even
values lower than 10 su¢ ce to limit relative IV/OLS bias to 10%.

7. Concluding remarks

In this study we have analyzed the usefulness of the �rst stage F-statistic for
detecting weak instruments in the IV model with a nonscalar error covariance
matrix. In particular, we have investigated whether there is like in the case of
i.i.d. errors, a close relation between �rst stage F-statistic and bias of the IV es-
timator, relative to the bias of the OLS estimator. For two particular well known
error covariance structures, i.e. grouped errors and autoregressive errors, we have
embarked on this relation in more detail. Employing asymptotic expansion tech-
niques to approximate IV and OLS biases we have shown that in these cases for a
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�xed concentration parameter more relative bias goes hand in hand with a larger
�rst stage F-statistic compared with the case of i.i.d. errors. In other words,
in case of correlated errors the often used rule of thumb of 10 for the �rst stage
F-statistic implying roughly 10% relative bias is too low.
We also analyzed a version of the �rst stage F-statistic robust for correlated

errors. Especially in case of the cross-section IV model with a grouped error
structure this statistic is reported routinely by applied researchers. For our two
particular examples of correlated errors we have found that there is no close re-
lation between robust �rst stage F-statistic and relative bias. It depends on the
particular model whether it is over- or underestimating the strength of the instru-
ments. Our simulation results show that in case of grouped errors a value of 10 is
certainly not always su¢ cient to warrant limited bias of IV versus OLS. However,
in case of autoregressive errors our simulations indicate that the rule of thumb
of 10 applied to the robust F-statistic can serve as a conservative lower bound in
judging the strength of instruments.
Although the scope of the current analysis has been limited to a few special

cases we nevertheless think that two main conclusions emerge for the use of the
�rst stage F-statistic in applied research. First, reporting both standard and
robust F-statistics instead of either one can give some insight into the problem of
weak instruments. Second, while the use of a robust version of the test statistic
seems more conservative there are some potential threats to its use as well. There
is no close correspondence with relative bias anymore and, in addition, we do not
know the exact covariance structure in practice. For example, in case of grouped
data what happens if we cluster at the wrong level? Hence, proper modeling of
the reduced form, i.e. avoiding misspeci�cation, seems warranted for successful
interpretation of �rst stage F-statistics for detecting weak instruments.
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A. Bias approximation

In this appendix we derive the bias approximation of the IV estimator in case of
the IV model with nonscalar covariance matrix. We have for the 2SLS estimation
error (3.4) the following b�2SLS � � = c

d
:

We assume a �nite number of instruments, hence kz is O(1). Furthermore, assume
that these instruments are not weak, i.e. �0Z 0Z� is O(n). Then we have that
E [c] = O(1); E [d] = O(n), V ar [c] = O(n); V ar [d] = O(n), hence c = Op(n1=2)
and d = Op(n

1=2). De�ning �d = E(d) we may express the denominator of the
estimation error as follows:

d = �d+ d� �d

= �d(1 + �d�1(d� �d));

hence we have
d�1 = �d�1(1 + �d�1(d� �d))�1:

Noting that �d�1(d� �d) = Op(n
�1=2) the second factor expands as follows

(1 + �d�1(d� �d))�1 = 1� �d�1(d� �d) +Op(n
�1):

Using this expansion we write the estimation error asb�2SLS � � = c �d�1(1� �d�1(d� �d)) +Op(n
�3=2)

=
2c
�d
� cd�d2

+Op(n
�3=2):

Taking expectations we get

E
hb�2SLS � �i = c �d�1(1� �d�1(d� �d)) +Op(n

�3=2)

=
2E [c]
�d

� E [cd]�d2
+ o(n�1):

Evaluating both expectations on the right hand side of this expression we get

E [c] = E [v0PZu] = E [tr(PZuv
0)]

= tr(PZ
uv) = tr((Z
0Z)

�1
Z 0
uvZ)

= tr(Q�1ZZQ
�
ZZ):
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Furthermore, the product cd consists of six terms of which four have expectation
zero because they involve odd moments from the multivariate Normal distribution.
Hence, we have

E [cd] = E [(�0Z 0u+ v0PZu) (�
0Z 0Z� + 2�0Z 0v + v0PZv)]

= 2�0Z 0E [uv0]Z� + �0Z 0Z�E [v0PZu]

= 2�0Z 0
uvZ� + �
0Z 0Z�tr(PZ
uv)

= 2n�0Q�ZZ� + �
0Z 0Z�tr(Q�1ZZQ

�
ZZ):

Finally, noting that �d = �0Z 0Z� + tr(PZ
v) and de�ning �d1 = �0Z 0Z� and
�d2 = tr(PZ
v) we have

1
�d
=

1
�d1
�

�d2
�d1( �d1 + �d2)

=
1
�d1
+O(n�2);

1
�d2

=
1
�d21
�
�d2(2 �d1 + �d2)
�d21(
�d1 + �d2)2

=
1
�d21
+O(n�3);

hence

E
hb�2SLS � �i = 2E [c]

�d1
� E [cd]�d21

+ o(n�1):

Hence, we have for the approximate bias

E
hb�2SLS � �i =

2tr(Q�1ZZQ
�
ZZ)

�0Z 0Z�
� 2n�

0Q�ZZ� + �
0Z 0Z�tr(Q�1ZZQ

�
ZZ)

(�0Z 0Z�)2
+ o(n�1)

=
tr(Q�1ZZQ

�
ZZ)

�0Z 0Z�
� 2n�

0Q�ZZ�

(�0Z 0Z�)2
+ o(n�1)

=
1

n

�
tr(Q�1ZZQ

�
ZZ)

�0QZZ�
� 2�0Q�ZZ�

(�0QZZ�)
2

�
+ o(n�1);

which is the result in (3.6). In case of i.i.d. errors we have Q�ZZ = �uvQZZ and
the above result further simpli�es to the expression in (2.7) as derived by Nagar
(1959), Buse (1992) and Hahn and Kuersteiner (2002).
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