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Abstract

To examine cross-country diffusion of new products, marketing researchers have to rely

on a multivariate product growth model. We put forward such a model, and show that

it is a natural extension of the original Bass (1969) model. We contrast our model with

currently in use multivariate models and we show that inference is much easier and inter-

pretation is straightforward. Especially if the number of countries is larger than two. In

fact, parameter estimation can be done using standard commercially available software.

We illustrate the benefits of our model relative to other models in simulation experiments.

These experiments show that in the competing models the cross-country effects are actu-

ally very difficult to identify from the data. An application to a three-country CD sales

series shows the merits of our model in practice.
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1 Introduction

The diffusion of innovations and new products is a key research topic in economics, mar-

keting, and operations research. Early references are Bain (1963), Mansfield (1961), and

Tanner (1978) and they already cover a variety of application areas. At present, the anal-

ysis of diffusion data is most prominent in marketing and in management as it is widely

recognized that diffusion data share common properties across products and across coun-

tries, which can be instrumental for marketing purposes. These properties are associated

with the product life cycle, which is perhaps best documented in Rogers (2003). Rogers

proposes that five types of adopters of a new product can be categorized. These are, first,

innovators, then early adopters, then the early majority, then the late majority, and fi-

nally the laggards. Given these five types, the pattern of adoption data (or sales) mimics

a hump-shaped curve, which could be symmetric but not necessarily. The cumulative

sales data would then obey an S-shaped curve. The literature on fitting models to such

S-shaped data for single innovations is large, and many models do exist, see Meade and

Islam (2006) for a recent survey. In this paper we also propose such a model, although

we now focus not on just a single series of sales data but on a multivariate series.

One way to deal with multivariate diffusion data is to consider models for the individual

series and to allow for cross-equation restrictions. In this paper we start from another

angle by allowing all series to react on common and idiosyncratic shocks, and in a sense

this resembles the notion of a vector autoregression [VAR] in time series analysis. The

economic motivation is that firms issue marketing campaigns in more than one country

at the same time. For example, price cuts of durable products may be introduced in all

western European countries at the same time. Also, newer versions of such products may

be launched about simultaneously. And, new product sales may also respond similarly to

common economic conditions. For example, think of the recent sequential introduction

of the PlayStation 3 in Japan, the US and Europe. It is of interest to see if the adoption

process in these areas is similar in the sense that deviations from a typical diffusion path

may be correlated. For example, if the economies in Japan, the US and Europe would

suffer from the same current global downturn, one may expect that PlayStation 3 sales will

be affected in a similar way for all countries. When the effects of shocks do not occur at

the same time, a multivariate diffusion model can also be beneficial in terms of forecasting.

If economic shocks hit the US economy first and with some delay the European economy,

one can use the diffusion patterns in the US to tell what might happen in Europe.
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In sum, to describe and understand new product diffusion, when the product is

launched in various areas, it makes sense to incorporate the diffusion in these areas into

one single model. This model can then be used to see if some areas adopt faster or slower,

if some countries lead or lag, how shocks to one country influence others, and even to see

which strategy would be better in the future. This paper deals with such a model.

The (3) model is often used in marketing research to describe and to forecast the

empirical adoption curve of new products and technological innovations. It basically has

three unknown parameters, which characterize the important features of a variety of S-

shaped curves that are typical for the diffusion process of new products. As the number

of parameters is small, the Bass model is usually considered for a single annual series,

where the time span concerns 10 to 20 years.

Ever since its inception, the Bass model witnessed a large amount of modifications

and extensions in various directions. These model versions aim to capture more dynam-

ics, additional explanatory variables, sequences of generations, and also, more than one

diffusion variable. In this paper we address this last case, that is, the extension of the

basic Bass model to allow for two or more diffusion series, which somehow may be corre-

lated with each other. Hence, we propose a model for multivariate new product growth.

In this paper we present the model in terms of a cross-country diffusion analysis, however

the model can also be applied to other multivariate diffusion processes, such as the (joint)

diffusion of multiple products in the same country.

There are many multi-national diffusion studies available in the marketing literature.

Broadly speaking, we can divide the literature into two more or less separate streams.

On the one hand we have the studies that focus on measuring and explaining differences

in characteristics of the diffusion process across countries. Good examples of such an

approach are (17) and (18). A relatively recent overview is given in (8). Important

questions in this field are: which countries lead and which countries lag in the adoption

process; and is the diffusion process faster in countries where the product is introduced

at a later stage (the so-called learning effect)? The other stream of research focusses on

the influence of the diffusion in one country on the diffusion in another country. In this

research stream models are developed to jointly capture the diffusion in two (or more)

countries. The present paper fits this latter research stream.

There are various multivariate versions of the Bass model around, see (15) and (11)

for example. In Section 2, we review these models and some related models presented

in the literature. We also show that these models suffer from the critique summarized
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in (4). This critique basically says that if the diffusion of adoptions may depend on an

explanatory variable, which itself is strongly correlated with time, then the Bass model

without any such variables would fit about equally well. Hence, if country A’s diffusion

would be correlated with that in country B, then adding country B’s diffusion to the

model for country A would not contribute much to the fit. In fact, a single-country

Bass model would fit equally well. In econometric language, the explanatory variables

for country B’s diffusion process are too collinear with the explanatory variables for the

diffusion process in country A, so that proper parameter estimates are difficult or even

impossible to obtain. In (20) this problem is solved by adopting a Bayesian approach and

using informative priors on the model parameters.

In the same Section 2 we put forward a new multivariate product growth model, that

does not have the above-mentioned problems. Our model extends in a natural way the

empirical Bass-type model as it is proposed in (6), and hence it builds naturally on the

original Bass model. The basic idea in (6) is that a univariate diffusion series follows an

S-shaped path, from which short-lived deviations are possible. The speed of adjustment

towards this path is given by an adjustment parameter, which in the final empirical model

implies the inclusion of an additional lagged adoption variable. Additionally, (6) propose

to modify the original Bass model with heteroskedastic error terms. Such an extension is

also rather straightforward for our new multivariate model, as we will demonstrate in the

empirical illustration.

Our multivariate extension of the (6) model and hence the Bass model allows for cross-

equation adjustments to country-specific paths. In other words, deviations from the path

in country A have an effect on the deviations from the underlying adoption process in

country B. We also allow for contemporaneous correlation. After discretizing, our model

is a system of equations with parameter constraints. This system can easily be estimated

by (nonlinear) Generalized Least Squares.1

In Section 3, we report on the outcomes of a limited simulation experiment in which

we compare the various multivariate Bass models. For each model we generate diffusion

processes and calculate the root mean squared error for all the multivariate diffusion

models. We show that diffusion paths generated by the earlier proposed multivariate

diffusion models can indeed be replicated almost perfectly by simple univariate Bass

models. Even if the data is generated with a particular dependence structure, these

1We have estimated the parameters in EViews, Quantitative Micro Software, www.eviews.com. The

code is available from the authors.
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models do not fit the data better than the simple Bass model. A possible explanation for

this follows a multicollinearity argument. The basic Bass model fits an S-shaped curve

to the penetration data in a country. The existing multivariate models attempt to model

the cross-country dependence by adding additional explanatory variables that follow the

same type of S-shape. The same reasoning holds for trying to use price data in the Bass

model, see Bass et al. (1994). In any case, the above gives a clear sign that there may be

(empirical) identification issues with these models. The model of (6), and by extension

our model, allows for the case of a stochastic diffusion process. In a second experiment we

consider the influence of the relative size of the stochastic component on the performance

of the different models.

In Section 4, we illustrate the usefulness of the various models on data for CD adoption

in the US, Canada and Japan. We give the data in Appendix 1. We show that our model

yields valuable insights in the relation between different countries. For example, we show

that cross-country diffusion dependence may not be symmetric. Finally, in Section 5 we

summarize limitations of the current paper and we suggest further research topics.

2 Multivariate product growth models

In this section we discuss four variants of multivariate product growth models, where we

consider the case of two countries to save notation. Extensions to more than two countries

follow straightforwardly, at least in theory (as we will show below, in practice matters

can become every different). We first consider a simple extension of the basic Bass model

to the case of two countries. Then we consider two models that have been proposed

recently, that is the model of Putsis et al. (1997), which we assign the acronym PBKS,

and the model of Kumar and Krishnan (2002), which we will label the KK model. Finally,

we introduce our model, for which we use the acronym MBF. This acronym is short for

Multivariate Boswijk/Franses. At the start, we will use the commonly used notation in

continuous time, while towards the end we will discuss the discretized versions of the

models. We will write all models in a unifying notation, such that, one can easily see the

similarities and the differences between the models.

We denote ni(t) as the continuous time increments of the product growth process of

country i and Ni(t) as the level of adoption at time t, that is, ni(t) = dNi(t)/dt. The

basic Bass model reads as
ni(t)

1−Ni(t)
= pi + qiNi(t), (1)
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where it is assumed here that 1 marks the maturity level of the adoption process. The

parameter pi is called the innovation parameter, and qi is the imitation parameter. For

the sake of notation, to become useful below we rewrite this equation as

ni(t) = (1−Ni(t))(pi + qiNi(t)) := n∗i (t). (2)

Note that the left hand side of the equation now contains the variable of interest that

one wants to explain, that is, the growth, while the right hand side only depends on

the current installed base at time t. Throughout this paper we will denote the implied

growth rates at time t, conditional on Ni(t), according to the Bass model by n∗i (t). Note

that n∗i (t) depends on Ni(t), which of course can differ across models. Modifying the

expressions to allow for a maturity level mi is well known to be straightforward, but for

ease of notation we abstain from this for the moment. Allowing for an unknown maturity

level requires replacing ni(t) by ni(t)/mi and Ni(t) by Ni(t)/mi in (2). Of course, in the

empirical application in Section 4 we will take into account the maturity level.

2.1 Currently available models

The easiest multivariate diffusion model simply specifies independent Bass models for each

country, that is, we specify (2) for i = 1 and i = 2. countries i = 1 and i = 2. To provide

a consistent notation with the other models to come, we write these two independent Bass

models in one multivariate system, that is,(
n1(t)

n2(t)

)
=

(
(1−N1(t))(p1 + q1N1(t))

(1−N2(t))(p2 + q2N2(t))

)
:=

(
n∗1(t)

n∗2(t)

)
. (3)

After some manipulation one can also write(
n1(t)

n2(t)

)
=

(
1−N1(t) 0

0 1−N2(t)

)[(
p1

p2

)
+

(
q1 0

0 q2

)(
N1(t)

N2(t)

)]
. (4)

We label this model the diagonal multivariate Bass [DMB] model. This model assumes

that each of the two countries has its own adoption process and that these two processes

are everywhere independent. We take this model as a benchmark model when we study

in the simulation experiments whether the same issues as noted in (4) extend to the

multivariate case.

However, the diffusion processes in countries 1 and 2 may interact somehow. A pro-

posal for such a multivariate model is done in Putsis et al. (1997), which in our general
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notation can be written as(
n1(t)

n2(t)

)
=

(
1−N1(t) 0

0 1−N2(t)

)[(
p1

p2

)
+

(
q11 q12

q21 q22

)(
N1(t)

N2(t)

)]
. (5)

We label this the PBKS model. Clearly, the key difference between the diagonal multi-

variate Bass model and this one is in the 2 × 2 matrix with the imitation parameters.

This can be seen even more clearly by writing the PBKS model as(
n1(t)

n2(t)

)
=

(
n∗1(t)

n∗2(t)

)
+

(
1−N1(t) 0

0 1−N2(t)

)(
0 q12

q21 0

)(
N1(t)

N2(t)

)
. (6)

From a theoretical point of view, this extension makes much sense. Indeed, it can be

the case that the level of the diffusion in a neighboring country exercises an effect on

the own country diffusion. Restricting one of the qij’s to zero leads to a model in which

one country leads and the other country lags. On the other hand, note that in theory

this model only allows for a positive effect of one country on another. The cross-country

influence is modeled through the number of contacts in one country with another country.

Furthermore, as the number of cumulative adopters Ni(t) cannot decrease by definition,

ni(t) must be positive. In order to maintain logical consistency of the model we must

therefore restrict qij > 0.

(15) were not the first to present this model. The same type of specification can be

found in (14), (9) and (10). Although historically it may be more appropriate to use

the names of Peterson and Mahajan to label this model, we will stick to the acronym

PBKS, as (15) further developed the model in terms of mixing of populations. In (15)

the parameters qij are further specified to measure the type and extent of cross-country

influences.

From a practical point of view, the PBKS model in (6) might not be easy to handle.

The main reason is that it suffers from exactly the same collinearity problems as the

generalized Bass model does, as noted convincingly in Bass et al. (1994). Indeed, it is

most likely that both N1(t) and N2(t) have an S-shaped pattern that is strongly correlated

with time, and with each other. Hence adding say N2(t) to an equation for N1(t) makes

it difficult to estimate the corresponding parameters q11 and q12. As an extreme example,

consider the case where the diffusion patterns in two countries follow (almost) the same

S-shape, but where the two adoption processes are in fact unrelated. In other words, the

adoption in one country does not influence the adoption in the other. However, as the

basis S-curve is the same in both countries, the correlation between the sample paths of
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N1(t) and N2(t) will be almost perfect. In this example, it is impossible to estimate the qij

parameters. Furthermore, in case the diffusion curves are different and interrelated, the

additional explanatory power of the cumulative number of adoptors in country 2 (N2(t)) to

explain the diffusion in country 1 may be very limited. This point can be further motivated

by noting that the fit of the Bass model, for example in terms of R2, is usually very high.

In empirical applications, there tends to be little room for improvement. Multicollinearity

will in such cases be even more troublesome. In our simulation experiments below, we

will also demonstrate this phenomenon.

Ignoring these possible multicollinearity problems, estimation of the PBKS model

parameters is rather straightforward. After discretizing the continuous time model in (6),

one can apply least squares to obtain estimates of the model parameters, see Section 2.3

for more details.

A second multivariate model that has been proposed recently in the marketing litera-

ture is given in (11). In their notation it reads as

n1(t)

1−N1(t)
= (p1 + q1N1(t))(1 + b21n2(t))

n2(t)

1−N2(t)
= (p2 + q2N2(t))(1 + b12n1(t)),

(7)

which in fact seems very close to a multivariate version of the generalized Bass model. To

make the model comparable with the other models, we rewrite this model first as

(
n1(t)

n2(t)

)
=


n∗1(t) 0

0 n∗2(t)


[(

1

1

)
+

(
0 b21

b12 0

)(
n1(t)

n2(t)

)]
, (8)

where n∗i (t) is defined in (2). The model implies that product growth ni(t) of country i

may (permanently) deviate from the underlying path (n∗i (t)) by a factor that is linear in

the other country’s product growth nj(t). We can rewrite (8) as[
I−

(
n∗1(t) 0

0 n∗2(t)

)(
0 b21

b12 0

)](
n1(t)

n2(t)

)
=

(
n∗1(t)

n∗2(t)

)
, (9)

where I denotes a 2 × 2 identity matrix. Solving this equation for the 2 × 1 vector n(t)

containing the country-specific diffusion series gives(
n1(t)

n2(t)

)
=

[
I−

(
n∗1(t) 0

0 n∗2(t)

)(
0 b21

b12 0

)]−1(
n∗1(t)

n∗2(t)

)
, (10)
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provided that the inverse exists. It is clear that the KK model nests the diagonal mul-

tivariate Bass model as setting b12 = 0 and b21 = 0 in the KK model yields the other

model. An empirical comparison of KK versus DMB can simply be done using likelihood

ratio tests, say. Comparing the KK model with the PBKS model is not straightforward,

however.

The expression in (10) shows that this multivariate model is highly non-linear in

variables as well as in parameters, as it contains the inverse of a matrix with elements

that contain parameters and variables. This may make the theoretical interpretation of

this model not easy. Also, at first sight one may expect that this should complicate

parameter estimation, and this is confirmed in Kumar and Krishnan (2002). Indeed,

these authors describe a rather complicated estimation routine, which also seems to have

problems to deliver standard errors (as these are not reported in their tables). The absence

of standard errors makes it difficult to test any hypothesis on cross-country influences.

For parameter estimation in the simulation experiments below, we consider an alterna-

tive procedure to the one proposed in Kumar and Krishnan (2002). Instead of estimating

the “structural” model (7), we consider the “reduced form” (10), where the words stru-

cural and reduced form should be seen in the typical multivariate time series sense. We

apply the common discretization techniques and estimate the model parameters using

least squares, see also Section 2.3.

2.2 A new multivariate model

To overcome the potential problems raised above concerning currently available multi-

variate models, we intend to propose a model that is easy to interpret and of which the

parameters are easy to estimate. The main idea is to extend the error-correction type

expression of (6) to the multivariate setting. (6) consider the basic univariate Bass model

and address the issue of the stochastic nature of the diffusion process. The Bass model

can be seen as the result of aggregating the purchase timing behavior over a large ho-

mogeneous population. Although at the individual level the behavior is stochastic, after

aggregation a deterministic model remains. To allow for estimation, the original Bass

equation in continuous time is discretized and than simply an error term is added, which

is assumed to have mean zero and common variance. (6) argue that this approach of

adding an error term does not match with the original notions behind the Bass theory.

Also incorporating a multiplicative error term as in (18) does not solve the problem.

Although a multiplicative specification reduces the effect of heteroscedasticity, this idea
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also raises problems with the interpretation of the parameters. For example, using simple

simulations, one can show that the maturity level in this model is no longer equal to the

parameter m (or in their notation, α).

In fact, it makes more sense to incorporate the uncertainty from first principles.

Boswijk and Franses assume that the underlying theoretical diffusion follows a deter-

ministic S-shaped path, around which the actually observed diffusion process fluctuates.

These fluctuations are caused by random events, individual-specific characteristics, or by

marketing-mix effects. These fluctuations are however such that there always is a ten-

dency to return to the theoretical underlying deterministic S-shape. This implies that

there is, say, a target or attractor-like diffusion process, around which the actual diffusion

fluctuates around while preserving a tendency to return to that target level.

In the notation of the current paper, the key equation in (6) for a single country i is

dni(t) = αi(n
∗
i (t)− ni(t))dt+ σini(t)

γ
i dWi(t), (11)

where Wi(t) is a standard Brownian motion. The actual diffusion series ni(t) wanders

around the target diffusion n∗i (t), where deviations from this target are caused by random

shocks driven by Wi(t). The size of the random shocks are proportional to ni(t)
γ. Over

time the ni(t) should return to the target path, the speed of this return is determined by

αi. Note that the diffusion process returns to the target path by definition. If it would

not return to the target path, we would not have estimated the target path correctly. As

we only have one observation of the diffusion process in a country, we cannot distinguish

between a target path that changes over time and a fixed target path with a certain shape.

The target path in this model is exactly the path according to the Bass diffusion model

(2). For the same reason we cannot allow the target paths of the two countries to be

dependent on each other. Note that the model is now specified in terms of changes in the

growth rate, that is, dni(t).

The BF model explicitly allows for random events to influence the diffusion. Diffusion

curves that correspond with this model do not necessarily show a perfect S-shape. This

is an important feature of this model, as in practice one also does not always encounter

perfect curves.

A multivariate version of this error correction type model, to be labeled as MBF, is

given by the system of equations(
dn1(t)

dn2(t)

)
=

(
α11 α12

α21 α22

)(
n∗1(t)− n1(t)

n∗2(t)− n2(t)

)
dt+

(
σ1n1(t)γdW1(t)

σ2n2(t)γdW2(t)

)
, (12)
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where W1(t) and W2(t) are possibly correlated Brownian motions. The off-diagonal ele-

ments of the matrix α, that is, α12 and α21, have a straightforward interpretation. They

can be interpreted as the effect that deviations in one country have on the deviations from

the underlying diffusion path in another country. For example, suppose that α12 < 0 and

n2(t) < n∗2(t), that is, the actual diffusion in country 2 is below its target path. The

product α12(n∗2(t)− n2(t)) is then also negative, meaning that the diffusion in country 1

will slow down. Hence, deviations from the target paths in each of the countries also have

an effect on the changes in the diffusion in the other country. As in the univariate case,

these deviations can be due to marketing-mix effects. By using this specification we do

not encounter the collinearity issues that complicate the other models. The deviations

from the path in a neighboring country are not likely to be strongly correlated with time.

Even if we consider more than two countries we are not likely to run into multicollinearity

problems.

When we restrict α12 = α21 = 0 we end up with two stacked BF models, where the

random shocks may be correlated. One could call this model a diagonal MBF model.

Below we refer to this model as the BF model.

Estimation of and inference on the parameters of the MBF model is based on a dis-

cretization of the stochastic differential equations in (12), discussed in more detail in the

next sub-section. Because the additional variables in this discretized MBF model do not

have patterns that come close to trends or sigmoid shape trends, the MBF model does

not have the problems noted in Bass et al. (1994).

In sum, the currently available multivariate models seem to suffer from potential esti-

mation problems, while the MBF model does not. Additionally, the MBF model has easy

to interpret parameters from a marketing point of view. To illustrate the estimation issues

mentioned above, we turn to a report of simulation experiments, and we postpone an em-

pirical illustration to Section 4. Before doing so, we say a few words about discretization

and estimation.

2.3 Discretization and estimation

All models discussed above are in continuous time. In practice we need to fit these models

to, say, annual data, that is, data measured at discrete intervals. The diffusion models

therefore have to be transformed to discrete time. The equations to use for parameter esti-

mation follow naturally from these transformations. In general we index the observations

using a subscript k, where observation k corresponds to time tk = kδ, k = 0, . . . , T/δ,
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where δ denotes the length of the time interval between two observations. In most practi-

cal cases we may set δ = 1, so that the observations occur at times t = 0, 1, . . . , T . To keep

the presentation as general as possible, we use the subscript k to denote the observation

times. For example, Ni,k = Ni(δk) denotes the cumulative adoption in country i at time

tk = kδ.

Following Boswijk and Franses (2005), we propose to use Euler approximations2 to

discretize the continuous-time models. The deterministic models (DMB, PBKS, and KK)

may all be written as a system of ordinary differential equations

dNi(t) = ni(t)dt = fi(N1(t), N2(t))dt, i = 1, 2,

for some suitble choice of fi. They are discretized as

Xi = ∆Ni,k = Ni,k −Ni,k−1 = fi(N1,k−1, N2,k−1)δ, i = 1, 2.

Note that in the KK models, ni(t) depends on N1(t) and N2(t) via n∗1(t) and n∗2(t). For

the discretization of the stochastic components in the BF and MBF model, we first apply

the Euler approximation to approximate (12) by(
n1(tk)− n1(tk−1)

n2(tt)− n2(tk−1)

)
=

(
α11 α12

α21 α22

)(
n∗1(tk−1)− n1(tk−1)

n∗2(tk−1)− n2(tk−1)

)
δ

+

(
σ1n1(tk−1)γ[W1(tk)−W1(tk−1)]

σ2n2(tk−1)γ[W1(tk)−W1(tk−1)]

)
. (13)

Next, we approximate ni(t) = dNi(t)/dt at t = tk by Xi,k/δ = ∆Ni,k/∆tk. This yields(
∆X1,k

∆X2,k

)
=

(
α11 α12

α21 α22

)(
X∗1,k−1 −X1,k−1

X∗2,k−1 −X2,k−1

)
δ +

(
(X1,k−1)γε1,k

(X2,k−1)γε2,k

)
, (14)

where

X∗i,k−1 = n∗i (tk−1) = (1−Ni(tk−1))(pi + qiNi(tk−1)),

and εi,k = σiδ
1−γ[Wi(tk)−Wi(tk−1)] ∼ i.i.d. N(0, σ2

i δ
3−2γ). If the two Brownian motions

W1 and W2 have a correlation ρ, then this implies cov(ε1,k, ε2,k) = ρσ1σ2δ
3−2γ.

For parameter estimation in the DMB, PBKS and KK models one can minimize the

sum of squared errors in the discretized models. Note that this estimation procedure

2Other methods are available, but these lead to more complicated discrete time models. Furthermore,

by choosing the Euler method we stay close to the current practice in the literature.
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for the KK model is far more straightforward than that proposed in Kumar and Krish-

nan (2002). For the BF and MBF models, the discretized model (14) can be estimated

by maximum likelihood. Assuming that the parameter γ is known (typical choices are

γ = 1
2

or γ = 1), the analysis is facilitated by dividing the left-and right-hand-side of

the equations by (Xi,k−1)γ, yielding a system of non-linear regression equations with ho-

moskedastic normal disturbances. If the contemporaneous covariance between the two

disturbances is ignored, as well as possible differences in the variance parameters, then

the parameters can be estimated simply by minimizing the sum of squared errors over

all observations. We opt for this procedure in the simulation experiments below. For the

empirical section we take the stochastic component seriously and estimate the parameters

by applying (nonlinear) GLS to (14), based on the covariance matrix (taking γ = 1 for

convenience):

Σ = var

(
ε1,k

ε2,k

)
= δ

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

Boswijk and Franses (2005) prove consistency and derive the asymptotic distribution

of the parameter estimators in the univariate BF model. They show that consistency

can only be proved assuming continuous record asymptotics, where the time span [0, T ]

over which we observe the process is fixed, but the number of observations T/δ tends to

infinity, so that the time interval δ converges to 0. Such an asymptotic scheme is needed,

first, to make the Euler discretization errors vanish, and second, to let the statistical

information on the parameters increase with the sample size. Given that the MBF is a

natural generalization of the BF model, the same techniques as in Boswijk and Franses

(2005) may be used to prove consistency, and to derive the (non-standard) asymptotic

distributions of the parameter estimators.

2.4 Forecasting

All the discretized models that we consider can be written in the same general form, that

is,

Xk = f(Nk−1, Xk−1, θ) + ηk, where η ∼ N(0,Ω), (15)

where Xk = (X1k, X2k)
′, Nk = (N1k, N2k)

′, θ denotes a parameter vector and Ω the

variance matrix of the error terms. The form of the function f() depends on the particular

model specification. Although the dependent variable in the BF and MBF is ∆Xik one

can rewrite ∆Xik = Xik −Xik−1 and move Xik−1 to the right-hand side of the equation.

13



Given estimated parameters θ̂, one-step ahead forecasting is straightforward. Suppose

we want to forecast the growth rate at time kδ, that is, Xk. The available information

contains Ni,k−1 and Xi,k−1 for i = 1, 2. Ignoring parameter uncertainty, the unbiased

forecast is now given by

X̂k = E[Xk|Nk−1, Xk−1] = f(Nk−1, Xk−1, θ̂). (16)

Using the forecast of the growth, the forecasted level of adoption at time kδ equals

N̂k = Nk−1 + X̂k. As the function f() is non-linear, multi-step ahead forecasting is more

complicated. The unbiased forecast E[Xk+1|Nk−1, Xk−1] is not equal to f(N̂k, X̂k, θ̂). To

obtain unbiased multi-step forecasts we have to rely on simulation. The general simula-

tion schema is as follows. We start forecasting at observation k − 1. First we generate L

pseudo realizations of Xk using

X
(l)
k = f(Nk−1, Xk−1, θ̂) + η

(l)
k , l = 1, . . . , L (17)

where η
(l)
k is a draw from N(0, Ω̂). Simulated realizations of the adoption rate are given

by N
(l)
k = Nk−1 + X

(l)
k . The law of large numbers states that if L approaches infinity,

1
L

∑
X

(l)
k converges to the unbiased forecast in (16). To obtain a n+1-step ahead forecast

we recursively generate

X
(l)
k+n = f(N

(l)
k+n−1, X

(l)
k+n−1, θ̂) + η

(l)
k+n, l = 1, . . . , L, (18)

where N
(l)
k+n = N

(l)
k+n−1 +X

(l)
k+n for n = 1, 2, 3, . . .. The unbiased n+ 1-step ahead forecast

is now given by

E[Xk+n|Nk−1, Xk−1] ≈ 1

L

∑
X

(l)
k+n. (19)

In practice L should be set to a relatively large number to avoid simulation error in the

forecasts. In the simulations below we set L = 10, 000.

3 Simulation experiments

In this section we illustrate the performance of the different multivariate models discussed

above. The ultimate comparison of the competing models would of course consist of a

forecasting comparison based on a large collection of real world data sets. However, a

necessary condition for a model to be useful is that feature one is looking for is identified

from the data in the optimal situation. In the experiment below, we will explicitly test

this condition.
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The setup of the experiment is as follows. We select one of the models and generate

data according to that model. Next, each of the five models is fitted to the generated data.

Given the estimated parameters the models are used to generate forecasts of the growth

figures. We generate one-step, two-step, and five-step ahead forecasts. For each of the

forecasting horizons, we measure the forecasting performance by the median root mean

squared error [RMSE] of the forecasts over all generated datasets. Comparing the RMSE

of the different models gives us insight into how much the models differ from each other in

the implied diffusion curves. For example, when for data generated with a given model,

the DMB yields roughly the same RMSE as the true model, one can conclude that the

latter model does not add much to the DMB model. Or in other words, the cross-country

dependence implied by that model is badly identified from the data. Possible explanations

for findings such as this one are the problems first noted in Bass et al. (1994).

Except for the BF and the MBF model, the (multivariate) diffusion models do not

have a stochastic component. That is, given the model parameters, the diffusion curve is

fixed. Therefore we first consider the deterministic case, where for BF and MBF we set

σi = 0. Afterwards we consider what happens when the BF or the MBF model is used as

data generating process with σi 6= 0.

Deterministic models

For each data generating process [DGP], that is, for DMB, PBKS, KK, BF and MBF,

we generate data for T = 20 periods. To generate data we use the discretizations as

discussed in Section 2.3 but now with δ = 0.001, that is, we very closely approximate

continuous time. For model estimation and diffusion forecasting we of course only use the

observations for t = 0, 1, 2, . . . , T . Next, each of the models is fitted to these data. For

example, we generate data from (2), and fit models (2), (6), (10), and (12), and so on.

Next we generate one-step, two-step, and five-step ahead forecasts starting at t = 1. To

allow for a comparison across forecast horizons we evaluate the root mean squared error

over the periods t = 6, . . . , T , such that the same observations used for every forecasting

horizon. Finally, for each case we calculate the median root mean squared error over 2000

replications.

To generate data that look like the typical data obtained in practice, we have to set

proper parameter values. The illustrations in the various studies that put forward the

models under scrutiny provided a source of inspiration. For DMB model we draw values

for the imitation and innovation parameters in country 1 and 2 from two uniform distri-
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butions, that is

pi ∼ U[0.005, 0.055],

qi ∼ U[0.15, 0.55],
(20)

where i is 1 or 2. For the PBKS model we interpret qi from (20) as the total external

influence, we divide this influence over the within-country influence (qii) and the across-

country influence (qij) using

fi ∼ U[0, 0.5],

qii = (1− fi)qi,

qij = fiqi.

(21)

To make sure that the resultant bivariate series make sense we restrict the cross-country

influence to be smaller than the within-country influence. Unreported graphs of the series

substantiate this claim. Next, for the KK model we use the same way to generate pi and

qi as in the DMB model, where we additionally draw the bij parameters according to

bij ∼ U[0, 0.75]. (22)

For the univariate BF model we additionally need the error correction parameters, and

we draw these according to

αi ∼ U[2, 10]. (23)

Finally, the MBF requires error correction parameters across countries, and these we

generate according to

ri ∼ U[−0.9, 0.9]

αij = riαii.
(24)

Again we restrict the size of cross-country effect to be smaller than the within-country

effect. Note that the MBF model also allows for a negative correlation between countries,

which is in contrast to the PBKS model. In sum, we have 5 sets of DGPs, and in the first

round of experiments, we also fit 5 models for each DGP. Although we have set m = 1

in the DGPs and in the discussion above, we do treat m as an unknown parameter in

these simulation experiments. To allow for a fair forecast comparison, we fit all models

by minimizing the sum of the squared residuals.
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The simulation results for the deterministic case are given in Table 2. The first panel

gives the median root mean squared errors over 2000 replications. Note that the DGPs in

this case are deterministic, that is, conditional on the parameters the diffusion figures are

fixed. In principle, the model of the DGP would fit the data perfectly. The reason that

we do not find zero RMSE in Table 2 is that there are discretization errors. The data are

generated in (almost) continuous time, while we estimate the model for discrete time.

The second panel gives these figures again, but now scaled towards each of the DGPs.

Hence, the value 1 should appear when the same model is fitted to the data generated by

that model. The first panel already indicates that differences can be quite large, and this

can even be better seen from the second panel. For example, when the data are generated

by an DMB model, then the root mean squared error of the PBKS model is 0.92 times

that of the DMB model itself. And, when the data are generated by an MBF model, the

RMSE of the KK model is 3.4 times as large that of the MBF model. Clearly, the results

in Table 2 indicate that it is best to fit the MBF model when the data are generated by

any of the other models. This improvement in fit is of course partly because the MBF

model contains one additional parameters per country compared to the PBKS and KK

models. Note however that the BF model also outperforms the KK and PBKS models,

while they have an equal number of parameters.

The differences in performance of the PBKS and KK models versus the DMB model

are quite small, even when the data are generated using PBKS or KK. This is mainly

due to the problems noted in Bass et al. (1994). The additional regressors in the PBKS

and KK models do not add much in explanatory power. In fact the generated diffusion

curves very closely resemble curves that can be fitted using the standard Bass model.

This implies that it will in practice be difficult to find cross-country effects using one of

these two models. The poor fit of the DMB model in case BF and MBF are the DGPs is

due to the fact that the DMB lacks relevant variables.

Nonzero error variance

Our next set of simulations concerns the cases where the BF and MBF models are the

DGP, where we now allow an error term to enter the model with a nonzero variance.

Note that the main difference in the BF model versus the original Bass model lies in the

fact that the BF model allows for stochastic variation in the diffusion. In the multivariate

case it is exactly the stochastic variation that helps us to identify cross-country influences.

Note that we impose zero contemporaneous correlation between the error terms.
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In Table 3 we report similar results as we did in the second panel of Table 2. The

results in Table 3 are easy to interpret. When the DGP is BF, and the error variance

is small, then the MBF model improves the fit on all forecasting horizons. This is of

course due to the fact that the MBF model contains more parameters. Qualitatively

similar results appear when the MBF model is the DGP. A second important result from

these experiments is that when the error variance becomes larger, the differences in fit

become smaller. This especially holds for a larger forecasting horizon. Indeed, it might be

expected that more variation in the data leads to decreased performance for all models.

Once the signal to noise ratio in the data becomes very low, the differences between the

models disappear as there is only noise to fit.

In sum, the simulation results in this section clearly show that the new multivariate

product growth model outperforms other models in terms of fit, even when it is not the

data generating process.

4 Cross country effects of CD diffusions

We now turn to an illustration of the new multivariate model for new product growth,

also to demonstrate its relevance for actually observed data.3 We consider annual time

series running from 1983 to 1996 concerning the penetration of CDs in the US, Canada

and Japan. The data are taken from (5). The series give the CD sales as a percentage of

the total music sales. By looking at percentages we do not have to worry about matching

the populations on their population size (7). The data are given in Appendix 1, and

the graphs of these three series appear in Figure 1. When we compute the correlation

between these series, we get 0.996 for the US with Canada, 0.953 for the US with Japan,

and 0.929 for Canada with Japan. These high values already suggest that the PBKS and

KK models would run into estimation problems, so these models are not considered here.

We fit the MBF model while allowing for heteroskedasticity. We follow the suggestions

in Boswijk and Franses (2005) that dividing the left-hand side and the right-hand side

of the equations trough Xj,k−1 can take care of it, hence we set γ = 1 in (12) and we do

3We also fitted the PBKS and KK models for these data. Detailed results can be obtained from the

authors. We do mention though that we were not able to obtain plausible parameter estimates for the

key parameters. The relevant Eviews codes and output are also available upon request. The results

clearly show that qij is not estimated as larger than zero. Imposing this nonnegativity restriction further

deteriorates the estimates of the parameters.
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not follow a formal empirical testing strategy for γ. Hence, the model that we actually

estimate is


∆X1,k

X1,k−1

∆X2,k

X2,k−1

∆X3,k

X3,k−1

 =


1

X1,k−1

1
X2,k−1

1
X3,k−1



α11 α12 α13

α21 α22 α23

α31 α32 α33

×


(m1 −N1,k−1)(p1 + q1N1,k−1/m1)−X1,k−1

(m2 −N2,k−1)(p2 + q2N2,k−1/m2)−X2,k−1

(m3 −N3,k−1)(p3 + q3N3,k−1/m3)−X3,k−1

+


ε1,k

ε2,k

ε3,k

 , (25)

where Xi,k = Ni,k −Ni,k−1. Note that in this model we now do not restrict the maturity

level mi to one.

The estimation results for the three-country MBF model are given in Table 4. The

estimation results in Table 4 show that there are effects running from the US to Canada

and Japan, as the estimated parameters α21 and α31 are significant at the 5 per cent level.

Both α21 as α31 are negative, this implies that when the development of the diffusion in

the US falls behind the target path the same will happen in Canada and in Japan. The

same holds for the reverse case, if the diffusion in the US goes faster than the target path,

the diffusion in Canada and Japan will also speed up. Other cross-country effects are

insignificant, see Table 4. The implied p, q and m parameters of the standard Bass model

also seem reasonable, see the top panel of Table 4.

In sum, we see that the new multivariate version of a Bass model can be fitted quite

easily to a trivariate series, that it delivers interpretable and meaningful parameters, and

that it has a high in-sample fit.

5 Conclusion

In this paper we have put forward a new multivariate product growth model, and we

contrasted it with other such multivariate models using theoretical and simulation-based

arguments. Given the outcomes of the simulations, we are tempted to conclude that our

new model outperforms its rivals on various dimensions. For the competing models of (15)

and (11) we have shown in simulations that the cross-country effects specified in these

models are difficult to identify even in the ideal case where simulated data is used.
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The empirical illustration shows that interesting conclusions on cross-country influ-

ences can be obtained using our new model. To name one conclusion, we have found

that there exist asymmetric effects. The USA is independent of other countries, but does

influence Japan and Canada.

Further applications should substantiate our claims, and also out-of-sample forecasting

contests should even further do so. Together with designing a specification strategy for

the best way to incorporate heteroskedasticity, we leave these issues for further research.
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Appendix 1: CD diffusion in three countries

Table 1: CD penetration in the USA,

Canada and Japan.

Year USA Canada Japan

1983 0.001763 0.000000 0.011117

1984 0.010578 0.007250 0.040811

1985 0.042465 0.019174 0.134696

1986 0.101068 0.048887 0.284236

1987 0.163569 0.119618 0.391979

1988 0.222702 0.173152 0.497629

1989 0.301163 0.230174 0.653189

1990 0.386953 0.336152 0.747037

1991 0.477370 0.451939 0.895274

1992 0.524994 0.527244 0.914487

1993 0.592513 0.578241 0.929264

1994 0.655934 0.663102 0.934292

1995 0.725858 0.747712 0.935567

1996 0.773400 0.787030 0.946600

Source: (5)
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Figure 1: Graphical representation of the diffusion data
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Other tables

Table 2: Simulation results for the deterministic

case (σ = 0), where DMB denotes the diagonal

multivariate Bass model, PBKS is the model in

Putsis et al. (1997), KK is the model of Kumar

and Krishnan (2002), BF is the univariate model

in Boswijk and Franses (2005) and MBF is the

new multivariate model.

Estimated model

DGP DMB PBKS KK BF MBF

Root mean squared errors

DMB 0.219 0.201 0.166 0.044 0.039

PBKS 0.223 0.190 0.155 0.082 0.074

KK 0.217 0.201 0.160 0.041 0.037

BF 0.131 0.125 0.099 0.032 0.028

MBF 0.146 0.140 0.118 0.053 0.035

Root mean squared errors relative to DGP

DMB 1 0.917 0.757 0.201 0.178

PBKS 1.173 1 0.818 0.431 0.388

KK 1.356 1.257 1 0.254 0.231

BF 4.088 3.899 3.095 1 0.872

MBF 4.162 3.990 3.376 1.527 1

23



Table 3: Simulation results for the cases with nonzero variance, where DMB denotes the diagonal multivariate Bass model,

PBKS is the model in Putsis et al. (1997), KK is the model of Kumar and Krishnan (2002), BF is the univariate model in

Boswijk and Franses (2005) and MBF is the new multivariate model, and where the BF and MBF models are the DGP. The

numbers give the median RMSE relative to the median RMSE when the data are fitted using the correct model.

One-step ahead Two-step ahead Five-step ahead

σ DMB PBKSD KK BF MBF DMB PBKSD KK BF MBF DMB PBKSD KK BF MBF

DGP: BF

0.00 4.21 4.22 2.38 1 0.81 5.07 5.00 2.99 1 0.84 5.33 5.33 3.37 1 0.81

0.01 3.93 3.84 2.18 1 0.83 4.28 4.15 2.52 1 0.88 4.69 4.54 2.88 1 0.85

0.50 1.12 1.12 1.07 1 0.95 1.01 1.00 0.98 1 0.99 1.07 1.08 1.03 1 1.01

1.00 1.06 1.03 1.03 1 0.96 0.99 0.97 0.97 1 0.99 1.01 1.01 1.00 1 1.00

2.00 1.04 1.01 1.03 1 0.97 0.98 0.96 0.98 1 1.01 1.00 1.01 0.99 1 1.02

DGP: MBF

0.00 4.26 4.27 2.94 1.46 1 4.53 4.55 3.27 1.45 1 5.08 5.17 3.88 1.51 1

0.01 4.29 4.18 2.85 1.44 1 4.23 4.14 3.01 1.35 1 4.84 4.65 3.50 1.37 1

0.50 1.17 1.15 1.12 1.07 1 1.03 1.01 1.00 1.03 1 1.06 1.05 1.03 1.00 1

1.00 1.10 1.07 1.08 1.05 1 1.00 0.99 0.99 1.01 1 1.00 0.98 0.98 0.98 1

2.00 1.09 1.05 1.08 1.04 1 0.98 0.96 0.97 1.00 1 0.98 0.98 0.97 0.98 1
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Table 4: Estimation results for a three-

country MBF model, standard errors in

parentheses.

USA CAN JPN

Diffusion characteristics

p 0.0366 0.0389 0.0935

(0.0195) (0.0172) (0.0335)

q 0.3004 0.3916 0.5141

(0.0887) (0.0862) (0.1016)

m 0.9048 0.8537 0.9411

(0.1235) (0.0707) (0.0117)

....depends on

USA CAN JPN

Diffusion in....

USA 0.156 0.326 0.135

(0.253) (0.217) (0.107)

CAN -1.068 1.254 -0.036

(0.37) (0.268) (0.160)

JPN -0.479 0.048 1.002

(0.216) (0.128) (0.356)
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