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Abstract
In his analysis of the effects of the reform of the German healthcare system, Winkelmann
(2004) investigates the number of doctor visits. He makes a distinction between the decision
to go to a physician and the number of times the physician is visited in the observed time
period. Winkelmann finds that there is no correlation between both decisions. This results
appears to be far from straightforward since the primary driving force in both decision will be
the health of the patient. From this perspective a significant correlation is expected. In this
paper it is analysed whether the apparent zero correlation is actually true or comes from the
way the relation between both decisions is  modelled.  My empirical  analysis confirms the
latter, but nevertheless also corroborates Winkelmann's main conclusions on the relevance of
the explanatory variables used in his investigation.

1 Department of Quantitative Economics, Faculty of Economics and Econometrics, University of Amsterdam,
Roetersstraat 11, 1018 WB Amsterdam, The Netherlands. Email: j.c.m.vanophem@uva.nl.

2 All ML-routines used in this paper are available on request. All estimations are carried out with R (free
software, for information see http://www.r-project.org/).
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1. Introduction
In Winkelmann (2004) it  is argued that the process governing the frequency of visiting a

medical doctor during a certain period of time, can be split up into two parts. In a first step the

individual  decides  to  visit  a  doctor  or  not.  In  the second step the decision on the actual

positive  number  of  visits,  or  more  general  the  treatment  plan,  is  made  by  the  doctor  in

consultation with his patient. The treatment decision can be expected to be primarily made

by the physician and the opinion of the individual might not put much weight on the scale.

The important thing is that the first decision is made independently by the individual and that

the second is not and that it is therefore not a good idea to use a model that does not explicitly

take this difference into account. Clearly, the presented structure of the health decision is too

simple. All the complexities of real life are impossible to capture in an econometric model.

For  instance,  the  decision  to  visit  a  doctor  or  not  and  consequently  the  decision  on  the

frequency might have to be made a couple of times during the period considered, because an

individual might fall ill or become injured a number of times. Another complexity that can be

added  is  the  introduction  of  medical  specialists:  often  doctors  refers  their  patients  to

specialists. This brings a third decision maker into the equation. These and other additional

complexities will be ignored in this investigation, just like it was done in Winkelmann (2004).

The modelling of the first complexity is explicitly taken into account in Santos Silva and

Windmeijer (2001), however.

       To model the potentially related decisions, Winkelmann (2004) decides to use a hurdle

model.  He  recognizes  that  both  decisions  will  usually  not  be  made  independently,  and

therefore Winkelmann allows for a correlation between both decision, although in a specific

manner.  First,  let's  discuss the reason for a correlation. Following Winkelmann (2004),  I

model the decision to go to a doctor or not by a simple probit model:

zi=xi ' i (1)

zi is an observation specific latent indicator variable that exceeds zero if the individual decides

not to visit a doctor (di = 1  in this case) and is smaller or equal than zero if he decides to do

so  (di =  0).  zi could  be  seen  as  representing  the  health  of  the  individual.  Low  values

representing bad health and high values good health. This health indicator  is dependent on

exogenous factors represented in the vector  xi, Winkelmann (2004) uses variables like age,
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years of education, labour market status and income, and an error term εi. If health gets too

bad, passing the threshold 0, the individual decides to see a doctor. During this consultation a

decision is made how to improve the condition of the individual, e.g. by prescribing drugs,

visiting the doctor a couple of times to monitor the progress or referring the patient  to a

specialist. The health condition of the patient will be an important factor in both decisions and

clearly the initial decision and the follow up decision are likely to be positively correlated.3 As

mentioned this is also the starting point of Winkelmann (2004) but it is abandoned after some

time because the empirical results indicate that there does not exist a correlation. The result of

a zero correlation strikes me as very odd and the question is whether this result origins from

the way the correlation is introduced in the model by Winkelmann (2004) or because it is

actually true. Here I will propose an alternative way of modelling the potentially correlated

decision  based  on  my  previous  work  (van  Ophem,  1999  and  van  Ophem,  2001).  In  an

empirical analysis using the same data and more or less the same explanatory variables.4 I will

show that the result of zero correlation found by Winkelmann (2004) indeed holds, but that a

significant correlation is estimated if a different type of modelling is used.

2. Econometric modelling
Winkelmann  (2004)  develops  a  hurdle  model  that  he  calls  the  Probit-Poisson-log-normal

model. It consists of two parts: a hurdle has to be taken before the actual frequency can be

determined. The hurdle is the decision to go to a doctor during the observed period or not. It is

modelled by the probit-equation (1). The frequency of doctor visits during the period under

observation, is modelled by assuming that this count has a truncated Poisson distribution with

expectation λi. This expectation is specified as:

i |i=exp xi ' i (2)

A truncated Poisson distribution is used because of the existence of the hurdle. As a result

zero counts need not to be modelled by the count process. The introduction of the error term

3 Due to the specific modelling choices, actually a negative correlation is expected between both decisions: bad
health (low z, cf eq. (1)) goes together with a higher frequency of doctor visits.

4 I decided not to use exactly the same explanatory variables to circumvent identification of the estimated
parameters only because of the nonlinearity of the model (see further). The results reported here do hardly
differ if exactly the same specification is used but it is difficult estimate the standard errors precisely due to
the large degree of multicollinearity.
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υi is  meant  to  capture  unobserved  heterogeneity  and  is  the  crux  to  allow for  correlation

between the first and second step. Winkelmann (2004) assumes that  εi and  υi are bivariate

normal distributed with expectation (0, 0), variance (1, σ2) and correlation ρ.   Due to the

specific nature of modelling the decision to see a doctor or  not,  a negative correlation is

expected. To give an example, a hypochondriac can be expected to visit a doctor frequently

because of his bad health perception, so a negative εi combined with a large υi  are likely. An

implicit  assumption  of  Winkelmann  (2004)  is  that  the  not  completely  observed  health

indicator is the primary driving force in the determination of the frequency of doctor visits. To

make this explicit  assume that other  factors influencing the frequency are captured in a  wi.

This  vector  can  contain  variables  also  influencing  health  status  but  also  factors  that

characterize  the  physician.  We  then  arrive  at  the  follow  specification  of  the  expected

frequency.

i=exp ziwi ' i=exp xi ' wi 'ii (3)

where the substitution is  made because the health indicator is not  actually observed. This

shows two things. First, the error term introduced is very likely to be correlated with the error

term in the hurdle equation (1), especially if  α ≠ 0, as Winkelmann (2004) suggests.5 Second,

the parameter vector related to xi differs from the one in the hurdle equation to the one in the

count equation with more than only a factor of proportionality (α) if wi contains (part of) xi.

One could say that Winkelmann (2004) implicitly assumes that  xi = wi since he uses  xi as

explanatory variables both in the hurdle and count specification. Note that there is no actual

need to make this assumption.

Winkelmann (2004) then discusses the practical usefulness of the model that allows

for  correlation  and  concludes  that  it  is  limited  due  to  identification  problems  of  the

correlation. He then proceeds under the assumption of zero correlation, although he claims

that the actual estimation of the model that allowed for a correlation yielded an insignificant

correlation. Note however, that despite the potentially limited practical usefulness of a model

with correlation, it is the only way to proceed if the correlation is indeed nonzero. Otherwise,

inconsistent estimation results will be found. A reason for the apparent identification problem

5 The arguments of Winkelmann (2004) on why there exists a correlation are for a large part based on the
inclusion of εi in his υi that equals  υi + αεi in the present notation. In other words he simply assumes  α ≠ 0
(present notation).

4



is Winkelmann's choice of specification: he uses exactly the same explanatory variables in

both steps of his analysis thereby introducing considerable multicollinearity. Although, given

the former arguments (cf. (3)), this is a logical choice, it will be abandoned in the present

study.  Some  insignificant  variables  will  be  deleted  from  the  specification  to  enhance

identification. 

Equation  (3)  also  shows  something  else:  if  υi and  εi are  uncorrelated  then  the

correlation, in absolute value, between the error terms in (1) and (3) will be smaller than 1,

except if  υi = 0. Only if the assumption of zero correlation between  υi and  εi is dropped a

correlation of +1 or -1 between υi + αεi and εi  is possible. This correlation is not equal to the

correlation between the hurdle and the count processes, however. For this last correlation, the

additional randomness of the count should be taken into account. To illustrate this, consider

the special case that  υi = 0. In this case, the correlation between the error terms in (1) and (3)

is 1. Despite of this, conditioning on εi does not eliminate the randomness of the count process

completely. The correlation of 1 can be considered to eliminate only the randomness in the

unconditional expectation of the count. To put it differently, even if we know λi for sure, there

is still randomness in the count process. Ignoring this additional randomness, or actually the

correlation it can have with εi , causes that the correlation between the hurdle and the count

process is lower than 1, in absolute value, even if  υi and εi have full correlation. Winkelmann

(2004) ignores this second source of correlation.  Lindeboom and van den Berg (1994) report

a similar kind of reasoning for duration models.

To model the potential correlation between the hurdle and count fully, use will me

made of a bivariate copula,  see the appendix for a brief discussion of this technique. The first

application  of  the  copula  technique  in  economics  is  discussed  in  Lee  (1983).  Recently,

copula's  have regained new interest,  see for  instance,  Cameron,   Li,  Trivedi  and Zimmer

(2004)  or   Zimmer  and Trivedi  (2006).  Copula's  offer  a  method to  relate  two (or  more)

marginal distributions, if necessary from different families, to each other and allow for the

estimation of a correlation between the stochastic processes. I will use the normal or Gaussian

copula. The underlying stochastic variables, in the present case the decision to see a doctor or

not (eq. (1), where the error already is assumed to be normally distributed) and the number of

doctor visits (a Poisson distributed count variable with unobserved heterogeneity, eq. (2)) are

transformed  to  normal  distributed  random variables  and  then  evaluated  using  a  bivariate

normal distribution. For a full discussion of the technique, see Trivedi and Zimmer (2005).
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The  transformation  of  a  essentially  discrete  random  variable  like  a  count  is  not

straightforward. The way to do this,  is discussed in van Ophem (1999). 

The  use  of  the  copula  technique  requires  the  specification  of  the  marginal

distributions. This is sometimes seen as an disadvantage since the marginals are rarely known

(cf. Trivedi and Zimmer, 2005., p. 96). However, it is questionable whether this is actually a

disadvantages compared to alternative ways of modelling the problem. As such it does not

really make a difference whether the bivariate distribution is specified or the corresponding

marginals since there usually exists a one-to-one relation. To illustrate this for the present

case, consider the specification used by Winkelmann (2004). Winkelmann (2004) starts with

specifying  the  decision  to  go  and  see  a  doctor  as  in  (1),  where  he  assumes  a  normally

distributed error (εi) . The number of doctor visits is modelled with a Poisson distribution that

allows for unobserved heterogeneity as specified in (2). The unobserved heterogeneity term υi

is assumed to be normally distributed. Correlation between both random processes is allowed

by letting  υi and εi have a (correlated) bivariate distribution. To use the copula technique the

marginal  distributions  have  to  be  specified,  but  they  can  be  imputed  directly  from  the

distributional  assumption  made  by  Winkelmann  (2004).  The  marginal  of  the  hurdle

specification remains exactly the same, whereas for the marginal of the count, the unobserved

heterogeneity term has to be integrated out of the specification where again it is assumed that

υi  is normally distributed. Even though I will make exactly the same distributional assumption

as Winkelmann (2004), using the copula technique allows for a more general specification of

the correlation. Not only  υi and εi are allowed to be correlated but also the count and the error

of the decision to visit a doctor are allowed to be correlated, a possibility that is ignored in

Winkelmann (2004). Note that  although integrating out the unobserved heterogeneity term,

looks like complicating things, this is in fact not true. Also in the correlated specification of

Winkelmann (2004) the unobserved heterogeneity term has to be integrated out.

Estimation results of the following models will be presented in this paper:

• The  Probit-Poisson-log-normal-model  with  zero  correlation.  This  is  the  preferred

model in Winkelmann (2004) and is constituted by eqs. (1) and (2).

• The Probit-Poisson-log-normal-model with partial correlation.  This is the same model

as  the  previous  one  except  that  now  account  is  taken  of  the  potential  nonzero

correlation  between  the  error  term in  the  probit  equation  (εi)  and  the  unobserved

heterogeneity term in the Poisson distributed count (υi).
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• The Probit-Poisson-log-normal-model with full correlation using copula techniques.

3. Data
Use will be made from the German Socio-Economic Panel (GSOEP).6 The data are the same

as used by Winkelmann (2004) except that I only concentrate on the 1999-wave. As I will

show,  the  essential  result  of  zero  correlation  in  the  Winkelmann-set  up  will  be  retained.

Winkelmann's primary goal is to estimate the effect of reforms in German health care, and

therefore a comparison in time is essential. Here, I only want to show that the result of zero

correlation is due to modelling choice and not due to the actual absence of correlation or to

multicollinearity. To avoid identification only because of the nonlinearities in the model, I will

also use a somewhat different set of explanatory variables than Winkelmann. I will not use

exactly the same explanatory variables in the choice to go to a doctor and the choice on the

frequency of the visits. Several explanatory variables appeared to be not relevant for one, or

even both, of these choice processes.

The 1999-wave of GSOEP consists of 6231 observations. Respondents were asked to

report their number of visits to a physician during the three months prior to the interview.

Unfortunately  visits  to  general  practitioners  and  dentists  and  other  specialists  are  not

distinguished and included in this definition. 2156 individuals (34.6%) did not visit a doctor

during this period. The frequency of doctor visits is given it Table 1.

- insert Table 1 -

The average number of doctor visits is 2.391 and the corresponding standard deviation is

3.943. 

The definitions of the explanatory variables are as follows:7

• active sport: dummy variable equal to one if the respondent participates in sports at

least once a week 

• age: age of the respondents in years

6 The data are available in the data archive of the Journal of Applied Econometrics
(http://qed.econ.queensu.ca/jae/).

7 The description is based on the information supplied in Winkelmann (2004). More information on the data
can be found there as well.
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• age2: (age*age/100) - mean(age/10))^28

• bad health: dummy variable equal to one of the respondent classifies his own health as

either 'very bad' or 'bad' ('fair' is the reference category)

• education in years: years of education of the respondents 

• fall: dummy variable equal to one if the respondent was interviewed in the fall of 1999

(summer is the reference category)

• full-time: a dummy variable equal to 1 if the respondent is full-time employed at the

time of the interview (self-employed is the reference category)

• good health: dummy variable equal to one of the respondent classifies his own health

as either 'very good' or 'good' ('fair' is the reference category)

• household size: the number of persons living in the household the respondent belongs

to

• log(income): the logarithm of household equivalent income (OECD-scale)

• male: dummy variable equal to one if the respondent is a male

• married:  dummy variable equal to one if the respondent is a married

• part-time: a dummy variable equal to 1 if the respondent is part-time employed at the

time of the interview (self-employed is the reference category)

• social assistance: a dummy variable equal to one if the respondent receives welfare

payments (self-employed is the reference category)

• spring: dummy variable equal to one if the respondent was interviewed in the spring of

1999 (summer is the reference category)

• unemployed: a dummy variable equal to 1 if the respondent was unemployed at the

time of the interview (self-employed is the reference category)

• winter: dummy variable equal to one if the respondent was interviewed in the winter

of 1999 (summer is the reference category)

A constant is included in all estimations. The means, standard deviations, maxima and minima

of the explanatory variables are presented in Table 2.

- insert Table 2 -

8 This specification of 'age squared' is chosen to diminish multicollinearity.
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4. Estimation results
To start with, I will replicate the optimal model presented in Winkelmann (2004). After an

elaborate comparison with the standard Poisson model, several count models with unobserved

heterogeneity of different forms, hurdle models, a finite mixture model and a multi-episode

model, Winkelmann concludes that the Probit-Poisson-log-normal model performs best. The

Probit-Poisson-log-normal model is a specific form of a hurdle model where the the decision

to go and see a doctor or not is modelled by a probit model and the decision on the frequency

is modelled by a truncated Poisson-model with a normal distributed unobserved heterogeneity

term.  Both  decisions,  or  actually  the  error  terms,  are  uncorrelated.  Table  3  presents  the

estimation results of this model. 

- insert Table 3 -

The estimation results  show a  large  resemblance with  the  ones  presented in  Table  IV of

Winkelmann (2004). Recall that the results are not exactly replicated due to using only the

1999-wave and using different sets of explanatory variables for both the probit and the count

model. Variables left out of either the probit or the count were not significantly different from

zero.  Insignificant  explanatory variables  were included if  they belong to  a  category from

which one of the other explanatory variables is significant. Also, a constant, age and its square

were always included because they are considered to be important determinants of doctor

visits (see e.g. Deb and Trivedi, 1997, 2002, Prieger, 2002, Riphahn, Wambach, and Million,

2003). The significance is somewhat reduced if we compare the results in Table 3 with the

corresponding  ones  in  Winkelmann,  probably  due  to  the  reduction  in  the  number  of

observations. Still, many explanatory variables are strongly significant.

The  estimation  results  with  respect  to  the  decision  to  go  to  a  doctor  or  not  are

straightforward. Younger individuals and males are less likely to visit a doctor. People in good

(bad)  health  are  less  (more)  likely  to  do  so.  Married  people  and  people  living  is  small

households are likely to visit a doctor more often. A somewhat counter-intuitive result is that

those participating actively in sports are more bound to see a doctor than those who do not.

This is likely to be due to the increased probability of suffering injuries while engaging in

sports. People with higher incomes have a higher probability of going to see a doctor once or

more.  Full-timers  are  less  likely to  visit  doctors.  That  the  same conclusion holds  for  the
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unemployed is somewhat surprising. Also with respect tot the number of doctor visits, given

that an individual goes at least once, it can be concluded than the estimation results are in

accordance with expectations and the results presented in Winkelmann (2004). A result that is

at  odds  is  the  effect  of  age:  there  appears  to  be  no  effect  in  my  estimations,  whereas

Winkelmann found a significant impact. However, note that Winkelmann's estimated impact

is close to being not significant and given the reduction of the number of observations, my

findings are actually not a real surprise. Still, the conclusion itself is meaningful. The elderly

have  a  higher  probability  to  visit  a  doctor  in  a  certain  period  but  do  not  have  a  higher

frequency of visits, once the first effect is taken into account. Higher educated individuals

have  a  lower  frequency  of  visits,  just  like  those  working  full-or  part-time  or  being

unemployed. Healthy individuals also have a lower frequency of doctor visits. Participating

actively  in  sports  does  not  appear  to  have  an  impact  on  the  frequency.  Note  the  strong

significance  of  the  variance  of  the  unobserved  heterogeneity  component.  This  confirms,

Winkelmann's conclusion that unobserved heterogeneity should be taken into account.

- insert Table 4 -

Table  4  presents  the  estimation results  of  Winkelmann's  Probit-Poisson-log-normal  model

with allowance for a nonzero correlation. As discussed in section 2, the correlation is between

the error term of the probit hurdle and the unobserved heterogeneity term. As Winkelmann

found, although he did not present the estimation results, the correlation is not significant. It

has the correct negative sign, indicating that those more likely to see a doctor at least once (εi

relatively small) have a higher chance of having a relatively large unobserved heterogeneity υi

and therefore to visit a doctor more often. Due to the insignificance of the correlation, the

other estimates and the corresponding standard errors are very similar to those presented in

Table 3.

- insert Table 5 -

In Table 5 the estimation results of the copula-based model that takes full  account of the

correlation is presented. The estimated correlation is about -0.4 and strongly significant wit a

t-value of 4.9. This result indicates that there exists a much more direct correlation between
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the  two  decisions  distinguished  than  that  can  be  captured  through  the  unobserved

heterogeneity component. The estimates on the decision to see a doctor or not are very similar

to the ones presented earlier both in size and significance. Some larger deviations are found

for the estimated count distribution but there are no sign changes. As a result, the conclusions

drawn with respect to Table 3 remain valid. Due to the significant correlation estimated the

loglikelihood-value based on the copula technique is smaller than that of  the model with ρ =

0.  As  a  result,  the  model  based  on  copula's  should  perform even better  than  the  Probit-

Poisson-log-normal model advocated by Winkelmann (2004). Note, that the model with no

correlation is a special case of the model based on copula's.9 Despite of the significance of the

correlation, the Schwartz Information Criterium (SIC) indicates that we should actually prefer

the Probit-Poisson-log-normal model with zero correlation (SIC = 24070.97 and 24073.30).

This indicates that the SIC is not always a good measure to use.

To explore the consequences of the different estimation methods with respect to the

estimated mean of the count distribution given that the individual goes to a physician at least

once, consider Table 6. This table presents estimates of the conditional mean for the complete

sample, the sample with positive doctor visits and the sample with zero doctor visits. It also

gives information on the variance of the mean across the entire sample and its maximum and

minimum and presents information on the observed count of doctor visits.

- insert Table 6 -

The results indicate that despite the significance of the correlation the estimated means and

variances are very similar. The relatively large difference between the observed mean count of

the complete sample and the mean of the estimated counts points at a well known problem in

the estimation of count data: there appear to be excess zero observations. The corresponding

estimates for the subsample of positive counts are very close to the actual observation, where

the estimates based on the copula estimates are closest. The estimates of the variance of the

count differ considerably from the variances of the observations. This comes as no surprise

since the maximum of the estimated means of each of the three methods is much smaller than

the maximum observed count. There does exist a notable difference between the estimated

9 Indeed, if I impose ρ = 0 on the model based on the copula, exactly the same likelihood value is found. This
indicates that the procedures needed for the copula, i.e. the inverse of the univariate standard normal
distribution and the cumulative bivariate standard normal distribution, are very precise. 
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maximum count across the estimation methods: for the copula technique it is clearly higher

than for the models proposed by Winkelmann (2004).  All in all, we have to conclude that the

differences between the characteristics of the estimates Poisson distribution are very small,

despite of the strongly significant correlation between the choice processes distinguished. It

appears  that  neglecting  the  correlation  does  not  alter  the  predictions  of  the  model.  I

investigated this  conclusion further  by calculating the root  mean squared errors  (between

estimated mean and actual observation), root absolute errors, correlations etc., but this only

gave a confirmation. All these measures differ only in the third or higher digits across the

alternative measures. The correlation between the estimated means using the copula technique

and the model with correlation 0, is extremely high: 0.998. The overall conclusion has to be

that, although he ignored significant correlation, Winkelmann's conclusions are correct. The

estimated  correlation  of  about  -0.4,  has  only  a  very  marginal  effect  on  the  estimated

probabilities.

 

5. Conclusion
To  investigate  the  surprising  result  of  no  correlation  found  in  Winkelmann  (2004),  I

reestimated the models proposed by Winkelmann and estimated an alternative specification

allowing for  more general  correlation.  My analysis  confirms Winkelmann's  finding of  no

correlation  in  his  setup,  but  does  find  a  significant  correlation  of  -0.4  if  an  alternative

estimation  methods  is  employed.  Despite  of  the  strong  significance  of  the  correlation,  it

hardly  influences  important  characteristics  of  the  underlying  distribution  resulting  in  a

confirmation of the empirical conclusions drawn in Winkelmann (2004).
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Appendix: Copula's
The copula-technique was first introduced in econometrics by Lee (1983), although he did not

use the term 'copula'. The idea originates from Sklar (1959). The copula approach is a useful

method for deriving joint distributions given the marginal distributions, especially when the

random variables are not normally distributed. I  will  concentrate here on the Gaussian or

normal copula. Alternatives are discussed in e.g. Trivedi and Zimmer (2005). 

Consider two random variables u and v with known marginal distributions Fu(u) and

Fv(v).  The transformed random variables u*  =  Φ-1(u)  and v*  =  Φ-1(v)  are  standard normal

distributed,  where  Φ-1(.)  is  the  inverse  of  the  standard  normal  univariate  cumulative

distribution function. These transformed random variables can be related to each other by

using  the  (standard)  normal  bivariate  distribution.  To  accommodate  a  discrete  or  count

random variable,  use  can  be  made  of  van  Ophem (1999).  The  basic  idea  is  to  use  the

following identity:

Pr u≤k =k =
−1∑

j=0

k

Pr u= j 

Pr v≤p = p=
−1 ∑

j=0

p

Pr v= j 

The bivariate probability (with nonzero correlation)  u ≤  k and v ≤ p can now be written as:

Pr u≤k , v≤ p=B k , p ;

where B(.,.;.) denotes the bivariate normal cumulative distribution with mean (0,0), variance

(1,1)  and  correlation  ρ.  ηk and  λp depend  on  the  parameters  of  the  original  marginal

distributions. Maximization of the likelihood function is done across the original parameters

and  ρ.

Using the Gaussian copula has the advantage that ρ can take any value between -1 and

1. Computer routines to calculate the inverse of the standard normal cumulative distribution

and the bivariate normal distribution are readily available in many software packages and

usually yield high precision results.
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Table 1: The observed number of doctor visits.

Number
of 
visits

Frequency
(%)

Number
of 
visits

Frequency
(%)

Number
of 
visits

Frequency
(%)

Number
of 
visits

Frequency
(%)

0 2156
(34.6%)

10 148
(2.4%)

21 1
(0.0%)

40 5
(0.1%)

1 1215
(19.5%)

11 3
(0.0%)

22 2
(0.0%)

45 1
(0.0%)

2 921
(14.8%)

12 51
(0.8%)

24 9
(0.1%)

48 1
(0.0%)

3 684
(11.0%)

13 7
(0.1%)

25 1
(0.0%)

50 2
(0.0%)

4 352
(5.7%)

14 7
(0.1%)

26 1
(0.0%)

60 2
(0.0%)

5 240
(3.9%)

15 38
(0.6%)

27 1
(0.0%)

6 190
(3.1%)

16 6
(0.1%)

30 5
(0.1%)

7 48
(0.8%)

17 3
(0.0%)

33 1
(0.0%)

8 61
(1.0%)

18 2
(0.0%)

35 2
(0.0%)

9 28
(0.5%)

20 35
(0.6%)

36 2
(0.0%)

N = 6231. Empty cells are deleted.
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Table 2: Descriptive statistics of the explanatory variables

Variable Mean Standard dev. Maximum Minimum
active sport 0,264 0,442 1 0
age 38,920 11,230 60 20
age2 1,261 1,253 0,000 4,444
bad health 0,129 0,335 1 0
education in years 11,330 2,364 7 18
fall 0,013 0,115 1 0
full-time 0,537 0,499 1 0
good health 0,580 0,494 1 0
household size 3,087 1,329 1 11
log(income) 7,524 0,432 5,636 9,420
male 0,466 0,499 1 0
married 0,649 0,477 1 0
part-time 0,114 0,318 1 0
social assistance 0,033 0,178 1 0
spring 0,531 0,499 1 0
unemployed 0,075 0,263 1 0
winter 0,317 0,465 1 0
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Table 3: Estimation results of the Probit-Poisson-log-normal model with zero 

   correlation.

Probit Truncated Poisson-log-
normal

constant 0,025 (0.359) 1.367 (0.132)**
age 0,002 (0.002) -0.000 (0.002)
age2 -0,042 (0.015)** 0.011 (0.015)
male 0,437 (0.039)** -0.106 (0.038)**
education in years -0.017 (0.008)*
married -0,111 (0.043)**
household size 0,041 (0.015)** -0.040 (0.013)**
active sport -0,141 (0.040)** 0.028 (0.040)
good health 0,496 (0.040)** -0.461 (0.040)**
bad health -0,562 (0.068)** 0.656 (0.046)**
full-time 0,087 (0.048)* -0.174 (0.043)**
part-time 0,065 (0.063) -0.269 (0.059)**
unemployed 0,204 (0.071)** -0.149 (0.070)*
social assistance -0,057 (0.068) 0.123 (0.091)
log(income) -0,129 (0.046)**
spring -0,025 (0.051)
fall -0,317 (0.164)*
winter 0,015 (0.055)
variance unobserved heterogeneity 0.782 (0.016)**
Log-likelihood = -11900.06. Absolute asymptotic standard errors between parentheses. **/* =

significant at 1%/5%  (two-sided test).
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Table 4: Estimation results of the Probit-Poisson-log-normal model with partial

   correlation.

Probit Truncated Poisson-log-
normal

constant 0,027 (0.359) 1.392 (0.142)**
age 0,002 (0.002) -0.000 (0.002)
age2 -0,042 (0.015)** 0.010 (0.015)
male 0,437 (0.039)** -0.090 (0.052)
education in years -0.017 (0.008)*
married -0,112 (0.044)**
household size 0,041 (0.015)** -0.038 (0.014)**
active sport -0,141 (0.040)** 0.023 (0.042)
good health 0,496 (0.040)** -0.443 (0.057)**
bad health -0,562 (0.068)** 0.640 (0.057)**
full-time 0,087 (0.048)* -0.171 (0.043)**
part-time 0,065 (0.063) -0.268 (0.059)**
unemployed 0,205 (0.072)** -0.141 (0.072)*
social assistance -0,060 (0.101) 0.124 (0.091)
log(income) -0,129 (0.046)**
spring -0,022 (0.052)
fall -0,318 (0.164)
winter 0,016 (0.055)
variance unobserved heterogeneity 0.783 (0.018)**
correlation -0.092 (0.200)
Log-likelihood = -11899.96. Absolute asymptotic standard errors between parentheses. **/* =

significant at 1%/5%  (two-sided test).
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Table 5: Estimation results of the Probit-Poisson-log-normal model with full correlation 

   using a copula.

Probit Truncated Poisson-log-
normal

constant -0,022 (0.354) 1.225 (0.142)**
age 0,001 (0.002) -0.000 (0.002)
age2 -0,036 (0.015)* 0.019 (0.017)
male 0,423 (0.040)** -0.203 (0.047)**
education in years -0.017 (0.008)*
married -0,094 (0.043)*
household size 0,040 (0.015)** -0.047 (0.014)**
active sport -0,140 (0.040)** 0.061 (0.043)
good health 0,487 (0.040)** -0.590 (0.049)**
bad health -0,559 (0.067)** 0.752 (0.055)**
full-time 0,091 (0.048)* -0.193 (0.046)**
part-time 0,064 (0.062) -0.286 (0.064)**
unemployed 0,206 (0.072)** -0.197 (0.076)*
social assistance -0,039 (0.106) 0.126 (0.094)
log(income) -0,119 (0.045)**
spring -0,048 (0.051)
fall -0,283 (0.170)
winter -0,003 (0.054)
variance unobserved heterogeneity 0.851 (0.028)**
correlation -0.414 (0.084)**
Log-likelihood = -11896.87. Absolute asymptotic standard errors between parentheses. **/* =

significant at 1%/5%  (two-sided test).
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Table 6: Observed and estimated mean number of doctor visits, its variance, its   

    maximum and, its minimum.

Mean Variance Maximum Minimum
Observed count
Complete sample 2,391 15,551 60,000 0,000
Subsample count > 0 3,656 19,150 60,000 1,000
Winkelmann ρ = 0
Complete sample 3,353 2,156 9,590 1,935
Subsample count > 0 3,618 2,633 9,590 1,935
Subsample count  = 0 2,852 0,870 8,717 1,936
Winkelmann ρ ≠ 0
Complete sample 3,353 2,156 9,528 1,927
Subsample count > 0 3,618 2,630 9,528 1,927
Subsample count  = 0 2,850 0,872 8,701 1,927
Copula
Complete sample 3,373 2,356 11,258 1,974
Subsample count > 0 3,646 2,901 11,258 1,974
Subsample count  = 0 2,857 0,917 9,186 1,977
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