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Abstract

Kourogenis and Pittis (2008) show that the presence of a variance shift implies that the OLS

t-statistic in a triangular cointegrated model displays asymptotic size distortions. For the same

model, this paper provides two simple solutions to the size problems, the first based on White (1980)

standard errors, the second based on the wild bootstrap.
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1 Introduction

Recent research has indicated that unit root and cointegration tests are substantially affected by persis-

tent changes in innovation variances; see Cavaliere and Taylor (2007, 2008), Cavaliere et al. (2009),

and the references therein. This is relevant for macro-economic time series, many of which display a

decreasing volatility during the 1980s (known as the Great Moderation); and for financial time series,

which often display slow volatility mean reversion. In a recent paper, Kourogenis and Pittis (2008) show

that inference on cointegration parameters is also affected by variance shifts. In particular, they show

that in a triangular cointegrated system with no serial dependence or endogeneity, a variance shift leads

to size distortions in the OLS t-statistic, both asymptotically and in finite samples.

This paper investigates the possibility to correct these size distortions, in the same model as anal-

ysed by Kourogenis and Pittis (2008), following two approaches. First, we show that using White

(1980)’s heteroskedasticity-consistent standard errors yields asymptotically standard normal inference.

Secondly, inspired by Cavaliere and Taylor (2008) and Cavaliere et al. (2009), we show that the wild

bootstrap provides an equally effective approach to solve the size problems. We prove the asymptotic

validity of both approaches, and compare their effectiveness in a small Monte Carlo experiment.
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Throughout the paper, we use the following notation. Weak convergence (convergence in distribu-

tion) and convergence in probability are denoted by L−→ and P−→, respectively, whereas L−→P denotes

weak convergence in probability, see Giné and Zinn (1990). Equality in distribution is denoted by ≡.

The indicator function of the set A is denoted 1A(·), and bxc denotes the integer part of x.

2 The model and OLS inference

Consider the following triangular cointegrated system, analysed by Kourogenis and Pittis (2008) (hence-

forth KP08) for a bivariate time series {(yt, xt)′}Tt=1:

yt = θxt + u1t, (1)

∆xt = u2t, (2)

where {ut = (u1t, u2t)′}Tt=1 is a sequence satisfying ut = Σ1/2
t zt, where zt ∼ i.i.d. (0, I2), and

Σt = var(ut) =
{
1[0,s)

(
t
T

)
+ a1[s,1]

(
t
T

)}
Σ, Σ =

[
σ2

1 0

0 σ2
2

]
, (3)

with a is a positive scalar. The specification (3) implies a proportional shift in the variance matrix of ut

at time t = bsT c: it changes from var(ut) = Σ for 1 ≤ t < bsT c, to var(ut) = aΣ for bsT c ≤ t ≤ T .

Define the least-squares estimator θ̂ in (1), and the corresponding t-statistic for testing H0 : θ = θ0:

θ̂ =
∑T

t=1 xtyt∑T
t=1 x

2
t

, tols =

√∑T
t=1 x

2
t (θ̂ − θ0)

σ̂1
, (4)

where σ̂2
1 = T−1

∑T
t=1 û

2
1t, with û1t = yt − θ̂xt.

Theorem 1 In the model (1)–(3), under H0 and as T →∞,

T (θ̂ − θ0) L−→ σ1

σ2

∫ 1
0 X(r)Q(r)dW1(r)∫ 1

0 X(r)2dr
, (5)

tols
L−→

∫ 1
0 X(r)Q(r)dW1(r)√∫ 1
0 Q(r)2dr

∫ 1
0 X(r)2dr

≡
√
AZ, (6)

where (W1(·),W2(·))′ is a bivariate standard Brownian motion, Q(r) = 1[0,s) (r) +
√
a1[s,1] (r),

X(r) =
∫ r
0 Q(u)dW2(u),

A =

∫ 1
0 X(r)2Q(r)2dr∫ 1

0 Q(r)2dr
∫ 1
0 X(r)2dr

, (7)

and Z ∼ N(0, 1), independent of A.

Proof. See KP08, Theorems 1 and 2, except for an error in these theorems, which is corrected here.

Define

WT (r) =

(
W1T (r)

W2T (r)

)
=

1√
T

brT c∑
t=1

Σ−1/2
t ut =

1√
T

brT c∑
t=1

zt.

2



Because zt = (z1t, z2t)′ ∼ i.i.d. (0, I2), the invariance principle implies that WT (·) L−→ W (·) =

(W1(·),W2(·))′. Define XT (r) = (σ2
2T )−1/2

∑brT c
t=1 u2t. Because u2t = σ2Q

(
t
T

)
z2t, we have

XT (r) =
∫ r

0
Q(u)dW2T (u) L−→

∫ r

0
Q(u)dW2(u) = X(r), r ∈ [0, 1],

which follows from the continuous mapping theorem, because Q(r) is of bounded variation. Note that

X(·) is a Gaussian process with mean zero and variance

var(X(r)) =
∫ r

0
Q(u)2du = r1[0,s) (r) + (s+ a(r − s))1[s,1] (r) . (8)

Therefore, defining

D(r) =

√
var(X(r))

r
= 1[0,s) (r) +

√
a+

s(1− a)
r

1[s,1] (r) ,

and U(r) = X(r)/D(r), it follows that U(r) ∼ N(0, r). KP08 relabel the process U(·) as W2(·), and

claim that it is a standard Brownian motion. However, although U(r) has the distribution of a Brownian

motion at any time r ∈ [0, 1], it does not have independent increments. In particular, for any u ∈ [s, 1],

we have

U(u)− U(s) =
W2(s) +

√
a[W2(u)−W2(s)]√

a+ s(1− a)/r
−W2(s),

which is clearly not independent of U(s) − U(0) = W2(s). Replacing D(r)W2(r) in the expressions

of KP08 by X(r), we obtain

1
T

T∑
t=1

xtu1t
L−→ σ1σ2

∫ 1

0
X(r)Q(r)dW1(r), (9)

1
T 2

T∑
t=1

x2
t

L−→ σ2
2

∫ 1

0
X(r)2dr, (10)

which leads to (5), and

σ̂2
1

P−→ σ2
1

∫ 1

0
Q(r)2dr = σ2

1(a+ s(1− a)), (11)

which leads to (6) and (7). �

3 Nuisance parameter free inference

In this section two solutions are proposed to the nuisance parameter problem implied by Theorem 1.

Both methods build on an auxiliary result, given in Lemma 1. Let σ2
1t = var(u1t) = σ2

1Q
(

t
T

)2, and

define the integrated variance process

V (r) = σ2
1

∫ r

0
Q(u)2du =

1
T

brT c∑
t=1

σ2
1t +

(
r − brT c

T

)
σ2

1,brT c+1, r ∈ [0, 1].

A natural estimator of V (r) based on OLS residuals is given by

V̂T (r) =
1
T

brT c∑
t=1

û2
1t +

(
r − brT c

T

)
û2

1,brT c+1, r ∈ [0, 1].
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Cavaliere and Taylor (2007) call η(·) = V (·)/V (1) the variance profile, and prove uniform consis-

tency of the estimator η̂T (·) = V̂T (·)/V̂T (1) in a unit-root autoregression with residual autocorrelation.

Lemma 1 provides the corresponding result for the present model.

Lemma 1 In the model (1)–(3) with κi = E(z4
it) <∞, i = 1, 2, as T →∞,

sup
r∈[0,1]

∣∣∣V̂T (r)− V (r)
∣∣∣ P−→ 0.

Proof. Consider first pointwise consistency, for fixed r. Let VT (·) be the (infeasible) version of

V̂T (·) with {û1t} replaced by {u1t}, and let hT (r) = r − brT c/T . Then

VT (r)− V (r) =
1
T

brT c∑
t=1

(u2
1t − σ2

1t) + hT (r)(u2
1,brT c+1 − σ

2
1,brT c+1).

Using u2
1t − σ2

1t = σ2
1t(z

2
t − 1), it follows that VT (r)− V (r) has mean 0 and variance

1
T 2

brT c∑
t=1

σ4
1t(κ1 − 1) + hT (r)2σ4

1,brT c+1(κ1 − 1)→ 0,

because hT (r) < T−1 and σ2
1t is bounded. This implies |VT (r)− V (r)| P−→ 0. Next, using û1t =

u1t − (θ̂ − θ)xt, we have

V̂T (r)− VT (r) = −2(θ̂ − θ)

 1
T

brT c∑
t=1

xtu1t + hT (r)xbrT c+1u1,brT c+1


+(θ̂ − θ)2

 1
T

brT c∑
t=1

x2
t + hT (r)x2

brT c+1

 .

Both right-hand side terms converge in probability to zero because θ̂ − θ = OP (T−1),
∑brT c

t=1 xtu1t =

OP (T ) and
∑brT c

t=1 x2
t = OP (T 2), see (9) and (10). Therefore∣∣∣V̂T (r)− V (r)

∣∣∣ ≤ ∣∣∣V̂T (r)− VT (r)
∣∣∣+ |VT (r)− V (r)| P−→ 0.

This is strengthened to uniform convergence in probability because both V̂T (·) and V (·) are continuous

and monotonically increasing in r, and V (·) is bounded. �

Based on this result, a first possible solution to correct for a shift in variance is to replace the OLS

standard error of θ̂ by the White (1980) heteroskedasticity-consistent standard error sW , given by

s2W =
∑T

t=1 x
2
t û

2
1t(∑T

t=1 x
2
t

)2 .

The resulting t-statistic is tW = (θ̂ − θ0)/sW .

Theorem 2 Under the conditions of Lemma 1, under H0 and as T →∞, tW
L−→ N(0, 1).
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Proof. It is convenient to define for r ∈ [0, 1),

X∗T (r) =
1

σ2

√
T
xbrT c+1 = XT (r) +

x0 + ubrT c+1

σ2

√
T

= XT (r) + oP (1)

(we may take X∗T (1) = limr↑1X
∗
T (r)). Then we find

1
T 2

T∑
t=1

x2
t û

2
1t = σ2

2

∫ 1

0
X∗T (r)2dV̂T (r). (12)

Because (X∗T (·), V̂T (·)) L−→ (X(·), V (·)), and V (r) is of bounded variation, so that
∫ 1
0 X(r)2dV (r) is

defined as a Lebesgue-Stieltjes integral, the continuous mapping theorem implies

1
T 2

T∑
t=1

x2
t û

2
1t
L−→ σ2

2

∫ 1

0
X(r)2dV (r) = σ2

1σ
2
2

∫ 1

0
X(r)2Q(r)2dr. (13)

Therefore,

tW =
T−1

∑T
t=1 xtu1t√

T−2
∑T

t=1 x
2
t û

2
1t

L−→
σ1σ2

∫ 1
0 X(r)Q(r)dW1(r)√

σ2
1σ

2
2

∫ 1
0 X(r)2Q(r)2dr

,

which has a standard normal distribution because W2(·) is independent of X(·). �

A second approach to deliver standard normal inference is based on the wild bootstrap, see, e.g.,

Mammen (1993). This approach has recently been applied successfully to unit root and cointegration

testing problems in the presence of nonstationary volatility by Cavaliere and Taylor (2008) and Cavaliere

et al. (2009). The idea is to approximate the limiting null distribution of tols as given in Theorem 1 by

the sampling distribution of {tbols, b = 1, . . . , B}, where for each b, tbols is given by (4) with yt replaced

by yb
t = θ0xt + û1tw

b
t , and {wb

t}Tt=1 is an i.i.d. N(0, 1) sequence, independent of {yt, xt}Tt=1 and

independent across b. The test rejects if the bootstrap p-value #
{∣∣tbols

∣∣ > |tols|
}
/B is less than the

nominal significance level. The asymptotic validity of this test is implied by Theorem 3.

Theorem 3 Under the conditions of Lemma 1, under H0 and as T →∞, tbols
L−→P

√
AZ, where A is

defined in (7) and Z ∼ N(0, 1), independent of A.

Proof. Write tbols as

tbols =
∑T

t=1 xtû1tw
b
t

σ̂b
1

√∑T
t=1 x

2
t

,

where

σ̂b2
1 =

1
T

T∑
t=1

û2
1tw

b2
t −

1
T

(
1
T

T∑
t=1

xtû1tw
b
t

)2(
1
T 2

T∑
t=1

x2
t

)−1

.

Let N b
T = T−1

∑T
t=1 xtû1tw

b
t . Conditionally on {yt, xt}Tt=1, N b

T is a Gaussian random variable with

mean 0 and variance given by (12). Using Lemma 1 and (13), this implies that as T →∞,

N b
T
L−→P σ1σ2

(∫ 1

0
X(r)2Q(r)2dr

)1/2

Z,
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where Z ∼ N(0, 1), independent of X(·). This in turn implies that

σ̂b2
1 =

1
T

T∑
t=1

û2
1tw

b2
t + oP (1) = σ̂2

1 +
1
T

T∑
t=1

û2
1t(w

b2
t − 1) + oP (1).

The limit of σ̂2
1 is given in (11); the second term has mean zero and variance T−2

∑T
t=1 2E(û4

1t), which

converges to zero as T →∞ because zt has finite fourth moment. Therefore,

tbols =
N b

T

σ̂b
1

√
T−2

∑T
t=1 x

2
t

L−→P

( ∫ 1
0 X(r)2Q(r)2dr∫ 1

0 Q(r)2dr
∫ 1
0 X(r)2dr

)1/2

Z =
√
AZ.

�

We conclude this section with a small Monte Carlo experiment to investigate the effectiveness of

both procedures in finite samples. Following KP08, we consider the model (1)–(3), with T = 100, σ2
1 =

σ2
2, zt ∼ i.i.d. N(0, I2), a ∈ {10, 0.01}, and s ∈ {0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 0.7, 0.75, 0.8, 0.85, 0.9}.

A bootstrap sample size of B = 999 has been used. Table 1 lists the Monte Carlo rejection frequencies

(based on 100, 000 replications) at the nominal 5% level of tols, tW and a wild bootstrap version of

both tests (labelled tbols and tbW , respectively). In agreement with KP08, we observe that the effect of a

variance increase, in particular towards the end of the sample, is more pronounced than the effect of a

variance decrease (which in turn is most pronounced at the beginning of the sample). The three methods

to correct the size distortions are about equally successful in general; for the cases with the largest size

distortions (a late positive shift), a combination of both approaches seems slightly more effective than

the separate approaches.

Table 1 about here

4 Discussion

The results of this paper can be extended in various directions. First, the dimensions of both yt and xt

could be larger than one, without qualitatively changing the results. Next, the restriction to a single and

common (proportional) variance shift is inessential: all results will go through with minor notational

change if Σt = Q
(

t
T

)2 Σ, with Q(·) a diagonal matrix function with càdlàg functions on the diagonal.

An extension to allow for endogeneity and serial correlation in ut is slightly less obvious, because

time variation in (auto-) covariance matrices of ut will typically also imply time variation of coefficient

matrices in the fully modified OLS procedure, an (approximating) vector autoregression, or in a dynamic

OLS regression. An extension of fully modified OLS to this situation, based on an estimate of the

break point, has recently been proposed by Kourogenis et al. (2008). If one is prepared to assume

a constant vector autoregression with only time variation in the innovation variance matrix, then the

approach of Cavaliere et al. (2009) can be extended to inference on the cointegration parameters. We

are currently investigating the effectiveness of heteroskedasticity-consistent variance matrix estimation

in this framework, in comparison with the wild bootstrap.
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Table 1: Rejection frequencies at nominal 5% level
s 0.1 0.15 0.2 0.25 0.3 0.5 0.7 0.75 0.8 0.85 0.9

a = 10

tols 0.065 0.073 0.078 0.086 0.092 0.127 0.162 0.167 0.166 0.161 0.152

tW 0.059 0.062 0.060 0.061 0.061 0.066 0.068 0.069 0.068 0.068 0.068

tbols 0.056 0.058 0.056 0.057 0.057 0.061 0.065 0.066 0.066 0.068 0.069

tbW 0.054 0.056 0.054 0.055 0.054 0.058 0.059 0.060 0.058 0.060 0.060

a = 0.01

tols 0.083 0.083 0.079 0.071 0.067 0.054 0.046 0.045 0.045 0.045 0.045

tW 0.053 0.056 0.058 0.056 0.058 0.057 0.056 0.056 0.057 0.057 0.056

tbols 0.053 0.053 0.056 0.054 0.055 0.054 0.054 0.053 0.054 0.054 0.053

tbW 0.058 0.057 0.060 0.057 0.057 0.055 0.054 0.053 0.053 0.054 0.053
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