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Abstract: Item response theory is one of the modern test theory with many applications in the educa-

tional and psychological testing field. Recent developments made it possible to characterize some desired

latent properties in terms of a collection of manifest ones, so that hypothesis tests on these latent traits

can, in principle, be performed. But the existing test methodology is based on asymptotic approxima-

tion, which is impractical in most applications since the required sample sizes are often unrealistically

huge. In this paper, we study a class of tests for making exact statistical inference about four manifest

properties (CSN, MM, CA, and VCD). One major advantage is that these exact tests do not require large

sample sizes and hence can be routinely adopted in empirical studies. Some numerical examples with

applications of the exact tests are also provided.

AMS 2000 subject classification: Primary 62P15; secondary 60P03.

Key words and phrases: Conditional distribution; Exact test; Latent; Monte Carlo; Markov chain

Monte Carlo.

∗Corresponding author



1 Introduction

Item response theory (IRT, also called latent trait theory), as opposed to the classical statis-

tical test methodology, is a modern theory of standardized tests which are commonly used in

educational and psychological measurement settings. IRT provides a basis for the analysis of a

collection of test items assigned to many subjects or examinees. Using various (non)parametric

IRT models, the goal is to estimate a latent trait (parameter) such as an examinee’s ability,

attitude, or skill, that is measured by a particular test item. The traits are latent in the sense

that they are not directly observable. Some basic references to the historical literature include

Birnbaum (1968), Lord and Novick (1968), Fisher (1974), Cressie and Holland (1983), Joag-Dev

and Proschan (1983), Holland and Rosenbaum (1986), Rosenbaum (1987), Stout (1987, 1990),

and van der Linden and Hambleton (1997).

The majority of IRT models assume that the response data are unidimensional in the ref-

erence population, i.e. the item response probabilities are a function of a single underlying

latent trait. Another condition of the models is monotonicity, i.e. the item response functions

are nondecreasing functions in the latent variables. In this context the works by Junker (1991,

1993) and Junker and Ellis (1997) are worth mentioning. Their main results include an asymp-

totic characterization of monotone unidimensional latent trait models for dichotomously-scored

items in terms of a collection of physically meaningful manifest properties. This is useful be-

cause manifest properties are amenable to conventional hypothesis testing. Recently, Yuan and

Clarke (2001) developed asymptotic test methods for four manifest properties CSN, MM, CA,

and VCD (see Section 2 for a brief introduction). However, since the desired latent properties are

characterized by a (usually large) collection of statistics, the joint asymptotic validity requires

unrealistically huge sample sizes. So, the proposed tests are mainly of theoretical interest, and

have limited practical value. The objective of the current paper is to construct exact tests of

certain latent traits, so that they can be carried out in practice.

The concept of exact test, originally proposed by Fisher (1935) for the inference of contin-

gency tables, has received much attention and been extended to various settings since then.

Under the null hypothesis the table usually has some kind of row or column or in both way

independence, so that one conditional on the sufficient statistics of the parameters of interests,

all the unknown parameters are left out, and the P -value of some test statistic can be computed

under the parameter free exact distribution. Usually, direct computation of the P -value un-

der the conditional distribution is difficult in practice. Instead, various Monte Carlo sampling
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methods are used for accurate approximations. Although an enumeration method is possible in

some special cases, it is generally computationally infeasible. Based on permutations, for large

tables, a simple Monte Carlo method may become a problem in sampling. In this case, Markov

chain Monte Carlo sampling can be employed, which only updates a sub-table at each iteration.

Hence the computation won’t be limited by the table size.

In IRT inference, with data typically in the form of a table with binary entries, the null

hypotheses are often composite. But for some latent hypotheses, tests can be performed on

hypotheses on the parameter boundary, on which some kind of conditional independence can be

achieved, so that parameter free exact tests can be performed. These simpler hypothesis tests are

also tests for the original ones with the same significance level. We elaborate on these exact tests

in subsequent sections. First, in the Section 2, we provide the key definitions, and notations.

Next, in Section 3, we give four exact tests for four different manifest conditions. In Section 4 we

present Monte Carlo test results for two manifest conditions using several unidimensional IRT

models. As an illustration we also apply two tests to a familiar item response dataset. Section

5 concludes.

2 Notation and preliminaries

Let X1, . . . ,Xn be i.i.d. with X = (X1, . . . ,XJ), a random vector of length J . Typically, in

the educational testing context, it represents an examinee’s testing scores on J items. Xi =

(Xi1, . . . ,XiJ) with Xij ’s be the binary (zero for wrong and one for correct) score of the i-

th participant. The corresponding observations will be denoted by lower case letters. Let

X+ =
PJ

j=1Xj , and X+(−j) = X+ −Xj . For an observed data table t = (xij), with the i-th

row xi = (xi1, . . . , xiJ) be the scores of the i-th participant over all the J items. Denote T the

corresponding random table of t. Let x+i =
PJ

j=1 xij be the i-th row total, x
+
j =

Pn
i=1 xij be

the j-th column total, x+ = (x+1 , . . . , x
+
J ) be the vector of all the column totals, and x++ =Pn

i=1

PJ
j=1 xij be the grand total.

In the exact test, conditional on the sufficient statistics S of the parameters of interests, one

computes the P -value of some reasonably chosen test statistic h(T) under the parameter free

exact distribution, i.e.

P (h(T) ≥ h(t)|S). (1)

This test can also be derived from the Lehmann-Pearson framework as conditioning on the nui-

sance parameter, and under some regularity conditions it is Uniformly Most Powerful Unbiased,
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though not necessarily Uniformly Most Powerful (UMP) (Lehmann, 1986). Usually direct com-

putation of (1) is difficult, instead, various sampling methods can be used. That is, sample t(n)

(n = 1, . . . , N) from the conditional distribution P (T|S), and (1) is approximated by

P̂N =
1

N

NX
n=1

χ(h(t(n)) ≥ h(t)),

where χ(·) is the indicator function.

A general form for the joint probability of X is given by (Cox, 1972; Fitzmaurice and Laird,

1993; Zhao and Prentice, 1990)

P (X) = exp{Ψ0X+Ω0W−A(Ψ,Ω)}, (2)

where Ψ and Ω are parameters and exp{−A(Ψ,Ω)} is the normalizing constant, W is all the

cross-product terms of X, including all the second and higher order terms. Computation of

the P -value of the test statistic under the observed data is infeasible, since there are too many

unknown parameters in the above distribution. However, under the latent traits (i.e. hypotheses)

of interest, model (2) often has a much simpler form. Then, conditioning on a suitable statistic

S, we can get the parameter-free exact distribution, based on which the tests will be performed.

Now we state the latent traits we want to test, and in Section 3 we discuss the corresponding

testing statistics h(·), the conditioning statistic S, the conditional distributions, and the sampling

scans.

Junker (1993) introduced the notion of covariances given the sum are nonpositive (CSN) to

characterize the general dependence nature between pairs of testing items. For self-content, we

restate its definition below.

Definition (CSN): The covariances given the sum are nonpositive, if and only if for any

i < j ≤ J the covariance between items i and j, given the mean, is negative. That is,

Cov(Xi,Xj |X+) ≤ 0.

Also from Junker (1993), we have the following.

Definition (MM): Manifest monotonicity holds if

E(Xi|X+(−i)) is nondecreasing as a function of X+(−j)

for all i ≤ J and all J .
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The following concept, conditionally associated (CA) is from Holland and Rosenbaum (1986).

Definition (CA): The components in X are conditionally associated, if and only if for every

pair of disjoint, finite response vectors Y and Z in X, and for every pair of coordinatewise non-

decreasing functions f(Y) and g(Y), and for every function h(Z), and for every c ∈ range(h)

we have that

Cov(f(Y), g(Y)|h(Z) = c) ≥ 0.

Let XJ,k = (XJ+1, . . . ,XJ+k) be a k-vector of future items after X. The following definition of

vanishing conditional dependence (VCD) is from Junker and Ellis (1997).

Definition (VCD): X has vanishing conditional dependence, if and only if for any partition

(Y,Z) of the response vector X, and any measurable functions f and g (and any J) we have

that

lim
k→∞

Cov(f(Y), g(Z)|XJ,k) = 0

almost surely.

Junker (1993), Junker and Ellis (1997) characterized the relationships among CSN, CA, MM,

VCD and some other latent properties. To perform exact tests of the above latent properties,

the key is to derive the conditional distributions for each of the properties and the corresponding

sampling methods. In Section 3 we consider these one by one.

3 Construction of the tests

The exact tests below are based on the condition that the level α test is determined by the

boundary condition under which all the J items are independent. Without this condition, the

conditional distributions and related samplings will be difficult to handle. Since the tests will be

non-standard, and often the number of parameters involved is huge, to test the null hypothesis

H, we first simplify the conditions to be tested on the boundary of the parameter set, and a

simpler hypothesis H0, such that any level α test for H0 is also a level α test for H, although

these two hypotheses are not equivalent. Then tests for H0 are constructed in a much easier

way instead of those for H.
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3.1 Test for CSN

Since the data are binary, X+ can only take the values 0, 1, . . . , J (values 0 and J are trivial,

implying all the scores are 0 or 1), and CSN can be formulated as

r(i, j|k) := Cov(Xi,Xj |X+ = k) ≤ 0, 0 ≤ i < j ≤ J ; 0 ≤ k ≤ J.

Given X+ = k, the joint probability of X can be specified by (2) for each k.

Let t(k) be the nk × J sub-table of all xi’s in t with x+i = k. A natural estimate of r(i, j|k)

is (only for those with nk > 0)

r̂(i, j|k) = 1

nk

X
xs∈t(k)

(xsi − xi)(xsj − xj), (k = 1, . . . , J − 1) (3)

where xi and xj are the means of the i-th and j-th item across all subjects in t(k). A reasonable

choice for a test statistic for CSN is

h(t) = r :=
J−1X
k=1

nk
n
max
i,j

r̂(i, j|k). (4)

Note that r̂(i, j|0) = r̂(i, j|J) ≡ 0, ∀i, j. Let

Θ = {r(i, j|k) : 0 ≤ i < j ≤ J ; 1 ≤ k ≤ J − 1}

be the collection of all the r(i, j|k)’s, CSN can be written as H : Θ ≤ 0 (here “≤” in the sense

of componentwise). The rejection rule of a level α test of CSN has the form h(t) ≥ h0 for some

h0 satisfies

sup
Θ

P (h(t) ≥ h0|Θ) ≤ α.

Apparently, the above supΘ is attained at Θ = 0. Thus to get a level α test for CSN, we only

need to construct a level α test for H0 : Θ = 0 vs. K : supθ∈Θ > 0. When H0 is true, h(·) tends

to be close to zero, otherwise large.

Now we describe the exact test for H0 vs. K. For this we first need the distribution of the

data t under H0, and then conditioning on a sufficient statistic of the parameters in the distri-

bution to get a parameter free conditional distribution. Based on the conditional distribution,

i.i.d. samples are drawn to evaluate the observed statistic given in (4), and to compute the

Monte Carlo P -value under H0. Conditional on x+ we have the following.

Proposition 1. Under H0,

P (t|x+) =
QJ

j=1 x
+
j !

x++!
, (5)
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Proof: Under H0, for i 6= j we have

Cov(Xi,Xj) =
JX

j=k

Cov(Xi,Xj |
JX
l=1

Xl = k)P (
JX
l=1

Xl = k) = 0.

Since the Xi’s are binary, we have

0 = Cov(Xi,Xj) = E(XiXj)−E(Xi)E(Xj) = P (Xi = 1,Xj = 1)− P (Xi = 1)P (Xj = 1). (6)

By (6) we get

P (Xi = 1,Xj = 0) = P (Xi = 1)− P (Xi = 1,Xj = 1)

= P (Xi = 1)− P (Xi = 1)P (Xj = 1) = P (Xi = 1)P (Xj = 0).

Similarly

P (Xi = 0,Xj = 1) = P (Xi = 0)P (Xj = 1), P (Xi = 0,Xj = 0) = P (Xi = 0)P (Xj = 0).

Thus under H0, Xi and Xj are independent for all i 6= j.

Let pj = P (Xj = 1) (j = 1, . . . , J) and p = (p1, . . . , pJ). Under H0 the mass function of t is

P (T = t) =
nY
i=1

JY
j=1

p
xij
j =

JY
j=1

p
x+j
j .

Now we show x+ is a sufficient statistic for p. For this we only need to show the conditional

distribution of t given x+ is free of parameters and is given in (5). In fact, let X+ be the

corresponding random variable for the observation x+, then under H0, X+ is distributed as the

multinomial M(x++,p), so

P (T = t|X+ = x+) =
P (T = t,X+ = x+)

P (X+ = x+)
=

P (T = t)

P (X+ = x+)

=

QJ
j=1 p

x+j
j

x++!
J
j=1 x

+
j !

QJ
j=1 p

x+j
j

=

QJ
j=1 x

+
j !

x++!
. 2

Proposition 1 tells us how to sample from (5). However, our purpose is to compute the test

statistic from (3) or/and (4) for each new sample. Specifically, the Monte Carlo samples are

drawn as follows.

Get the sub-tables t(k), (k = 1, . . . , J − 1) from the observation t, and compute the

r̂(i, j)|k)’s by (3), then compute r0 = h(t) by (4). To draw the Monte Carlo samples, we first

compute the column totals x+ = (x+1 , . . . , x
+
J ). Now the Monte Carlo sampling is performed

below: Specify an integer M , and let a sequence z1, . . . , zM to be assigned in the sampling

process. For m = 1, . . . ,M do the following steps:
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(i) Draw a sample t(m) from (5), which is realized by a random permutation of the j-th column

tj of t, for each j = 1, . . . , J independent of each other.

(ii) For k = 1, . . . , J − 1, compute t(m)(k), which is composed of all the row vectors in t(m)

with row total k. The size n(m)k is the number of rows in t(m)(k).

(iii) Compute the r(m)(i, j|k)’s by (3) based on t(m)(k), for each k, then compute r(m) = h(t(m))

using the r(m)(i, j|k)’s and n
(m)
k ’s by (4). If r(m) ≤ r0, let zm = 1 otherwise zm = 0.

The Monte Carlo P -value is α̂ = 1
M

PM
m=1 zm, its estimated standard error sd is given by

sd2 =
1

M(M − 1)

MX
m=1

(zm − z)2 =
1

M − 1z(1− z),

and z = 1
M

PM
m=1 zm; its (1−α)% confidence interval is estimated by [z±Φ−1(1−α/2)sd/

√
M ]

(Mehta, et al. 1988), where Φ−1(1−α/2) is the upper (1−α/2)% quantile of the standard normal

distribution. Since sd2 ≈ 1
M−1 α̂(1−α̂) ≤ 1/4, to estimate α̂ within accuracy β, one should choose

M ≥ Φ−2(1 − α/2)/(4β2). For α = 0.05, β = 0.01, we have M ≥ ( 2.5762×0.01)
2 ≈ 17, 000. If α̂ is

smaller than some prespecified level α, H0 and hence CSN is rejected.

Remark: The sampling above is based on permutation of data with size n. It is known that the

amount of computation for permutation increases rapidly with n, and may result in computation

overflow. In this case, instead of a full updating of the original data table in the sampling process,

we only update a sub-table of it at each sampling step. Let nc be the number of examinees with

c (c = 0, 1, . . . , J) scores. Then, replace step (i) above by

(i’) For each j = 1, . . . , J draw an index vector ij = (ij1, . . . , ijnc) of length nc from {1, . . . , n},

uniformly without replacement (so that all the ijnc ’s are different). This can be done as

follows: divide [0, 1] into non-overlapping sub-intervals I1, . . . , In with equal lengths. Draw

u1 ∼ U [0, 1], if u1 ∈ Is1 , assign ij1 = s1. Then draw u2 ∼ U [0, 1], if u2 ∈ Is2 and s2 6= s1,

assign ij2 = s2; if s2 = s1 (the possibility is zero), redraw u2 ∼ U [0, 1], if u2 ∈ Is2 and

s2 6= s1, assign ij2 = s2. Continue until all the ijnc ’s are assigned. Given this ij , let tj(ij)

be the sub-vector of length nc of tj with indices in ij , do a permutation within tj(ij) for

j = 1, . . . , J . Merge the results in a new table t(m).

In this case the numberM for the samples should be much larger to ensure the ergodicity of the

Monte Carlo samples, and the convergence of the corresponding P -value. Note that P -values

for other latent traits, expressed in terms of covariances ≤ (≥)0, can be computed in the way

as above.
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3.2 Test for MM

Using the notation of Yuan and Clarke (2001), let the total score of the i-th examinee over the J

items, but the term for the j-th item be x+i (−j) =
PJ

r=1,r 6=j xir. As a generic random variable

this is X+(−j) =
PJ

i=1,i6=j Xi, in which j indexes the item. Now, the quantity we use to test

MM is ∆k(−j) := E(Xj |X+(−j) = k + 1) − E(Xj |X+(−j) = k), where k = 0, . . . , J − 1 and

j = 1, . . . , J . Let Θ = {∆k(−j) : k = 0, . . . , J − 1; j = 1, . . . , J}. MM now is expressed as

H : Θ ≥ 0 vs. K : Θ < 0. We first get natural estimators of ∆k(−j)’s and so a test statistic

for MM. For this we partition the collection of examinees’ binary response vectors based on the

values of x+i (−j). Let t(k,−j) = {xi : x+i (−j) = k} (k = 0, 1, . . . , J − 1; j = 1, . . . , J), and

t(k,−j) = |t(k,−j)| is its cardinality. A natural estimate of ∆k(−j) is

∆̂k(−j) =
1

t(k + 1,−j)
X

xi∈t(k+1,−j)
xi,j −

1

t(k,−j)
X

xi∈t(k,−j)
xi,j . (7)

In the above we use the convention
P
xi∈t(k,−j) xi,j/t(k,−j) = 0 if t(k,−j) = 0. A reasonable

choice for h(·) is

h(t) = ∆̂ :=
X

0≤k<J−1;1≤j≤J

t(k,−j) + t(k + 1,−j)
2Jn

∆̂k(−j). (8)

When MM is not true h(t) will tend to be small. By the same argument as for CSN, to get

a level α test for H, we only need to construct a level α test for H0 : Θ = 0 vs. K : Θ < 0.

For two random variables X and Y , X ⊥ Y denote X and Y are independent. Let x(k,−j) =

(x+1(k,−j), . . . , x+J(k,−j)) be the vector of the observed column totals in t(k,−j). We have

the following.

Proposition 2. Under H0, (5) is still true in this case.

Proof: Under H0, we have

P (Xj = 1|X+(−j) = 0) = E(Xj |X+(−j) = 0) = E(Xj |X+(−j) = 1)

= · · · = E(Xj |X+(−j) = J − 1),

or

P (Xj = 1|X+(−j) = 0) = P (Xj = 1|X+(−j) = 1) = · · · = P (Xj = 1|X+(−j) = J − 1),
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so

P (Xj = 1) =
J−1X
k=0

P (Xj = 1|X+(−j) = k)P (X+(−j) = k)

= P (Xj = 1|X+(−j) = r)
J−1X
k=0

P (X+(−j) = k) = P (Xj = 1|X+(−j) = r),

for any 0 ≤ r ≤ J − 1. Since Xj is binary, this implies that Xj ⊥ X+(−j) (1 ≤ j ≤ J) for all

J . In particular, take j = 1 and J = 2, we have X1 ⊥ X2; take J = 3 we have X1 ⊥ (X2 +X3)

which in turn from the independence between X1 and X2 implies that X1 ⊥ X3; . . . , X1 ⊥ Xj

(j 6= 1). Similarly, take j = 2 and J = 2, 3, . . ., we have X2 ⊥ Xj (j 6= 2), and finally, X1, . . . ,XJ

are independent of each other. The rest proofs are the same as in Proposition 1. 2

To perform the exact test for H0 vs. H1, the procedures are similar to those for the CSN.

We first get the tables t(k,−j)’s (k = 0, . . . , J − 1; j = 1, . . . , J) from the observed table t,

compute ∆(0) by (7) and (8). Then draw Monte Carlo samples t(m)(k,−j)’s according to (5) as

in the sampling for CSN, then compute the ∆̂(m)’s by (7) or/and (8). The Monte Carlo sampling

to compute the P -value is similar as before: Specify an integer M and a sequence z1, . . . , zM as

that for CSN. For m = 1, . . . ,M do the following: a) Steps (i) and (ii) are similar as before; b)

If ∆(m) ≥ ∆(0), let zm = 1 otherwise zm = 0. The Monte Carlo P -value for H0 vs. K is z, its

estimated standard error and confidence interval are the counter parts in the testing for CSN.

Clearly, the Remark applies also to this case.

3.3 Test for CA

The principle for testing CA will be the same as that for CSN. In the following we refer to

the notations and Proposition 4.4 in Yuan and Clarke (2001). Under these notations, CA is

equivalent to H:

Θ = {Cov(χA(X(ω(j))), χB(X(ω(j)))|X(ω0(j0)) ∈ D) : (j, j0, ω, ω0,≺,≺0, A,B,D)} ≥ 0

vs. K : θ < 0, where the range of (j, j0, ω, ω0,≺,≺0, A,B,D) is

j + j0 ≤ J ; ω(j), ω0(j0) ∈ Ω; ω(j) ∩ ω0(j0) = φ;

≺∈ Λ(ω(j)); ≺0∈ Λ(ω0(j0)); A,B ∈ S(≺ω); D ⊂ S(≺0ω0).

The cardinality of Θ will usually be enormous even for J ≥ 3.
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Let Θ0 be the subset of Θ consisting of all the components of Θ for which ω(j) be the

(1, . . . , J)-complement of ω0(j0) and ω(j) = ω1(j1)⊕ω2(j2) for some ω1(·), ω2(·) and j1+ j2 = j.

As before, for a level α test ofH vs. K, we need only to construct a level α test forH0 : Θ0 = 0 vs.

K0 : Θ0 > 0. By similar reasoning as before, this corresponds to independence of χA(X(ω1(j1)))

and χB(X(ω2(j2))) pairs, for any A ∈ S(≺ω1) and B ∈ S(≺ω2), conditional on the event

X(ω0(j0)) ∈ D. Now, for each fixed j0 and ω0(j0), let ΓD = ΓD(ω
0(j0)) be all the vectors

X’s with X(ω0(j0)) ∈ D. For fixed j1, j2, A ∈ S(≺ω1) and B ∈ S(≺ω2), let yAB|D, yABc|D,

yAcB|D and yAcBc|D be the cell counts of the events AB, ABc, AcB and AcBc in the set ΓD.

Define yA|D = yAB|D + yABc|D, yB|D = yAB|D + yAcB|D and y++|D = yA|D + yB|D. Then under

H0, the two by two contingency table yD := (yAB|D, yABc|D, yAcB|D, yAcBc|D) are columnwise

independent, and its conditional distribution given (yA|D, yB|D) is standard (Agresti, 1990)

P (yD|yA|D, yB|D) =

⎛⎝ yA|D

yAB|D

⎞⎠⎛⎝ yB|D

yA|D − yAB|D

⎞⎠
⎛⎝ y++|D

yA|D

⎞⎠ . (9)

For given A ∈ S(≺ω1(j1)), B ∈ S(≺ω2(j2)) and D ⊂ S(≺0ω0 (j0)), let nABD be the sample size for

all the observations satisfying X(ω1(j1)) ∈ A, X(ω2(j2)) ∈ B and X(ω0(j0) ∈ D. If nABD > 2,

an estimate r̂ABD of rABD = Cov(χA(X(ω(j))), χB(X(ω(j)))|X(ω0(j0)) ∈ D) can be constructed

by its empirical version.

Since the cardinality of Θ is huge, it seems impractical to construct a closed form testing

statistic even for H0. Instead, we use a random scan sampling method as follows.

Let S0(≺0ω0 (j0)) be the collection of all ≺0ω0 (j0)s for some 1 ≤ j0 ≤ J to which the observation

xi(ω
0(j0)) belongs for at least two i’s. Define S0(≺ω1(j1)) and S0(≺ω2(j2)) similarly. Define N0

be all the integer triples (j0, j1, j2) with j0 + j1 + j2 = J and that there are D ∈ S0(≺0ω0 (j0)),

A ∈ S0(≺ω1(j1)) and B ∈ S0(≺ω2(j2)). Let W1, W2 and W 0 be the vectors of proportions of the

observed A, B and D’s. For a collection C of sets, denote U(C) as the uniform distribution over

C, and D(W, C) be the weighted distribution over C with weights W .

Set a prespecified sample size M , and a sequence z1, . . . , zM to be specified. For m =

1, . . . ,M , go over the following steps:

(i) Draw (j0, j1, j2) from U(N0), A from D(W1,S0(≺ω1(j1))), B from D(W2,S0(≺ω2(j2))) and

D from D(W3,S0(≺0ω0 (j0))).
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(ii) Given the above A,B,D, compute nABD, yAB|D, yA|D, yB|D, y++|D and r̂ABD from the

observed data table.

(iii) Sample nABD of yDs from (9), and compute the estimate r̃ABD, using the sampled data,

of rABD by the same formula for r̂ABD.

(iv) If r̃ABD > r̂ABD, set zm = 1, else zm = 0.

The estimated P -value and its estimated standard error are computed in the same way as before.

3.4 Test for VCD

Using the same notation as in the previous subsection. Proposition 5.1 in Yuan and Clarke

(2001) says that VCD is equivalent to the condition that for each k there is an � = �(k), with

�(k) going to zero, so that

max
j,ω(j),A,B,D

|Cov(χA(X(ω(j)), χB(X(ωc(j))|XJ,k ∈ D)| ≤ �(k), (10)

in which the operation maxj,ω(j),A,B,D denotes the maximum over

1 ≤ j < J ; ω(j) ∈ Ω; A ∈ S(ω(j)); B ∈ S(ωc(j); and D ∈ SJ,k.

Let θ = |Cov(χA(X(ω(j)), χB(X(ωc(j))|XJ,k ∈ D)|, Θ = {θ : j, ω(j), J, k,A,B,D}, θ = max θ ∈

Θ. Then CVD can be formulated as H : θ < � vs. K : θ ≥ �, for some �. As before, for a level α

test for H vs. K, if we use the testing statistic θ̂ with rejection rule of the form: θ̂ > θ0, where

θ0 is θ evaluated at the observation (xij), then we only need to get a level α test for H0 : θ = 0

vs. K. For fixed ω(j), J , k and D, let G = GD = {i : xJ,k = D}, nG = |G| be the cardinality

of G, Yi,1 = χA(Xi(ω(j)), Yi,2 = χB(Xi(ω
c(j)), Yi,3 = χAc∩Bc(Xi(ω(j)), the Yij ’s are binary

and under H0, they are independent conditional on XJ,k, and conditional on the Y ’s total will

eliminate the nuisance parameters. Thus we have

P (Y |Y+1, Y+2, Y+3) =
3Y

j=1

Y+j !(nG − Y+j)!

nG!
, (11)

so the test will be similar to that of before. Also, sampling from (11) is the same as before.

Denote xi = (xi,1, . . . , xi,J , xi,J+1, . . . , xi,J+k) where i = 1, . . . , n. The averages of examinees’

scores over G are

χA(D) = (1/nG)
X
i∈G

χA(xi(ω(j))) and χB(D) = (1/nG)
X
i∈G

χB(xi(ω
c(j))).
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So,

θ̂ =
1

nG

¯̄̄̄
¯X
i∈G
(χA(xi(ω(j)))− χA(D))(χB(xi(ω

c(j)))− χB(D))

¯̄̄̄
¯ (12)

is an estimator of θ.

In principle, to test H0 vs. K, we still need to go through all the combinations {j, ω(j), J, k,

A,B,D} to find the maximum, which is impractical. Instead, we use random scan as in the

previous section, in which, at each Monte Carlo iteration m, we randomly select a θ ∈ Θ, draw

a sample (x(m)ij ), and compute θ̂(x(m)) and θ̂(x). Any occurrence of θ̂(x(m)) ≥ θ̂(x) is evidence

against H0. Specifically, the sampling is as follows.

Specify a sample size M , a sequence z1, . . . , zM to be specified, and set m = 0. Then do the

following

(i) Draw J0 from {2, . . . , J − 1}, j from {1, . . . , J0 − 1}, k from {J0 + 1, . . . , J}, ω(j) from

{1, . . . , J0}, A from S(ω(j)), B from S(ω(j)c), and D from SJ,k.

(ii) For the aboveD, get the setGD for the observation x, ifGD is empty, go back to (i), else in-

crease m by 1, compute yi,1 = χA(Xi(ω(j)), yi,2 = χB(Xi(ω
c(j)), yi,3 = χAc∩Bc(Xi(ω(j)),

(i = 1, . . . , nG), y+1, y+2, y+3 and θ̂(y) by (11).

(ii) Sample Y (m) from (10), compute θ̂(Y (m)), if θ̂(Y (m)) ≥ θ̂(y), set zm = 1, else zm = 0. If

m < M , go to (i); else, stop.

The Monte Carlo P -value and its estimated standard error are computed in the same way as

before.

4 Simulation and illustration

The tests for CA and VCD above, although feasible here as compared to their theoretical

versions, are still not convenient to use. They need unrealistic huge sample sizes to perform

the formal tests. So here we concentrate on illustrating the exact tests, using Monte Carlo

simulations for CSN and MM, and via an illustration.

4.1 Simulated data

Example 1: Two known unidimensional parametric IRT models for binary response are used:

the one-parameter logistic model (1PLM, also called the Rasch model), and the two-parameter
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logistic model (2PLM). The 2PML, defined via the associated item response function, is given

by

P (Xj = 1|θi) =
1

1 + exp(−aj(θi − bj))
, (i = 1, . . . , n; j = 1, . . . , J) (13)

where θi represents the ability of examinee i, aj , and bj are item parameters. aj is the item

discrimination parameter, and bj represents the item difficulty parameter. The 1PML is a special

case of (13) when aj = 1 (j = 1, . . . , J).

Using the computer program WinGen2 (Han and Hambleton, 2007) we simulated item and

person parameters, item responses for a set of J = 10, 20 items, and n = 100, 200 examinees.

For the 1PLM bj was sampled randomly from a U [0.6, 1.9] distribution. This range was se-

lected because estimated discrimination parameters for real data often fall within these values.

θi was sampled randomly from a N(0, 1) distribution. For the 2PLM the item discrimination

parameters aj were drawn from a log-normal distribution with mean 0 and standard deviation

0.25. The item difficulty parameters bj were sampled from a N(0, 1) distribution. These pa-

rameter distributions can be considered realistic in practice. The number of replications in all

experiments was set at 100, with M = 30, 000.

Table 1 shows empirical quartiles Q1, Q2 (median), and Q3 of the computed P -values. It

is quite obvious from the values of Q2 that in all cases there is no indication to reject the null

hypotheses, i.e. there is no violation of the CSN and MM properties. Moreover, the variability

in the P -values as measured by the sample interquartile range (Q3 − Q1) also indicates that

there is no evidence against CSN and MM.

Given these results, it seems that CSN and MM are rather general properties of multivari-

ate binary data. In fact, by reviewing the theory underlying monotonicity, Junker and Sijtsma

(2000) show that MM holds for the 1PLM. For the 2PLM these authors construct three theo-

retical counterexamples in which MM fails. Two counterexamples give rise to a nearly perfect

(deterministic) Guttman pattern. Indeed, by constructing such a pattern, we were able to reject

MM using the sampling process discussed in Section 3.2. But, since the ideal of a Guttman scale

is difficult to achieve in real testing, we do not explore this set-up here further. An example

violating the CSN property is provided below.

Example 2: Let X1, . . . ,Xn be an i.i.d. sample from X = (X1, . . . ,XJ). Further, let Y ∼

N(0,Ω), where all the off-diagonal elements of the J × J covariance matrix Ω are positive and

equal to r. If Yi < Φ−1(pi), set xij = 1 otherwise xij = 0 (i = 1, . . . , n; j = 1, . . . , J). Given

this general set-up we consider testing for CSN with n = 100, J = 10, 20, r = 0.6, 0.7, 0.8,
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Table 1: Empirical quartiles Q1, Q2, and Q3 of P -values for testing the CSN and MM properties.

Simulation results are based on 100 replications using Monte Carlo samples with M = 30, 000.

Model n J CSN MM

Q2 (Q1, Q3) Q2 (Q1, Q3)

1PLM 100 10 0.8732 (0.7121,0.9435) 0.6581 (0.5970,0.7009)

20 0.6295 (0.4230,0.7450) 0.2611 (0.2283,0.3033)

200 10 0.9814 (0.9478,0.9961) 0.9537 (0.9453,0.9619)

20 0.9257 (0.7969,0.9852) 0.2284 (0.1821,0.2772)

2PLM 100 10 0.2930 (0.1054,0.6185) 0.4127 (0.3790,0.4594)

20 0.9810 (0.9362,0.9944) 0.5769 (0.5573,0.5914)

200 10 0.2338 (0.0901,0.5298) 0.3982 (0.3644,0.4296)

20 0.9700 (0.9188,0.9959) 0.4831 (0.4647,0.5064)

Table 2: Empirical quantiles of P -values for testing the CSN condition. Simulation results are

based on 100 replications of sample sizes n = 100 using Monte Carlo samples with M = 30, 000.

Empirical quantiles

J r 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9

10 0.6 0.0028 0.0071 0.0105 0.0184 0.0418 0.0708 0.1051 0.1683 0.1858 0.2620 0.4851

0.7 0.0002 0.0015 0.0035 0.0054 0.0130 0.0205 0.0323 0.0520 0.0687 0.1101 0.1939

0.8 0.0000 0.0000 0.0000 0.0002 0.0006 0.0023 0.0029 0.0067 0.0113 0.0163 0.0455

20 0.6 0.0073 0.0232 0.0444 0.0457 0.0966 0.1487 0.2349 0.3629 0.4407 0.5371 0.6649

0.7 0.0000 0.0000 0.0001 0.0001 0.0008 0.0019 0.0032 0.0076 0.0162 0.0286 0.0649

0.8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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pi = 0.5. Table 2 shows empirical quantiles of P -values based on 100 replications using Monte

Carlo samples with M = 30, 000. We see that, when r = 0.6, the CSN condition is not rejected

for J = 10 and J = 20 in quite a few cases. However, when r = 0.7 and r = 0.8 the null

hypothesis of CSN is strongly rejected for both values of J . These results are typical. Thus the

CSN condition can only be rejected when there is a strong form of positive dependence between

the items in the dataset.

4.2 Illustration

As an illustration, we apply the exact tests for CSN and MM to a dataset taken from the

1992 Trial State Assessment Program in Reading at Grade 4 of the US National Assessment of

Educational Progress; see Patz and Junker (1999, Table 1). The data concerns the responses

of n = 3, 000 students to a test made-up of J = 6 items. The number of Monte Carlo samples

was fixed at M = 30, 000. For CSN, the empirical median value (Q2) of the r(m)’s is −0.0206,

the lower empirical quartile (Q1) is −0.0220, and the upper quartile (Q3) is −0.0191. With

r0 = −0.009469, the Monte Carlo P -value equals 0.999967 (sd = 3.316× 10−5). Hence, on the

basis of this result, CSN is not rejected. For MM, the median value of the ∆(m)’s is 1.1449,

Q1 = 0.5389, and Q3 = 1.7826. With ∆(0) = 1.123382 × 10−9, the Monte Carlo P -value is

0.904633 (sd = 1.696× 10−3). Hence, on the basis of this result, MM is not rejected.

5 Some concluding remarks

We proposed exact hypothesis tests for CSN, MM, CA, and VCD. The tests are computationally

feasible and practical, with Monte Carlo P -values computed under H0. Moreover, the Monte

Carlo method may extend to some more latent traits. Nevertheless, the tests considered here

may not be best ones in some sense and admit rooms for improvements. However, based on

permutation, the amount of computation grows factorially (faster than exponential growth)

along with the datatable size. So for collections with large table sizes, the simple Monte Carlo

method may again becomes computationally impractical. For this, the Markov chain Monte

Carlo method is to update a sub-table per iteration, so it can be used in practice without actual

size limitation. Yuan and Yang (2005) proposed a Markov chain method for contingency table

exact inference, in which a sub-table of user specified size is sampled at each iteration. This

chain has high sampling efficiency and can be modified to the present case.

Finally, it is worth mentioning that the null hypotheses of CSN, MM, CA, and VCD consid-
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ered here are not of the simple Pearson type. Hence tests with some optimality such as UMP

tests, generally do not exist. Thus we have only dealt with level α tests for these hypothesis.

We find level α tests on the corresponding H0, which are also level α tests on the corresponding

H. On each H0, all the traits CSN, MM, CA and VCD have a common feature: columnwise

independence, although on the corresponding H, these traits are not the same.
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