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Abstract

An analytical expression is obtained for the optimal weighting matrix for the
generalized method of moments system estimator (GMMs) in the dynamic panel
data model with predetermined regressors, individual e¤ect stationarity of all vari-
ables, homoskedasticity and cross-section independence. As yet such an expression
had not been obtained. Therefore GMMs has always been applied by �rst using
some simple form of sub-optimal weighting matrix in 1-step GMMs, after which as-
ymptotically e¢ cient 2-step GMMs can be obtained in the usual way. The optimal
weighting matrix is found to depend on unobservable model and data parame-
ters, so asymptotically e¢ cient 1-step GMMs is not operational. However, next to
the few suboptimal naive 1-step GMMs weighting matrices presently in use, the
expression for the optimal weighting matrix suggests alternative feasible more so-
phisticated GMMs implementations, including a point-optimal weighting matrix.
In Monte Carlo experiments we analyse and compare some of these and �nd that
2-step GMMs is rather sensitive to the initial choice of weighting matrix in mod-
erately large samples. Some guidelines are given for choosing weights in order to
reduce the mean (squared) estimation errors.

� Department of Quantitative Economics, Amsterdam School of Economics, Universiteit van Ams-
terdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands (j.f.kiviet@uva.nl).
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1 Introduction

To achieve asymptotic e¢ ciency in GMM (generalized method of moments) estimation
when there are more moment restrictions than parameters to be estimated, the sample
moment conditions are minimized in a quadratic form that entails a weighting matrix
that has a probability limit which is proportional to the inverse of the variance of the
limiting distribution of the orthogonality condition vector. In many circumstances this
variance is hard to derive and it may depend on nuisance parameters. Dynamic panel data
models with unobserved individual e¤ects are often estimated by GMM, and when the
cross-sections are independent and homoskedastic the optimal weighting matrix for the
linear moment conditions is well-known and not determined by nuisance parameters, see
Arellano and Bond (1991). However, it has been observed that this estimator may su¤er
from serious bias in moderately large samples and it has been suggested that exploiting
additional moment conditions that build on stationarity assumptions in a so-called GMM
system estimator (GMMs) yields much better results. This estimator, put forward by
Arellano and Bover (1995) and Blundell and Bond (1998), is called a system estimator
because it simultaneously exploits moment conditions for the dynamic panel data model
in levels and in its �rst-di¤erenced form. Up to date the optimal weighting matrix for
this estimator had not been derived so that even under very strict assumptions GMMs
has to be employed in a 2-step procedure in which an empirical assessment of the optimal
weights is used that is based on consistent 1-step GMMs estimates that are obtained from
an operational but suboptimal weighting matrix.
In this paper we derive the optimal GMMs weighting matrix for the dynamic panel

data model with both a lagged dependent variable regressor and an arbitrary number of
further predetermined regressors, where both the dependent variable and the regression
variables are e¤ect stationary. This means that their correlation with the unobserved
heterogeneity (the individual e¤ects) is time-invariant. For many elements of the GMMs
orthogonality condition vector it is extremely di¢ cult to derive their covariance, which
complicates the assessment of the optimal weighting matrix. However, we show that
asymptotically equivalent results are obtained by deriving a conditional covariance, and
that di¤erent conditioning sets may be used for the various elements of the variance
matrix. By choosing for all the various types of elements in the variance matrix of the
orthogonality conditions a conditioning set that leads to rather straightforward expres-
sions for their conditional variance we are able to obtain an explicit expression for the
asymptotically optimal weighting matrix. This matrix is shown to depend on all the ob-
served instrumental variables and also on the unknown values of the covariance between
the regressors and the individual e¤ects, as well as on the unknown covariance between
current regressors and lagged disturbances, i.e. on the pattern in the feedback mechanism
of current disturbances into future observations of the regressors.
Due to the dependence on nuisance parameters asymptotically e¢ cient 1-step GMMs

is unfeasible, although a better founded initial choice of weighting matrix is possible
now. At least a choice better than those currently in use, which are based either on the
usually wrong assumption that the individual e¤ects have zero variance, or on taking as
weighting matrix the inverse of the sample moment matrix of the instrumental variables,
i.e. wrongly assuming that the disturbances of the system are i.i.d. and therefore applying
GIV (generalized instrumental variables), which in this model is clearly far from optimal.
An alternative approach regarding improving the quality of weighting matrices can be
found in Doran and Schmidt (2005).
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In Monte Carlo experiments [in the present version of the paper we just simulated the
autoregressive model without further predetermined regressors] we compare the results
obtained by employing the initial weighting matrices presently in use, and by exploiting
some new operational forms inspired by the optimal matrix. We �nd that 2-step GMMs
is rather sensitive to the initial choice of weighting matrix in moderately large samples.
As a yardstick we also present results obtained by the in practice unfeasible 1-step GMMs
estimator that uses (or is inspired by) the optimal weights. Some guidelines, including a
point-optimal version of the weighting matrix, are given for choosing the weights in order
to reduce the mean (squared) estimation errors.
The paper is structured as follows. In Section 2 we introduce our notation, state

the model assumptions, review some general GMM results for panels, present the GMMs
estimator and the various forms of suboptimal weighting matrix that have been suggested
in the literature. Section 3 contains our main analytical results regarding the derivation
of the optimal weighting matrix. Next, in Section 4, we present the Monte Carlo design
that we used and describe our simulation �ndings. Finally, Section 5 concludes.

2 Standard and system GMM for dynamic panels

In this section we introduce the linear �rst-order dynamic panel data model with ran-
dom individual e¤ects and an arbitrary number of further regressors. All regressors are
assumed to be predetermined with respect to the homoskedastic and serially and con-
temporaneously uncorrelated idiosyncratic disturbance terms. From the various model
assumptions the linear orthogonality conditions are derived that are exploited in what
we will address as the standard GMM estimator, see Arellano and Bond (1991). We pay
extra attention to an additional model assumption that we will call e¤ect stationarity.
This, when valid, gives rise to additional linear orthogonality conditions, which can be
exploited in the system GMM estimator (GMMs), see Blundell and Bond (1998), who
considered this estimator in the pure autoregressive case. Generic results are obtained for
1-step and 2-step estimation that cover both the standard and the system GMM panel
data situation. This provides the setting from which we can embark on the derivation of
the optimal weighting matrix for GMMs.

2.1 Model assumptions

We consider the linear dynamic panel data model

yit = 
yi;t�1 + x
0
it� + �i + "it; (1)

where xit and � are K � 1 vectors and i = 1; :::; N refers to the cross-sections and
t = 1; :::; T to the time-periods. We suppose that we have a balanced panel data set;
hence, if xit happens to contain also the �rst lag of all current explanatory variables then
both the dependent and the other individual explanatory variables should have been
observed for the time-indices f0; :::; Tg for all cross-section units. Below we shall use the
notation

yt�1i � (yi;0; :::; yi;t�1)
X t
i � (x0i1; :::; x0it)

�
t = 1; :::; T;
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where yt�1i is 1� t and X t
i is 1� tK: We also de�ne

Y t�1 �

264 y
t�1
1
...
yt�1N

375 ; X t �

264 X t
1
...
X t
N

375 ; � �
0B@ �1

...
�N

1CA ;
where � is N � 1; Y t�1 is N � t and X t is N � tK:
Regarding the two random error components �i and "it in model (1) we make the

assumptions (i; j = 1; :::; N ; t; s = 1; :::; T ):

E("it j Y t�1; X t; �) = 0; 8i; t
E("2it j Y t�1; X t; �) = �2" > 0; 8i; t
E("it"js j Y t�1; X t; �) = 0; 8t < s; 8i; j and 8i 6= j; 8t � s
E(�i) = 0; E(�

2
i ) = �

2
� � 0; E(�i�j) = 0 8i 6= j

9>>=>>; (2)

These assumptions entail that all regressors are predetermined with respect to the idio-
syncratic disturbances "it; which are homoskedastic and serially and contemporaneously
uncorrelated. In fact, we assume that all cross-section units are independent.
Additional assumptions that may be made � and which are crucial when the GMMs

estimator is employed � involve

E(yit�i) = �y� and E(xit�i) = �x�; 8i; t: (3)

Here �y� is a scalar and �x� is a K�1 vector. Note that both �y� and �x� are assumed to
be time-invariant. By multiplying the model equation (1) by �i and taking expectations
we �nd that (3) implies

�y� = 
�y� + �
0
x�� + �

2
�

or

�y� =
�0x�� + �

2
�

1� 
 : (4)

This condition we will call for obvious reasons e¤ect-stationarity.

2.2 Moment conditions

By taking �rst-di¤erences the model simpli�es in the sense that only one unobservable
error component remains. Estimating

�yit = 
�yi;t�1 + (�xit)
0� +�"it (5)

by OLS would yield inconsistent estimators1 because

E(�yi;t�1�"it) = �E(yi;t�1"i;t�1) = ��2" 6= 0:

Unless �2" would be known this moment condition cannot directly be exploited in a
method of moments estimator. Note, however, that it easily follows from the model
assumptions (2) that for i = 1; :::; N we have

E(Y t�2�"it) = O
E(X t�1�"it) = O

�
t = 2; :::; T;

1Note that in the (habitual) case where xit contains a unit element and � an intercept this model
has no longer K + 1 unknown coe¢ cients. In the analysis that follows we neglect that situation, but it
is reasonably straigtforward to adapt the results (mainly the dimensions of matrices) for models with an
intercept.
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which together provide (K + 1)NT (T � 1)=2 moment conditions2 for estimating just
K+1 coe¢ cients. Especially when the cross-section units are independent many of these
conditions will produce weak or completely ine¤ective instruments. Then it will be more
appropriate to exploit just the (K + 1)T (T � 1)=2 moment conditions

E(yt�2i �"it) = 0
0

E(X t�1
i �"it) = 0

0

�
t = 2; :::; T;

as is done in the Arellano-Bond (1991) estimator. Upon substituting (5) for �"it it is
obvious that these moment conditions are linear in the unknown coe¢ cients 
 and �; i.e.

Efyt�2i [�yit � 
�yi;t�1 � (�xit)0�]g = 00
EfX t�1

i [�yit � 
�yi;t�1 � (�xit)0�]g = 00
�

t = 2; :::; T: (6)

Blundell and Bond (1998) argue that assumption (3), when valid, may yield relatively
strong additional useful instruments for estimating the undi¤erenced equation (1). These
additional instruments are the �rst-di¤erenced variables. De�ning

�yt�1i � (�yi1; :::;�yi;t�1)
�X t

i � (�x0i2; :::;�0xi;t)

�
t = 2; :::; T;

which are 1�(t�1) and 1�(t�1)K respectively, it follows from (3) that (for i = 1; :::; N)

E(�yt�1i �i) = 0
0 and E(�X t

i�i) = 0
0:

From (2) we �nd
E(�yt�1i "it) = 0

0 and E(�X t
i"it) = 0

0:

Combining these and substituting �i+"it = yit�
yi;t�1�x0it� yields the (K+1)T (T�1)=2
linear moment conditions

E[�yt�1i (yit � 
yi;t�1 � x0it�)] = 00
E[�X t

i (yit � 
yi;t�1 � x0it�)] = 00
�

t = 2; :::; T: (7)

These can be transformed linearly into two subsets of (K + 1)(T � 1) and (K + 1)(T �
1)(T � 2)=2 conditions respectively, viz.

E[�yi;t�1(yit � 
yi;t�1 � x0it�)] = 00
E[�x0it(yit � 
yi;t�1 � x0it�)] = 00

�
t = 2; :::; T; (8)

and
Ef�yt�1i [�yit � 
�yi;t�1 � (�xit)0�]g = 00
Ef�X t

i [�yit � 
�yi;t�1 � (�xit)0�]g = 00
�

t = 3; :::; T: (9)

The second subset (9), though, can also be obtained by a simple linear transformation of
(6). Hence, e¤ect stationarity only leads to the (K +1)(T � 1) additional linear moment
conditions (8). These involve estimation of the undi¤erenced model (1) by employing all
the �rst-di¤erenced regressor variables as instruments.
Due to the i.i.d. assumption regarding "it further (non-linear) moment conditions do

hold in the present dynamic panel data model, see Ahn and Schmidt (1995, 1997), but
below we will stick to the linear conditions mentioned above.

2There would in fact be fewer unique moment conditions if the model includes an intercept, indicator
or dymmy variables or particular regressors in combination with their lags. In what follows we will not
take this into account, so that in actual applications of our results adaptations will have to be made.
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2.3 Generic results for 1-step and 2-step panel GMM

Both the standard GMM and the system estimator GMMs �t into the following simple
generic setup. After appropriate manipulation (transformation and stacking) of the panel
data observations one has

y�i = X
�
i �

� + "�i ; i = 1; :::; N; (10)

where y�i and "
�
i are T

� � 1 vectors and the T � � K� matrix X�
i contains all regressor

variables (including transformations of the lagged-dependent variable). TheK��1 vector
�� of coe¢ cients is estimated by employing L� � K� moment conditions that hold for
all i = 1; :::; N; viz.

E[Z�0i (y
�
i �X�

i �
�)] = 0; (11)

where Z�i is T
� � L�: The GMM estimator using the L� � L� semi-positive de�nite

weighting matrix W � is obtained by minimizing a quadratic form, viz.

�̂
�
W � = argmin

��

�
NP
i=1

Z�0i (y
�
i �X�

i �
�)

�0
W �

�
NP
i=1

Z�0i (y
�
i �X�

i �
�)

�
: (12)

Assuming that X�0Z�W �Z�0X� has rank K� with probability 1 a unique minimum exists
which yields

�̂
�
W � = (X�0Z�W �Z�0X�)�1X�0Z�W �Z�0y�; (13)

where y� = (y�01 ; :::; y
�0
N)

0; X� = (X�0
1 ; :::; X

�0
N)

0 and Z� = (Z�01 ; :::; Z
�0
N)

0: It is obvious that
�̂
�
W � is invariant for the scale of W �: Below, when useful, we will implicitly assume that
scaling took place such that W � = Op(1):
We only consider cases where convenient regularity conditions hold, including the

existence with full column rank (for N ! 1) of plimN�1Z�0X�; plimN�1Z�0Z� and
plimN�2X�0Z�W �Z�0X�: According to (11) the instruments are valid, thus

plim
N!1

1

N

PN
i=1 Z

�0
i "

�
i = 0

and �̂
�
W � is consistent. Since the cross-section units are assumed to be independent the

CLT (central limit theorem) yields

1p
N

NP
i=1

Z�0i "
�
i ! N (0; VZ�0"�) ; where VZ�0"� � lim

N!1

1

N

NP
i=1

Var(Z�0i "
�
i ); (14)

from which we obtain
p
N(�̂

�
W � � ��0) ! N

�
0; V�̂�W�

�
; with (15)

V�̂�W� � A�VZ�0"�A
�0; A� � plim[N(X�0Z�W �Z�0X�)�1X�0Z�W �]:

The asymptotically e¢ cient GMM estimator in the class of estimators exploiting in-
struments Z� is obtained if W � is chosen such3 that, after appropriate scaling, it has
probability limit proportional to the inverse of the variance matrix of the limiting dis-
tribution of N�1=2PN

i=1 Z
�0
i "

�
i :Hence, optimality is attained by using a weighting matrix

W opt such that

W opt /
�
NP
i=1

Var(Z�0i "
�
i )

��1
: (16)

3see Hansen (1982) and, in the context of dynamic panel data, Arellano (2003) and Baltagi (2005).
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When W opt is known the asymptotically e¢ cient GMM estimator is self-evidently given
by

�̂
�
W opt = (X�0Z�W optZ�0X�)�1X�0Z�W optZ�0y�;

and
p
N(�̂

�
W opt � ��0)! N

�
0; V�̂�Wopt�

�
; with V�̂�Wopt� � [plimN

�2(X�0Z�V �1Z�0"�Z
�0X�)]�1:

(17)
For the special case "�it j Z�ti � i.i.d.(0; �2"�); where Z

�t
i contains the �rst t rows of

Z�i ; one �nds Var(Z
�0
i "

�
i ) = �

2
"�E(Z

�0
i Z

�
i ) and hence asymptotic e¢ ciency is achieved by

taking W opt
idd = (Z

�0Z�)�1; which yields the familiar 2SLS or GIV result

�̂
�
GIV = [X

�0PZ�X
�]�1X�0PZ�y

�; (18)

where PZ� � Z�(Z�0Z�)�1Z�0: In case K� = L� this specializes to the simple instrumental
variable estimator

�̂
�
IV = (Z

�0X�)�1Z�0y�: (19)

If matrixW opt is not directly available then one may use some arbitrary initial weight-
ing matrixW � that produces a consistent (though ine¢ cient) 1-step GMM estimator �̂

�
W �,

and then exploit the 1-step residuals "̂�i to construct the empirical weighting matrix cW �;
where

"̂�i = y�i �X�
i �̂

�
W � ;cW � = (

PN
i=1 Z

�0
i "̂

�
i "̂
�0
i Z

�
i )
�1;

yielding the 2-step GMM estimator

�̂
�cW � = (X�0Z�cW �Z�0X�)�1X�0Z�cW �Z�0y�: (20)

Estimator �̂
�cW � is asymptotically equivalent to �̂

�
W opt ; and hence it is e¢ cient in the class of

estimators exploiting instruments Z�. For inference purposes one uses the approximation

�̂
�cW �

a� N
�
��; (X�0Z�cW �Z�0X�)�1

�
: (21)

Note that, provided the moment conditions are valid, �̂
�
GIV is consistent thus could

be employed as a 1-step GMM estimator. When K� = L� using a weighting matrix for
the orthogonality conditions is redundant, because the criterion function (12) will be zero
for any W �; as all moment conditions can then be imposed on the sample observations.

2.4 Implementation of ordinary and system GMM

In case of the Arellano-Bond ordinary GMM estimator the above generic setup involves

y�i =

0B@ �yi2
...

�yiT

1CA ; "�i =
0B@ �"i2

...
�"iT

1CA and X�
i =

264 �yi1 �x0i2
...

...
�yi;T�1 �x0iT

375 ; (22)

hence T � = T � 1: When there is an intercept in � and corresponding unit value in xit
(which vanishes after �rst-di¤erencing) we have K� = K; otherwise K� = K + 1 and
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�� = (
; �0)0: From (6) it follows that L� = (K + 1)T (T � 1)=2 and the T � � L� matrix
Z�i is taken to be

ZABi =

264 y
0
i 00 00 X1

i 00 00

0
. . . O O

. . . O
0 00 yT�2i 00 00 XT�1

i

375 : (23)

Since E(�"it�"i;t�1) 6= 0 the "�it are not i.i.d., thus the GIV estimator is not e¢ cient. It
can be derived that for the ordinary GMM estimator

W opt
AB /

�
NP
i=1

(ZABi )0HZABi

��1
(24)

with (T � 1)� (T � 1) matrix

H �

26666664
2 �1 0 � � � 0

�1 2 �1 . . .
...

0 �1 2
. . . 0

...
. . . . . . . . . �1

0 � � � 0 �1 2

37777775 : (25)

So, under our strong assumptions regarding homoskedasticity and independence of the
idiosyncratic disturbances "it 1-step ordinary GMM employing (24) is asymptotically
e¢ cient within the class of estimators exploiting the instruments ZABi :
In case of GMMs we have K� = K + 1; �� = (
; �0) and T � = 2(T � 1) with

y�i =

0BBBBBBB@

�yi2
...

�yiT
yi2
...
yiT

1CCCCCCCA
; "�i =

0BBBBBBB@

�"i2
...

�"iT
�i + "i2
...

�i + "iT

1CCCCCCCA
and X�

i =

266666664

�yi1 �x0i2
...

...
�yi;T�1 �x0iT
yi1 x0i2
...

...
yi;T�1 x0iT

377777775
; (26)

and from (6) and (??) it follows that L� = (K +1)(T � 1)(T +2)=2 whereas the T ��L�
matrix Z�i = Z

BB
i is

ZBBi =

26664
ZABi 0 � � � 0 O � � � O
00 �yi1 00 0 �x0i2 00 00

... 0
. . . 0 00

. . . O
00 0 00 �yi;T�1 00 00 �x0iT

37775 : (27)

Note that E[(�"it)2] = 2�2" di¤ers from E[("it + �i)
2] = �2" + �

2
� when �

2
� 6= �2"; and

for t 6= s we �nd E[("it + �i)("is + �i)] = �2� � 0: Thus, again it does not hold here that
"�it j Zti � i.i.d.(0; �2"�); so GIV is not e¢ cient. However, here an appropriate weighting
matrix is not readily available due to the complexity of Var(Z�i "

�
i ):
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2.5 Weighting matrices in use for 1-step GMMs

To date the GMMs optimal weighting matrix has only been obtained for the no individual
e¤ects case �2� = 0 by Windmeijer (2000), who presents

W FW
BB /

�
NP
i=1

(ZBBi )0DFWZBBi

��1
(28)

with

DFW =

�
H C1
C 01 IT�1

�
; (29)

where C1 is the (T � 1)� (T � 1) matrix

C1 =

26666664
1 0 0 : : : 0

�1 1 0
. . .

...

0 �1 1
. . . 0

...
. . . . . . . . . 0

0 : : : 0 �1 1

37777775 : (30)

Blundell, Bond and Windmeijer (2000, footnote 11), and Doornik et al. (2002, p.9)
in the computer program DPD, use in 1-step GMMs the operational weighting matrix

WDPD
BB _

�
NP
i=1

(ZBBi )0DDPDZBBi

��1
; (31)

with

DDPD =

�
H O
O IT�1

�
: (32)

The motivation for that is unclear. The block diagonality of DDPD does not lead to
an interesting reduction of computational requirements, and there is no special situation
(not even �2� = 0) for which these weights are optimal.
Blundell and Bond (1998) did use (see page 130, 7 lines from bottom) in their �rst

step of 2-step GMMs

DGIV =

�
IT�1 O
O IT�1

�
= I2T�2; (33)

which yields the simple GIV estimator. This, as we already indicated, is certainly not
optimal either, but is easy and could perhaps suit well as �rst step in a 2-step procedure.
Blundell and Bond (1998) mention that, in most of the cases they examined, 2-step
and 1-step GMMs gave similar results, suggesting that the weighting matrix to be used
in combination with ZBBi seems of minor concern under homoskedasticity. However in
Kiviet (2007), in less restrained simulation experiments, it is demonstrated that di¤erent
initial weighting matrices can lead to huge di¤erences in the performance of 1-step and
2-step GMMs. There it is argued that a better (though yet suboptimal and unfeasible)
weighting matrix would be

W
�2�=�

2
"

BB _
�
NP
i=1

(ZBBi )0D�2�=�
2
"ZBBi

��1
; (34)
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with

D�2�=�
2
" =

 
H C

C 0 IT�1 +
�2�
�2"
�T�1�

0
T�1

!
: (35)

This can be made operational by choosing some value for �2�=�
2
": From the simulations

it follows that this value should not be chosen too low, and reasonably satisfying results
were obtained by choosing �2�=�

2
" = 10:

3 The optimal weighting matrix for GMMs

The obtain the optimal weighting matrix W opt of (16) for the generic model (10) one has
to consider the matrices

Qi � Z�0i "�i "�0i Z�i
and, ideally, evaluate

E(Qi) = E(Z
�0
i "

�
i "
�0
i Z

�
i ) = Var(Z

�0
i "

�
i ):

Denoting the typical element of the L� � L� matrix Qi by qi;lm; where l;m = 1; :::; L�;
and de�ning

�qsi;lm � Es(qi;lm);
where Es denotes expectation conditional on information available at time-period s; we
have, by the LIE (law of iterated expectations),

E(�qsi;lm) = E(qi;lm) = [Var(Z
�0
i "

�
i )]l;m (36)

and by the LLN (law of large numbers)

plim
N!1

1

N

NP
i=1

�qsi;lm = lim
N!1

1

N

NP
i=1

E(�qsi;lm) = lim
N!1

1

N

NP
i=1

[Var(Z�0i "
�
i )]lm: (37)

Hence, N�1PN
i=1 �q

s
i;lm has probability limit equal to the corresponding element of the co-

variance matrix of the limiting distribution of N�1=2PN
i=1 Z

�0
i "

�
i : So, we do not necessarily

have to evaluate E(qi;lm); �nding �qsi;lm for a convenient s and calculating N
�1PN

i=1 �q
s
i;lm

for all l;m = 1; :::; L� su¢ ces for the present purpose. Of course, other types of condition-
ing sets are allowed too, and di¤erent conditioning sets may be used for the individual
elements qi;lm of Qi; and even for separate components of these individual elements. Since
a GMM estimator is invariant to the scale of the weighting matrix we may multiply all
elements by N=�2"; and thus W

opt can be obtained by inverting the matrix that has
elements ��2"

PN
i=1 �q

s
i;lm:

3.1 Ordinary GMM

We �rst derive formally (most published earlier derivations are rather sketchy) the well-
known optimal weighting matrix W opt

AB, given in (23), to be used when the instruments
ZABi ; given in (23), are employed in model (5). In this case Z�0i "

�
i "
�0
i Z

�
i consists of com-

ponents which are of the following four forms: (yt�2i )0�"it�"isy
s�2
i ; (yt�2i )0�"it�"isX

s�1
i ;

(X t�1
i )0�"it�"isy

s�2
i ; or (X t�1

i )0�"it�"isX
s�1
i ; where t; s = 2; :::; T: Because of the sym-

metry of Z�0i "
�
i "
�0
i Z

�
i we only have to consider components for t � s:

10



We �nd for t > s+ 1

Et�2[(y
t�2
i )0�"it�"isy

s�2
i ] = (yt�2i )0ys�2i �"isEt�2(�"it) = O;

Et�2[(y
t�2
i )0�"it�"isX

s�1
i ] = (yt�2i )0Xs�1

i �"isEt�2(�"it) = O;
Es[(X

t�1
i )0�"it�"isy

s�2
i ] = �"isEs[(X

t�1
i )0�"it]y

s�2
i = O;

Es[(X
t�1
i )0�"it�"isX

s�1
i ] = �"isEs[(X

t�1
i )0�"it]X

s�1
i = O:

For s = t� 1 we obtain

Et�2[(y
t�2
i )0�"it�"i;t�1y

t�3
i ] = (yt�2i )0yt�3i [Et�2(�"it"i;t�1)� "i;t�2Et�2(�"it)] = ��2"(yt�2i )0yt�3i ;

Et�2[(y
t�2
i )0�"it�"i;t�1X

t�2
i ] = (yt�2i )0X t�2

i Et�2(�"it�"i;t�1) = ��2"(yt�2i )0X t�2
i ;

Et�3[(X
t�1
i )0�"it�"i;t�1y

t�3
i j X t�1

i ] = (X t�1
i )0yt�3i E[�"it�"i;t�1 j X t�1

i ] = ��2"(X t�1
i )0yt�3i ;

E[(X t�1
i )0�"it�"i;t�1X

t�2
i j X t�1

i ] = (X t�1
i )0X t�2

i E(�"it�"i;t�1 j X t�1
i ) = ��2"(X t�1

i )0X t�2
i ;

because E(�"it�"i;t�1 j X t�1
i ) = E("it"i;t�1� "2i;t�1� "it"i;t�2+ "i;t�1"i;t�2 j X t�1

i ) = ��2";
since for j = 1; 2 we �nd E("it"i;t�j j X t�1

i ) = E[Et�1("it"i;t�j j X t�1
i )] = E["i;t�jEt�1("it j

X t�1
i )] = 0 and E("i;t�1"i;t�2 j X t�1

i ) = Et�2[E("i;t�1"i;t�2 j X t�1
i )] = Et�2"i;t�2[E("i;t�1 j

X t�1
i )] = 0; whereas E("2i;t�1 j X t�1

i ) = �2": Finally, for s = t = 2; :::; T; we get

Et�2[(y
t�2
i )0(�"it)

2yt�2i ] = (yt�2i )0yt�2i Et�2[(�"it)
2] = 2�2"(y

t�2
i )0yt�2i ;

Et�2[(y
t�2
i )0(�"it)

2X t�1
i ] = 2�2"(y

t�2
i )0X t�1

i ;
Et�2[(X

t�1
i )0(�"it)

2yt�2i j X t�1
i ] = (X t�1

i )0yt�2i Et�2[(�"it)
2 j X t�1

i ] = 2�2"(X
t�1
i )0yt�2i ;

E[(X t�1
i )0(�"it)

2X t�1
i j X t�1

i ] = 2�2"(X
t�1
i )0X t�1

i :

Collecting from the above all elements ��2"
PN

i=1 �q
s
i;lm; we obtain

PN
i=1 Z

AB0
i HZABi :

Hence, its inverse (24) is proportional to the optimal weighting matrix W opt
AB when "i �

i.i.d.(0; �2"IT ) for all i:

3.2 System GMM

For GMMs, where the instruments ZBBi given in (27) are applied to the system (10) with
hybrid disturbances as in (26), the derivation of an optimal weighting matrix W opt

BB is
much more involved, because the various components of Z�0i "

�
i "
�0
i Z

�
i are of a very di¤erent

nature. The elements associated with �"it�"is yield results equivalent to those just
obtained. Of the additional components we �rst examine those that involve �"it(�i+"is);
viz. (yt�2i )0�"it(�i+"is)�yi;s�1; (X

t�1
i )0�"it(�i+"is)�yi;s�1; (y

t�2
i )0�"it(�i+"is)�x

0
is and

(X t�1
i )0�"it(�i+"is)�x

0
is: Next we will examine components that involve (�i+"it)(�i+"is);

viz. �yi;t�1(�i + "it)(�i + "is)�yi;s�1; �yi;t�1(�i + "it)(�i + "is)�x
0
is; the transpose of the

latter, and �nally�xit(�i+"it)(�i+"is)�x
0
is:We examine these eight types of components

successively, for t; s = 2; :::; T , upon assuming e¤ect stationarity, which implies (3).
The �rst component can be decomposed into two contributions, viz.

(yt�2i )0�"it(�i + "is)�yi;s�1 = �i(y
t�2
i )0�yi;s�1�"it + (y

t�2
i )0�yi;s�1(�"it)"is:

For t = s we �nd for these

E[�i(y
t�2
i )0�yi;t�1�"it] = �E[�i(yt�2i )0�yi;t�1"i;t�1] = ��2"�y��t�1

E[(yt�2i )0�yi;t�1(�"it)"it] = Et�1[(y
t�2
i )0�yi;t�1(�"it)"it]

= �2"(y
t�2
i )0�yi;t�1[Et�1("

2
t )� "t�1Et�1("t)] = �2"(yt�2i )0�yi;t�1;

11



for s = t� 1 they give

Et�2[�i(y
t�2
i )0�yi;t�2�"it] = 0

Et�2[(y
t�2
i )0�yi;t�2(�"it)"i;t�1] = ��2"(yt�2i )0�yi;t�2;

for s < t� 1 we �nd
Es[(y

t�2
i )0�"it(�i + "is)�yi;s�1] = 0;

and for s = t+ 1 we obtain

E[�i(y
t�2
i )0�yit�"it] = E(�yit�"it)�y��t�1

Et[(y
t�2
i )0�yit(�"it)"i;t+1] = 0:

Substituting (5) and using the notation

�x";j � E(xit"t�j); for j = :::;�1; 0; 1; 2; :::; (38)

where �x";j = 0 for j � 0; we �nd

E(�yit�"it) = 
E(�yi;t�1�"it) + E[�"it(�xit)
0]� + E[(�"it)

2]

= �
E(yi;t�1"i;t�1)� �0x";1� + 2�2"
= (2� 
)�2" � �0x";1�;

thus
E[�i(y

t�2
i )0�yit�"it] = �y�[(2� 
)�2" � �0x";1�]�t�1:

Now for s � t+ 1 we �nd

E[(yt�2i )0�"it(�i + "is)�yi;s�1] = E[�i(y
t�2
i )0�"it�yi;s�1]

= �y��t�1E(�yi;s�1�"it)

= �y��s�t�1�t�1;

where
�j � E(�yi;t+j�"it); for j � 0: (39)

We already found �0 = (2� 
)�2" � �0x";1�; and further obtain

�1 = E(�yi;t+1�"it)

= 
E(�yi;t�"it) + E[�"it(�xi;t+1)
0]� + E[(�"i;t+1)(�"it)]

= 
�0 + 2�
0
x";1� � �0x";2� � �2"

= [(2� 
)�0x";1 � �0x";2]� � (1� 
)2�2";

whereas for j > 1

�j = E(�yi;t+j�"it)

= 
E(�yi;t+j�1�"it) + E[�"it(�xi;t+j)
0]� + E[(�"i;t+j)(�"it)]

= 
�j�1 + (2�
0
x";j � �0x";j+1 � �0x";j�1)�:

For the second component we obtain

(X t�1
i )0�"it(�i + "is)�yi;s�1 = �i(X

t�1
i )0�"it�yi;s�1 + (X

t�1
i )0(�"it)"is�yi;s�1:

12



For s = t we �nd

E[�i(X
t�1
i )0�"it�yi;t�1] = ��2"�t�1 
 �x�

Et�1[(X
t�1
i )0(�"it)"it�yi;t�1] = �

2
"(X

t�1
i )0�yi;t�1;

for s = t� 1

E[�i(X
t�1
i )0�"it�yi;t�2] = 0

Et�2[(X
t�1
i )0(�"it)"i;t�1�yi;t�2 j X t�1

i ] = ��2"(X t�1
i )0�yi;t�2;

for s < t� 1
E[(X t�1

i )0�"it(�i + "is)�yi;s�1] = 0;

for s = t+ 1

E[�i(X
t�1
i )0�"it�yi;t] = [(2� 
)�2" � �0x";1�]�t�1 
 �x�

Et[(X
t�1
i )0(�"it)"i;t+1�yi;t] = 0;

and for s > t+ 1

E[(X t�1
i )0�"it(�i + "is)�yi;s�1] = E[�i(X

t�1
i )0�"it�yi;s�1]

= E(�"it�yi;s�1)�t�1 
 �x�
= �s�t�1�t�1 
 �x�:

The third component is

(yt�2i )0�"it(�i + "is)�x
0
is = �i(y

t�2
i )0�"it�x

0
is + (y

t�2
i )0(�"it)"is�x

0
is:

For s = t we �nd for the �rst term

�i(y
t�2
i )0�"it�x

0
it = �i(y

t�2
i )0�"itx

0
it � �i(yt�2i )0�"itx

0
i;t�1;

where the second sub-term has expectation zero and the �rst yields

E[�i(y
t�2
i )0�"itx

0
it] = ��y��t�1�0x";1;

and for the second term we �nd

(yt�2i )0(�"it)"it�x
0
it = (y

t�2
i )0"2it�x

0
it � (yt�2i )0"it"i;t�1�x

0
i;t�1;

where the second sub-term has expectation zero and the �rst yields

Et�1[(y
t�2
i )0"2it�x

0
it j xit] = �2"(yt�2i )0�x0it:

For s = t� 1 we �nd

E[�i(y
t�2
i )0�"it�x

0
i;t�1] = 0

Et�2[(y
t�2
i )0(�"it)"i;t�1�x

0
i;t�1 j xi;t�1] = ��2"(yt�2i )0�x0i;t�1;

for s < t� 1
E[(yt�2i )0�"it(�i + "is)�x

0
is] = 0;
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for s = t+ 1

E[�i(y
t�2
i )0�"it�x

0
i;t+1] = �y��t�1E(�"it�x

0
i;t+1)

= �y��t�1E("itx
0
i;t+1 � "i;t�1x0i;t+1 � "itx0it + "i;t�1x0it)

= �y��t�1(2�
0
x";1 � �0x";2)

Et[(y
t�2
i )0(�"it)"i;t+1�x

0
i;t+1] = 0;

and for s > t+ 1

E[�i(y
t�2
i )0�"it�x

0
is] = �y��t�1E("itx

0
is � "i;t�1x0is � "itx0i;s�1 + "i;t�1x0i;s�1)

= �y��t�1(2�
0
x";s�t � �0x";s�t+1 � �0x";s�t�1)

E[(yt�2i )0�"it("is)�x
0
is] = 0:

The fourth component is

(X t�1
i )0�"it(�i + "is)�x

0
is = �i(X

t�1
i )0�"it�x

0
is + (X

t�1
i )0(�"it)"is�x

0
is:

For t = s we �nd
E[�i(X

t�1
i )0�"it�x

0
it] = �(�t�1 
 �x�)�0x";1;

and since
(X t�1

i )0(�"it)"it�x
0
it = (X

t�1
i )0"2it�x

0
it � (X t�1

i )0"it"i;t�1�x
0
it;

we also have
E[(X t�1

i )0"2it�x
0
it j X t

i ] = �
2
"(X

t�1
i )0�x0it

Et�1[(X
t�1
i )0"it"i;t�1�x

0
it] = O:

For s = t� 1

E[�i(X
t�1
i )0�"it�x

0
i;t�1] = O

E[(X t�1
i )0(�"it)"i;t�1�x

0
i;t�1 j X t�1

i ] = ��2"(X t�1
i )0�x0i;t�1;

for s < t� 1
E[�i(X

t�1
i )0�"it�x

0
is] = O

E[(X t�1
i )0(�"it)"is�x

0
is] = O;

for s = t+ 1

E[�i(X
t�1
i )0�"it�x

0
i;t+1] = (�t�1 
 �x�)E(�"it�x0i;t+1)

= (2�0x";1 � �0x";2)�t�1 
 �x�
Et[(X

t�1
i )0(�"it)"i;t+1�x

0
i;t+1] = O;

and for s > t+ 1

E[�i(X
t�1
i )0�"it�x

0
is] = (2�

0
x";s�t � �0x";s�t+1 � �0x";s�t�1)�t�1 
 �x�

E[(X t�1
i )0�"it("is)�x

0
is] = O:

Next we commence with the second group of four components. The �fth,

�yi;t�1(�i + "it)(�i + "is)�yi;s�1 = �yi;t�1�yi;s�1[�
2
i + �i("it + "is) + "it"is];

is symmetric in s and t: Just examining t � s we �nd

E[�yi;t�1�yi;s�1�
2
i j �yi;t�1;�yi;s�1] = �2��yi;t�1�yi;s�1

E[�yi;t�1�yi;s�1�i("it + "is)] = 0:
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For �yi;t�1�yi;s�1"it"is we �nd when s = t

Et�1[�yi;t�1�yi;t�1"
2
it] = �

2
"(�yi;t�1)

2

and for s < t
Et�1[�yi;t�1"it"is�yi;s�1] = 0:

The sixth and seventh component follow from

�yi;t�1�x
0
is[�

2
i + �i("it + "is) + "it"is];

where
E[�2i�yi;t�1�x

0
is j �yi;t�1;�x0is] = �2��yi;t�1�x0is

E[�i("it + "is)�yi;t�1�x
0
is] = 0

0;

and regarding "it"is�yi;t�1�x0is we �nd, for t = s

Et�1["
2
it�yi;t�1�x

0
it j �xit] = �2"�yi;t�1�x0it;

for t > s
Et�1["it"is�yi;t�1�x

0
is] = 0

0;

and for s > t
Es�1["it"is�yi;t�1�x

0
is j �xis] = 00:

The eighth and �nal component is again symmetric in t and s: From

�xit("it + �i)("is + �i)�x
0
is = �xit�x

0
is[�

2
i + �i("it + "is) + "it"is];

we �nd
E[�xit�x

0
is�

2
i j �xit;�x0is] = �2��xit�x0is

E[�xit�x
0
is�i("it + "is)] = O;

and for t = s
E[�xit�x

0
it"
2
it j �xit] = �2"�xit�x0it;

while for s < t
Et�1[�xit�x

0
is"it"is] = O:

Collecting all the above results and taking for all elements ��2"
PN

i=1 �q
s
i;lm, we �nd for

the GMMs estimator that exploits 2N(T � 1)� L� instrument matrix ZBB and has the
disturbances given in (26) that the optimal weighting matrix is given by

W opt
BB _ [ZBB0(IN 
D

opt
1 )Z

BB +NDopt
2 ]

�1; (40)

where Dopt
1 is the 2(T � 1)� 2(T � 1) matrix

Dopt
1 =

 
H C1

C 01 IT�1 +
�2�
�2"
�T�1�

0
T�1

!
; (41)

with C1 the (T � 1) � (T � 1) matrix given in (30), and hence Dopt
1 = D�2�=�

2
" given in

(35), and Dopt
2 is the L� � L� matrix

Dopt
2 =

1

�2"

�
O C2
C2

0 O

�
; (42)

15



with C2 the (K + 1)T (T � 1)=2� (K + 1)(T � 1) matrix
C2 = ( C21 C22 ); (43)

with C21 the (K + 1)T (T � 1)=2� (T � 1) matrix

C21 =

26666666666666666666664

��2"�1�y� �0�1�y� �1�1�y� � � � � � � �T�3�1�y�
0 ��2"�2�y� �0�2�y� � � � � � � �T�4�2�y�
0 0 ��2"�3�y� �
...

. . . 0
. . .

...
...

. . . . . . . . . �0�T�2�y�
0 0 0 � � � 0 ��2"�T�1�y�

��2"�1 
 �x� �0�1 
 �x� �1�1 
 �x� � � � �T�3�1 
 �x�
0 ��2"�2 
 �x� �0�2 
 �x� � � � �T�4�2 
 �x�
0 0 ��2"�3 
 �x� �
...

. . . 0
. . .

...
...

. . . . . . . . . �0�T�2 
 �x�
0 0 0 � � � 0 ��2"�T�1 
 �x�

37777777777777777777775

; (44)

and C22 the (K + 1)T (T � 1)=2�K(T � 1) matrix which is26666666666666666666664

��1�y��0x";1 �0�1�y���
0
x";1 �1�1�y���

0
x";2 � � � � � � �T�3�1�y���

0
x";T�1

O ��2�y��0x";1 �0�2�y���
0
x";1 � � � � � � �T�4�2�y���

0
x";T�2

O O ��3�y��0x";1 �
...

. . . O
. . .

...
...

. . . . . . . . . �0�T�2�y���
0
x";1

O O O � � � O ��T�1�y��0x";1
�(�1 
 �x�)�0x";1 (�1 
 �x�)��0x";1 (�1 
 �x�)��0x";2 � � � � � � (�1 
 �x�)��0x";T�1

O �(�2 
 �x�)�0x";1 (�2 
 �x�)��0x";1 � � � � � � (�2 
 �x�)��0x";T�2
O O �(�3 
 �x�)�0x";1 �
...

. . . O
. . .

...
...

. . . . . . . . . (�T�2 
 �x�)��0x";1
O O O � � � O �(�T�1 
 �x�)�0x";1

37777777777777777777775

;

(45)
where we used the short-hand notation

��0x";1 � 2�0x";1 � �0x";2
��0x";t � 2�0x";t � �0x";t+1 � �0x";t�1; for t = 2; :::; T � 1:

(46)

Note that the weighting matrix (34) explored in Kiviet (2007) is suboptimal because
it sets C2 = O; which would only be true if �2� = 0:
When the model is pure autoregressive, i.e. K = 0; the optimal weighting matrix is

much simpler. Then it is obvious that C22 is void. It leads to the following simpli�cations

C2 = C21

�0 = (2� 
)�2"
�1 = �(1� 
)2�2"
�j = 
�j�1; for j � 2
�y� = �2�=(1� 
):
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Substituting these we �nd that 1
�2"
C2 simpli�es to the T (T � 1)=2� (T � 1) matrix

1

�2"
C2 =

�2�
1� 
C3(
);

with C3(
) given by:26666666666664

�1 2� 
 �(1� 
)2 �
(1� 
)2 : : : : : : �
T�5(1� 
)2 �
T�4(1� 
)2
0 ��2 (2� 
)�2 �(1� 
)2�2 : : : : : : �
T�6(1� 
)2�2 �
T�5(1� 
)2�2
0 0 ��3 (2� 
)�3 : : : : : : �
T�7(1� 
)2�3 �
T�6(1� 
)2�3
0 0 0 ��4 : : : : : : 
T�8(1� 
)2�4 �
T�7(1� 
)2�4
0 0 0 0

. . .
...

...
...

...
...

. . . . . .
...

...
...

...
...

. . . ��T�2 (2� 
)�T�2
0 0 0 0 : : : : : : 0 ��T�1

37777777777775
:

(47)
A more promising operational alternative to DDPD or DGIV in the pure �rst-order

autoregressive model could be the following. Instead of capitalizing on the assumption
�2� = 0; as in D

W ; one could proceed as follows: capitalize on particular chosen values
�2� = ��2�; �

2
" = ��2" and 
 = �
 that seem relevant for the situation at hand and then use

the operational point-optimal weighting matrix

W popt
BB (�
; ��

2
�; ��

2
") _

�
ZBB0[IN 
D��2�=��

2
" ]ZBB +N

��2�
1� �


�
O C3(�
)

C3(�
)
0 O

���1
: (48)

This is optimal for the chosen values of �
; ��2� and ��
2
":

Note that the optimal weighting matrix derived above allows a di¤erent approach
in obtaining a 2-step GMMs estimator (under e¤ects stationarity and homoskedasticity)
than the usually employed �̂cW � of (20) based on �rst step residuals, viz. by simply sub-
stituting in Dopt

1 and Dopt
2 the �rst-stage estimators of 
; �2� and �

2
": Below, by GMMs

opt
1

we indicate the unfeasible GMMs estimator using in the optimal weighting matrix the
true values of 
; �2� and �

2
"; whereas GMMs

popt
1 is the feasible point-optimal 1-step GMMs

estimator using particular values of �
; ��2� and ��
2
":

4 Monte Carlo study

In the simulation experiments below we have severely restricted ourselves regarding the
generality of the Monte Carlo design. At this stage we only focussed on the case K = 0,
i.e. like Blundell and Bond (1998) we just examine the fully stationary pure �rst-order
autoregressive case. This implies that the panel data have to be generated such that for
all i = 1; :::; N �rst start-up values are obtained according to

yi0 =
1

1� 
 �i +
r

1

1� 
2 "i0;

and next in a recursion the T observations

yit = 
yi;t�1 + �i + "it;
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from the N � 1 white-noise series �i � i.i.d.(0; �2�) and the N distinct (T + 1)� 1 white-
noise series "it � i.i.d.(0; �2"); t = 0; :::; T: All these white-noise series have to be mutually
independent from each other. Note that this yields Var(yit) = �2�=(1� 
)2+ �2"=(1� 
2);
so there is both e¤ect stationarity and stationarity with respect to the idiosyncratic
disturbances.
We will investigate just a few particular combinations of values for the design para-

meters. Without loss of generality we may scale with respect to �" and choose �" = 1:
We will examine only positive stable values of 
; viz. 
 = 0:1(+0:2)0:9; and just a few
di¤erent values of the ratio �2�=�

2
": This variance ratio we vary, for reasons explained in

Kiviet (1995, 2007), by examining � 2 f0:5; 1; 2; 4g; where

� =
1

1� 

��
�"
: (49)

Hence, we �x �� = (1 � 
)�. For the sample sizes N and T we choose N = 100 and
T = 4(+2)10. For all cells we ran 1000 replications and all the results for all separate
cells are obtained by precisely the same series of random numbers.
All results are presented graphically. In 6 Figures we give results for 6 di¤erent

weighting matrices, viz. DGIV ; DDPD; D��2�=��
2
" for ��2�=��

2
" = 0; D��2�=��

2
" for ��2�=��

2
" = 10;

D�2�=�
2
" for the true value of �2�=�

2
" (which is not feasible in practice) and �nally the non-

operational optimal W opt
BB matrix. Each �gure contains 16 diagrams. The top 8 contain

1-step GMMs results and the bottom 8 the related 2-step GMMs results, where residuals
have been used obtained from the 1-step GMMs procedure in that same �gure. The
�gures have four columns of diagrams, which correspond from left to right to the four
examined values of � = f0:5; 1; 2; 4g: Each group of 8 diagrams consists of two rows of
4 diagrams: the �rst row presents bias, i.e. the Monte Carlo estimate of E(
̂ � 
); the
second row depicts relative precision, which is expressed as the Monte Carlo estimate of
RMSE(
̂)=
 in %.
In Figure 1 we investigate the operational but sub-optimal simple weighting matrix

based on DGIV = I2T�2: We �nd negative bias for moderate �; but positive bias for �
larger and 
 small. The bias does not change much between 1-step and 2-step estimation,
as already noticed by Blundell and Bond (1998). However, the precision (measured by
relative root mean squared error) improves slightly by 2-step estimation (which is in
agreement with asymptotic theory). Whether these are general phenomena or is special
for the GIV weighting matrix will follow when examining other weighting devices. We
note that the precision gets poor when 
 is small (which is natural when one divides by

); but is especially poor when 
 is small while � large.
Figure 2 shows that DDPD yields bias �gures shifted in upward direction (especially

for large 
 values), when compared with those in Figure 1. Therefore the bias is smaller
and thus the precision higher for � moderate. Now 2-step is hardly better than 1-step.
Figure 3 is based on the weighting matrix presented in Windmeijer (2000), which

assumes � = 0. For � � 1 the results are slightly better than those of Figures 1 and
2. But for larger actual values of � very poor results are obtained when 
 is small or
moderate.
From Figure 4 we learn that overstating the true value of �2�=�

2
" seems less harmful

than understating it. Aiming at point-optimality at ��2�=��
2
" = 10; while neglecting the

Dopt
2 contribution given in (42) to the weighting matrix, is better than the methods in

Figures 1 through 4 when 
 is small. The method examined in Figure 5 di¤ers from
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that of Figure 4 in just one respect, viz. that the true value of �2�=�
2
" has been used in

weighting matrix (35). This non-operational method removes almost all bias and clearly
shows the best precision results obtained at this stage.
Finally we examine the qualities of the optimal weighting matrix W opt

BB given in (40).
In performing the calculations we experienced a serious problem, viz. that this matrix
is not always positive de�nite. Although we found W opt

BB to be non-singular in all our
experiments, it was not always positive de�nite due to the contribution of Dopt

2 in (42).
For � = 0; when Dopt

2 = O; the optimal weighting matrix was always positive de�nite,
but not for �2� > 0: We found that, although the matrix is asymptotically proportional
to a covariance matrix which is certainly positive de�nite, in �nite sample it may not be,
apparently due to the hybrid nature ofW opt

BB; which is partly determined by data moments
and partly by parameters. Whenever W opt

BB was not positive de�nite in our simulations,
we removed the Dopt

2 contribution from the weighting matrix, which then proved to be
positive de�nite. For � = 1 we could retain Dopt

2 for the larger 
 and smaller T values,
but we had to remove it in 60% of the replications for 
 = 0:1 and T = 10: However,
at � = 4 this problem emerged much more frequently: in fact in 99% of the replications
when T large and 
 small, though hardly ever for 
 = 0:9. Hence, strictly speaking we
were only able for the case � = 0 to fully examine GMM with optimal weight matrix.
Figure 6 presents results for the adapted procedure. The results do not di¤er much from
those in Figure 5.
In a next version of the paper we will also simulate panel data models with further

predetermined regressors, cf. Bun and Kiviet (2006).

5 Conclusions

The GMM system estimator for e¤ect stationary dynamic panel data models exploits
two hybrid sets of orthogonality conditions. The covariance matrix of all individual
orthogonality condition expressions determines the optimal weighting matrix, and due
to the hybrid nature of the orthogonality conditions deriving those covariances is not
straightforward. We show that obtaining a conditional covariance su¢ ces, and that dif-
ferent conditioning sets may be chosen for all separate elements of this variance matrix.
By choosing for all individual covariances conditioning sets that simplify the analytical
derivation of them we �nd an expression for the optimal weighting matrix for the model
that contains the �rst lag of the dependent variable as an explanatory variable and an
arbitrary number of further predetermined regressors. The resulting weighting matrix de-
pends on the in practice unknown parameters of the model and on further characteristics
of the data series, viz. the covariance between the regressors and the unobserved individ-
ual e¤ects and the autocovariance between predetermined regressors and idiosyncratic
disturbances. Hence, it cannot be used to obtain optimal 1-step GMM estimators, but
it can serve as a guide in �nding close to optimal or point-optimal operational weighting
matrices for GMMs.
We performed a number of Monte Carlo experiments in the context of the very speci�c

but simple stationary zero-mean panel data AR(1) model and examined and compared
the results of a few implementations of 1 and 2-step GMMs, which di¤er in the weighting
matrix employed in 1-step estimation. We found that the results of 2-step estimation
hardly improve upon the corresponding 1-step GMMs results. Hence, the quality of the
weighting matrix used in 1-step estimation is found to be very important. Apparently,
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the theoretical result of asymptotic optimality of 2-step estimation, irrespective of the
weighting matrix used in 1-step estimation, has limited relevance in this model for the
sample sizes examined. For reasons that still require further study we were not able yet
to exploit in a really satisfactory way the derived optimal weighting matrix for GMMs.
However, it did lead to an operational though suboptimal weighting matrix which seems
superior in many cases to those presently in use (the one that yields the GIV estimator
and the weighting matrix used in the DPD program). For this new weighting matrix one
has to make a reasonable prior guess of the error-component variance ratio �2�=�

2
":
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Figure 1. GMMs1 and GMMs2 employing DGIV ; for � = 0:5; 1; 2; 4:
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Figure 2. GMMs1 and GMMs2 employing DDPD; � = 0:5; 1; 2; 4:
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Figure 3. GMMs1 and GMMs2 employing D��2�=��
2
" with ��2�=��

2
" = 0; for � = 0:5; 1; 2; 4:
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Figure 4. GMMs1 and GMMs2 employing D��2�=��
2
" with ��2�=��

2
" = 10; for � = 0:5; 1; 2; 4:
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Figure 5. GMMs1 and GMMs2 employing D�2�=�
2
" (non-operational); for � = 0:5; 1; 2; 4:
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Figure 6. GMMs1 and GMMs2 employing W opt
BB-adapted (non-operational); � = 0:5; 1; 2; 4:
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