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Abstract

We study the prediction of latent variables in a finite mixture of linear structural equation
models. The latent variables can be viewed as well-defined variables measured with error or as
theoretical constructs that cannot be measured objectively, but for which proxies are observed.
The finite mixture component may serve different purposes: it can denote an unobserved
segmentation in subpopulations such as market segments, or it can be used as a nonparametric
way to estimate an unknown distribution. In the first interpretation, it forms an additional
discrete latent variable in an otherwise continuous latent variable model. Different criteria can
be employed to derive “optimal” predictors of the latent variables, leading to a taxonomy of
possible predictors. We derive the theoretical properties of these predictors. Special attention
is given to a mixture that includes components with degenerate distributions. We then apply
the theory to the optimal estimation of individual earnings when two independent observations
are available: one from survey data and one from register data. The discrete components of
the model represent observations with or without measurement error, and with either a correct
match or a mismatch between the two data sources.

1 Introduction

Since the earliest days of factor analysis (FA), researchers have used the estimation results to
assign values to the factor scores for each individual observation. Intelligence measurement is the
classical context for this, see, e.g., Carroll (1993). A recent example from economics is De Haan,
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comments on an earlier version of this paper. The National Institute on Aging supported the collection of the survey
data and subsequent match to administrative records (grant R03 AG21780).

1



Leertouwer, Meijer and Wansbeek (2003), who rated the degree of independence of central banks.
Since the values are assigned to variables rather than to parameters, factor score prediction is a
better expression than factor score estimation, although the latter is often used, as is factor score
computing.

The use of factor score prediction is not restricted to cases like the above two examples, where
the scores are interesting per se. They may also be used in further analysis. So, it may be desired
to reduce a set of dependent variables in an experiment to a smaller set of underlying factors.
These factors can then be used in subsequent analysis, taking their reliability into account (see,
e.g., Kapteyn and Wansbeek, 1984). This paper is concerned with factor score prediction in a
model that extends the FA model in two ways, one of which is essential.

First, we extend the usual FA model to encompass mixtures. This is an increasingly
widespread way to allow for heterogeneity, with applications most notably in psychology (e.g.,
Arminger, Stein and Wittenberg, 1999) and marketing (e.g., Wedel and Kamakura, 2000).

The heterogeneity may stem from two sources. One is that the data may come from different
classes (subpopulations or samples), in which different models are assumed to hold. Each
observation comes from one particular class, but its origin is typically unknown to the researcher
and has to be inferred from the data. We notice that handling heterogeneity by a discrete
representation through mixing a finite number of classes is not the only approach feasible, and
continuous representations may offer an attractive alternative, see Wedel et al. (1999).

Alternatively, heterogeneity is basically a different word for nonnormality. One way to model
nonnormality is to flexibly approximate distributions by mixtures of normals. This kind of
heterogeneity is of lesser importance since in many cases meaningful inference is possible with
robust methods.

The other extension is that we consider structural equation models (SEMs) in general. The
FA model is a member of the entire family of SEMs. However, an SEM can always be rewritten
as an FA model, cf. section 3 below. Hence, prediction of latent variables in an SEM comes
down to prediction of factor scores in an FA model. Of course, estimation of elaborate and highly
structured SEMs is much more complicated than the estimation of a simple exploratory FA model;
so in that respect the two are different. But in this paper we abstract from estimation issues and
take all parameters to be known. It follows that our results—derived in an FA setting—apply to
the entire class of SEMs.

Mixtures of SEMs have recently spawned a rather elaborate literature. A formulation of the
SEM mixture model plus an algorithm for estimation of the parameters was given by Jedidi et
al. (1997a), with an application in the field of marketing in Jedidi et al. (1997b). The model
they consider is the classical LISREL model adapted to a multiclass context. The two sets of
measurement equations, one for the indicators of the endogenous variables and one for those
of the exogenous variables, have parameters that are allowed to differ across classes. The
corresponding factors are class dependent and related through a system of simultaneous equations
with parameters that may vary across classes. Estimation is through maximum likelihood,
assuming normality within a class, and the likelihood is maximized by applying the EM algorithm.
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To that end, unobservable variables zn j are introduced, with zn j = 1 if observation n belongs to
class j and zn j = 0 otherwise. In the E-step, the zn j are estimated by the posterior probability
of belonging to class j given the current parameter estimates. These estimates are substituted in
the likelihood which is then maximized. This constitutes the M-step. The EM algorithm, plus
a simplified scoring algorithm, is also described by Yung (1997), for the case of the mixture FA
model. He considers a more general sampling scheme, allowing for the inclusion of observations
with known class membership. Arminger et al. (1999) discuss estimation where normality is
assumed conditional on the regressors only. A recent overview of mixture FA models was given by
Lubke and Muthén (2005). Lee and Song (2003) discuss the handling of missing data, and Song
and Lee (2004) present a sensitivity analysis. Estimation can be performed using the programs
MECOSA (Arminger, Wittenberg and Schepers, 1996) and Mplus (Muthén, 2004, appendix 8).
Both programs handle conditional models, that is, they assume normality conditional on the
regressors.

The current paper is concerned with the prediction of latent variables in a mixture of SEMs.
As far as we know, this topic has not yet been described explicitly in the literature. The only
paper we are aware of to present such predictors is Zhu and Lee (2001). They offer a Bayesian
approach to the estimation of a mixture of SEMs, using the Gibbs sampler, which produces inter
alia predictors for the latent variables. In contrast to this, we offer predictors that do not depend
on an assumed prior distribution for the parameters.

The model we consider is described in section 2, and we derive the first- and second-order
implications of the model. Section 3 presents a brief summary of the methods to predict factor
scores for the simplest case where the model is normal. In section 4 we describe an array of
predictors for the mixture case, as follows: section 4.1 deals with the predictors per class. These
are not very useful per se, but they can be weighted over the classes to obtain potentially sensible
predictors, see section 4.2. Predictors obtained by considering the full model are elaborated in
section 4.3.

Up to this point in the paper it is assumed that no extraneous information is available about
class membership and that all covariance matrices are nonsingular. In section 5 we adapt the
analysis to cover the cases where these assumptions do not hold.

The remainder of the paper is dedicated to the study of a case that motivated the current
research. Self-reported earnings information obtained in a survey of Swedish individuals was
matched with administrative data. As a result, for about 400 individuals there are two independent
observations of earnings. Individual-level comparison of the values from the two data sources
reveals sizeable differences for the vast majority of cases. Only 59 cases show no or very small
differences of up to $100. Kapteyn & Ypma (2007) proposed a mixture model for these data,
which can be cast in the form of a mixture SEM. For the empirical researcher who is interested in
measuring the true value of individuals’ earnings, the question arises how best to use the available
information. This is what the method presented in this paper is designed to do: based on this
mixture model with a latent variable, true earnings, combine the information from both data
sources to predict the latent variable in some optimal way.
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We present the application in section 6. The model for this case is discussed in section 6.1 and
formulated as a special case of the general model considered in the current paper in section 6.2;
theoretical predictors are given in section 6.3 and the empirical predictors in section 6.4. Section
7 concludes.

2 The model

In each class the standard FA model is assumed to hold, under normality. Classes are denoted
by j. Let π j be the (prior) probability that an observation is from class j. It is assumed that an
observation from class j is generated from the model

y = τ j + B jξ + ε, (1)

with ξ ∼ N(κ j,Φ j) and ε ∼ N(0,Ω j). Moreover, ξ and ε are assumed independent of each other.
Notice that in this formulation all parameters are allowed to differ across classes. In line with the
factor score prediction literature, we assume the parameters to be known and we abstract from
estimation issues, and hence from issues of identification.

A convenient side effect of this is that parameters are allowed to depend on covariates, e.g.,
τ j = A jx, where x may vary across individuals. Another convenient side effect is that the
parameters π j, τ j, B j, κ j, Φ j, and Ω j may be functions of a deeper parameter vector θ j. This
is especially relevant since any linear SEM with covariates x can be written as a submodel of the
specification consisting of the measurement equation

y = Ax + Bξ + ε,

with Cov(ε) = Ω, and the structural equation

ξ = Γξ + ∆x + ζ,

with Cov(ζ) = Ψ. Solving the latter for ξ yields

ξ = (I − Γ)−1∆x + (I − Γ)−1ζ,

which we can substitute back into the measurement equation. Omitting the class subscripts j, this
gives our general model with structure on the parameters,

τ = Ax

κ = (I − Γ)−1∆x

Φ = (I − Γ)−1Ψ(I − Γ′)−1.

Combining both side effects, we conclude that our setup allows for an arbitrary linear structural
equation model specification within each class.
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Throughout the paper all expressions pertain to a generic observation. Hence we do not use
subscripts to indicate individual observations. If the parameters are known (or once they have
been consistently estimated), prediction of ξ for a given observation does not depend on the other
observations since we assume independence of observations.

Unlike the standard FA case where observations are routinely centered and hence intercepts
play no role, we explicitly incorporate intercepts since they will generally vary across classes and
constitute an essential and complicating ingredient of the predictors.

A direct implication of (1) is(
y
ξ

) ∣∣∣∣ j ∼ N
 µ j
κ j

 ,  Σ j B jΦ j
Φ jB

′
j Φ j

 , (2)

with

µ j ≡ τ j + B jκ j (3a)

Σ j ≡ B jΦ jB
′
j + Ω j. (3b)

The first-order and second-order moments of y and ξ follow directly:

µy ≡ E(y) =
∑

j

π jµ j =
∑

j

π j

(
τ j + B jκ j

)
(4a)

µξ ≡ E(ξ) =
∑

j

π jκ j (4b)

Σy ≡ Var(y) = E(yy′) − E(y)E(y)′

=
∑

j

π j(Σ j + µ jµ
′
j) − µyµ

′
y (4c)

Σξ ≡ Var(ξ) = E(ξξ′) − E(ξ)E(ξ)′

=
∑

j

π j(Φ j + κ jκ
′
j) − µξµ

′
ξ (4d)

Σξy ≡ Cov(ξ, y) = E(ξy′) − E(ξ)E(y)′

=
∑

j

π j(Φ jB
′
j + κ jµ

′
j) − µξµ

′
y. (4e)

From these formulas it becomes clear that the consideration of more than one class leads to rather
unelegant expressions.

This very general formulation nests many special cases that have received attention in the
literature. We mention a few examples. Schneeweiss and Cheng (2006) use mixtures to
approximate the density of regressors in a (possibly nonlinear) structural measurement error
model. For the special case of a linear relationship, this fits into our framework with y being a
scalar, and only the κ j and Φ j varying across classes. Phillips (2003) uses a mixture of normals to
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approximate the distribution of the disturbances in an error-components model for panel data. For
a generic observation, the model is

y = Xβ + ιTµ + v,

where T is the time dimension of the panel, ιT a vector of T ones, X is a matrix of regressors
varying across individuals, µ is a random individual effect and v is a random error term, both
mixture normal with mean zero and variance σ2

µ j and σ2
v jIT , respectively. We can translate this

into our framework by taking ξ equal to µ, the τ j’s equal to Xβ, the B j’s equal to ιT , the κ j’s equal
to zero, all constant across classes, and for all j separately Φ j equal to σ2

µ j and Ω j equal to σ2
v jIT .

Notice that this translation into our framework is not unique. There are various ways to express
this model in terms of our general model, depending on the choice for the factors ξ. We took it
equal to µ since, in case there is interest in factor score prediction, it is likely to concern the
individual effects. However, we could also have taken ξ equal to (µ, v′)′ by some appropriate
adaptations in the translation scheme, most notably by setting all Ω j equal to zero. Alternatively,
we could interchange the role of µ as the latent variable and v as the disturbance term.

3 The basics of factor score prediction

For reference later on, we recapitulate in this section the basics of factor score prediction when
there is just one class. Hence, given our earlier assumptions, all variables are normally distributed,
although a large part of the theory of factor score prediction still holds under nonnormality, see,
e.g. Wansbeek and Meijer (2000, section 7.3). We use the notation as above, but without the class
identifier j.

Before we discuss the various factor score predictors we observe that we can present the
expressions in two forms. One form is based on the covariance matrix Σ of the marginal
distribution of y, and the other form is based on the covariance matrix Ω of the conditional
distribution of y given ξ. Hence we dub the first form the “marginal” one, and the other one
the “conditional” one. The link between the two forms is provided by the following. We assume
that Φ and Ω are nonsingular and let

Λ ≡ Φ−1 + B′Ω−1B. (5)

Then ΣΩ−1B = B + BΦB′Ω−1B = BΦΛ, from which

Σ−1BΦ = Ω−1BΛ−1 (6)

follows, or ΩΣ−1B = BΛ−1Φ−1. This fact allows for shifting between expressions in the marginal
and the conditional form.

Now consider the conditional distribution of ξ given y. Let

ξ̂ ≡ κ + ΦB′Σ−1(y − µ) (7)

F ≡ Φ − ΦB′Σ−1BΦ. (8)
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Using the expression for the conditional normal distribution we obtain

ξ | y ∼ N(ξ̂, F). (9)

We consider the minimization of the mean-squared error of a function of y as a predictor of ξ.
Using a standard result in statistics, the MSE is minimized by the conditional expectation. So ξ̂ is
the minimum MSE predictor of ξ.

Alternative expressions in the conditional rather than the marginal form are

ξ̂ = κ + Λ−1B′Ω−1(y − µ)

F = Φ(Λ − B′Ω−1B)Λ−1 = Λ−1,

which follows directly by applying (5) and (6).
From (7) it is clear that this predictor is linear in y. Had we imposed the restriction that our

minimum MSE predictor be linear, we would have obtained the same result, ξ̂L = ξ̂, in self-evident
notation.

The predictor ξ̂ is biased in the sense that

E(ξ̂ − ξ | ξ) = −(I − ΦB′Σ−1B)(ξ − κ) , 0.

This may be considered a drawback of ξ̂. An unbiased predictor can be obtained as follows. The
model, rewritten as y − τ = Bξ + ε, can be interpreted as a regression model with ξ as the vector
of regression coefficients, B the matrix of regressors, and y − τ as the dependent variable. In this
model the GLS estimator is the best linear unbiased estimator (BLUE) of ξ, and under normality
it is also BUE as it attains the Cramér-Rao bound (e.g., Amemiya, 1985, section 1.3.3). So,
extending our self-evident notation,

ξ̂LU = ξ̂U

= (B′Ω−1B)−1B′Ω−1(y − τ)

= κ + (B′Ω−1B)−1B′Ω−1(y − µ) (10)

minimizes the conditional MSE, E[(ξ̂ − ξ)2 | ξ], for every possible value of ξ, conditional on
unbiasedness. This implies that it must also minimize the unconditional MSE, E[(ξ̂ − ξ)2] =
E
{
E[(ξ̂ − ξ)2 | ξ]

}
, among unbiased predictors and thus that it is the best unbiased predictor of ξ.

Using (6) we obtain
ξ̂LU = κ + (B′Σ−1B)−1B′Σ−1(y − µ)

as a reformulation of the conditional into the marginal form. This predictor is called the Bartlett
predictor, after Bartlett (1937). Although this predictor is based on the interpretation of the FA
model as a regression model, ξ̂ rather than ξ̂LU is (somewhat confusingly) called the regression
predictor as it is based on the notion of regression as a conditional expectation.
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When computing factor score predictors it is sometimes deemed desirable to impose a priori
the restrictions that the predictors and the factors in the model have the same covariance, i.e.,

Cov(ξ̂) = Φ;

see e.g. Ten Berge et al. (1999). This is usually called correlation preservation although it involves
the covariance rather than the correlation. In the present context, where means play a more explicit
role than is usually the case, it is natural to impose mean preservation as well, i.e.,

E(ξ̂) = κ,

and consider predictors that are mean and covariance preserving (MCP). After some algebra one
can show that the trace of the MSE matrix is minimized by

ξ̂MCP = κ + Φ
1/2(Φ1/2B′Σ−1BΦ1/2)−1/2Φ1/2B′Σ−1(y − µ),

as expressed in the marginal form. So we now have three predictors, which can be parameterized
as follows:

ξ̂(a) = κ + Φ1/2(Φ1/2B′Σ−1BΦ1/2)−1/aΦ1/2B′Σ−1(y − µ),

with ξ̂(1) = ξ̂LU, ξ̂(2) = ξ̂MCP, and ξ̂(∞) = ξ̂. In the context of a mixture model considering an
MCP predictor does not seem to be very meaningful unless the means and variances are the same
over the classes.

4 A taxonomy of predictors

After this brief summary of prediction in the single-class model under normality we are now in a
position to discuss a whole array of predictors for the mixture model. This array can be grouped
into a taxonomy, whose first node is whether the predictors are designed from below or above,
so to speak. That is, we can start with predictors per class, as discussed in the previous section,
and then combine them with some kind of weighting, or we can derive system-wide predictors
right away by applying the minimum MSE criterion with or without the restrictions of linearity or
unbiasedness.

The kind of weighting of predictors per class defines another node. The weighting can be
done by employing the prior class probabilities π j or it can be based on posterior weights. More
specifically, we employ the posterior probabilities, conditional on y, of being in a particular class.
Using Bayes’ rule, these probabilities are

p j(y) ≡ Pr(class = j | y) =
π j f j(y)∑
k πk fk(y)

, (11)

where f j(y) is the normal density, evaluated in y, with mean µ j and variance Σ j.
The predictors are grouped in table 1. The columns of the table reflect two obvious restrictions

that one could impose: linearity and unbiasedness. (Meijer and Wansbeek, 1999, consider
quadratic rather than linear predictors, but this generalization is not pursued here.)
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4.1 Predictors per class

The first row of the table presents the predictors from the classes. Within a class the distribution is
normal, so the imposition of linearity is redundant, as argued above, and just two instead of four
predictors are given. We extend the notation of section 3 by adding the class subscript j.

It should be noted that the first predictor, ξ̂U, j is placed under the heading ‘unbiased’ due to
the reasoning along the lines of a single class; if class j were the only class present, this predictor
would be unbiased, but this quality, of course, is lost in a multiclass context. It is of interest to
elaborate this. From (10)

ξ̂U, j = (B′jΩ
−1
j B j)

−1B′jΩ
−1
j (y − τ j) ≡ B−j (y − τ j),

where the notation B−j is chosen since it is a generalized inverse of B j, we have

E(ξ̂U, j | ξ) = B−j
(
E(y | ξ) − τ j

)
.

Let

q j(ξ) ≡ Pr(class = j | ξ) =
π jg j(ξ)∑
k πkgk(ξ)

, (12)

where g j(ξ) is the normal density, evaluated in ξ, with mean κ j and variance Φ j. Then

E(y | ξ) =
∑

j

q j(ξ) E(y | ξ, j) =
∑

j

q j(ξ)
(
τ j + B jξ

)
= τ̄ + B̄ξ, (13)

with

τ̄ ≡
∑

j

q j(ξ) τ j

B̄ ≡
∑

j

q j(ξ) B j.

and
E(ξ̂U, j | ξ) = B−j (τ̄ − τ j + B̄ξ).

For unbiasedness, this should be equal to ξ for all ξ. (Notice that ξ also enters into τ̄ and B̄.)
This seems possible only in the special case where the τ j and B j do not vary across classes. The
heterogeneity is then restricted to the case where the factor loadings are homogeneous, and only
the distributions of ξ and ε have a mixture character.

4.2 Weighted predictors

The next row of the table contains the weighted averages of the predictors per class,

ξ̂U =
∑

j

π j ξ̂U, j and ξ̂ =
∑

j

π j ξ̂ j.
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Table 1: A taxonomy of predictors.
Restrictions

Linear
unbiased Unbiased Linear None︸                        ︷︷                        ︸ ︸                        ︷︷                        ︸

Within class ( j) ξ̂U, j ξ̂ j︸                        ︷︷                        ︸ ︸                        ︷︷                        ︸
Weighted ξ̂U ξ̂︸                        ︷︷                        ︸ ︸                        ︷︷                        ︸
Posterior-weighted ξ̂∗U ξ̂∗

System-wide
[
ξ̃LU

] [
ξ̃U

]
ξ̃L ξ̃ (= ξ̂∗)

The same remark as to unbiasedness applies at the aggregate level as well.
The results for posterior weighting are displayed in the next row of the table. We use an

asterisk to distinguish these predictors from the previous ones. Then

ξ̂∗U =
∑

j

p j(y) ξ̂U, j and ξ̂∗ =
∑

j

p j(y) ξ̂ j. (14)

Notice that the weights involve y and hence the linearity property is lost when weighting.

4.3 System-wide predictors

The bottom row of the table presents the system-wide predictors that are obtained by minimizing
the MSE with or without the restrictions. Since in the mixture model normality does not hold any
longer, linearity is not obtained as a byproduct, and the full range of four different predictors has
to be considered. We use a tilde to describe system-wide predictors, in otherwise evident notation.

Prediction under linearity and unbiasedness The starting point for finding an unbiased
predictor that is linear in y is to find a matrix L and a vector b such that

ξ̃LU = L′y + b

satisfies E(ξ̃LU | ξ) = ξ for all ξ. Using (13) we obtain

E(ξ̃LU | ξ) = L′E(y | ξ) + b = L′(τ̄ + B̄ξ) + b.

This should be equal to ξ for any ξ, so also for ξ = 0. So b = −L′τ̄0, with τ̄0 ≡
∑

j q j(0)τ j.
Substituting this back leads to the requirement

L′(τ̄ − τ̄0 + B̄ξ) = ξ

for all ξ. Because of the (nonlinear) dependence of τ̄ and B̄ on ξ, we conjecture that there does not
exist a matrix L with this property, and hence there does not exist a linear unbiased predictor.
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Prediction under unbiasedness Imposing linearity may preclude a solution. We relax this
requirement, but maintain unbiasedness. We then consider a predictor ξ̃U = h(y), where h(y)
is a function of y such that E

(
h(y) | ξ

)
= ξ for all ξ. Using (12), this requirement for h(y) can be

rewritten as ∑
j

π jg j(ξ)
{
E
[
h(y) | ξ, j

]
− ξ

}
= 0

for all ξ. This does not seem to lead to anything tractable.

Prediction under linearity This case is conceptually the simplest one, and is based on the idea
of linear projection. According to a well-known result, the MSE is minimized over all linear
functions by

ξ̃L = µξ + ΣξyΣ
−1
y (y − µy). (15)

The expressions for the means µξ and µy and the covariance matrices Σξy and Σy were given in
section 2. Their Gestalt precludes further elaboration.

Prediction without restrictions The approach here rests on the fact that the MSE is minimized
by the mean of the conditional distribution. Adapting results from section 3 we have

ξ | y, j ∼ N
(
ξ̂ j, F j

)
,

with

ξ̂ j ≡ κ j + Φ jB
′
jΣ
−1
j (y − µ j)

F j ≡ Φ j − Φ jB
′
jΣ
−1
j B jΦ j.

So ξ | y is mixture normal and the system-wide predictor without restrictions is given by

ξ̃ = E(ξ | y) =
∑

j

p j(y) ξ̂ j,

with p j(y) given by (11). Notice that ξ̃ equals the predictor obtained by posterior weighting of the
unrestricted predictors per class, ξ̂ j. As to the variance of this predictor, we notice

Var(ξ | y) =
∑

j

p j(y) F j +
∑

j

p j(y) ξ̂ jξ̂
′
j − ξ̂ξ̂

′.

The first term on the right-hand side is the weighted average of the variances within the classes,
and the other terms represent the between-class variance.
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4.4 Summary

The above discussion leaves us with five predictors. These are the prior weighted predictors
ξ̂U and ξ̂, their posterior-weighted counterparts ξ̂∗U and ξ̂∗, the latter being also the system-wide
conditional expectation, and the linear projection-based predictor ξ̃L.

Although some of these predictors were built on predictors that would be unbiased in a
single-class setting under normality, none of these predictors is unbiased themselves, and attempts
to construct unbiased estimators seem futile.

5 Labeled classes and degeneracy

The derivations in the previous sections assumed that all covariance matrices are nonsingular and
that no extraneous information is available about class membership. However, in some cases,
including the empirical case to be discussed further on, these assumptions are not met. We then
have to adapt the analysis somewhat. If we know from which class an observation is drawn we
have the situation of labeled classes. Degeneracy denotes singular covariance matrices.

Labeled classes In the case of a labeled class, it is known to which class an observation belongs.
For example, we may have different factor analysis models for males and females for the same
dependent variables, and we have observed whether the individual is male or female. Analogous
to conditioning on any possible exogenous variables x, it appears most fruitful to proceed by
conditioning on the given class. But then the model for a given observation is not a mixture
anymore, but an ordinary factor analysis model, and the basic factor score predictors from section 3
can be used straightforwardly.

A generalization of this is when it is known that the observation belongs to a certain subset of
the classes, but it is not known to which particular class within the subset. For example, we might
have a model that postulates three market segments for women and two for men, so that there
are five classes. For each observation, the gender of the individual is known, but not the precise
market segment. Then we can restrict attention to the given subset of classes. After renormalizing
the class probabilities so that they sum to 1 for the given subset, and disregarding classes that are
not in the given subset, this situation is the same as the general situation.

The fully general extension of this is when the information of class membership takes the
form of individual-specific prior probabilities Pr(class = j) = P j. Note that we still omit the index
denoting the individual, because for prediction we only consider one individual at a time. It is
now immediately clear that, for prediction purposes, this situation is simply the general model as
presented earlier, with π j = P j. So the situation of labeled classes is subsumed in the general
model.

Degeneracies Several types of degeneracies are conceivable in a single-class factor analysis
model. For substantive reasons, the errors ε of some of the indicators may be assumed to be
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identically zero, leading to a singular covariance matrix Ω. This may also be the result of the
estimation procedure without prior restriction, i.e., a Heywood case. Similarly, the covariance
matrix Φ of the factors may be singular. Finally, the factor loadings matrix B may not be of full
column rank. The latter does not necessarily lead to a degenerate distribution, but it does imply that
some of the formulas presented earlier cannot be applied. In a single-class factor analysis setting,
singularity of Φ and/or deficient column rank of B are not particularly interesting or relevant,
because the model is equivalent to a model with fewer factors and thus can be reduced to a more
parsimonious one. However, in a mixture setting, such forms of degeneracy may occur quite
naturally.

If Ω is nonsingular, then evidently the covariance matrix Σ of the observed indicators is also
nonsingular. Thus, a necessary, but by no means sufficient, condition for singularity of Σ is
singularity of Ω.

The formulas for the single-class predictors cannot be directly applied in the case of
degeneracies, because the required inverses do not exist. In appendix A, expressions are given
for the unbiased and unrestricted predictors that can be used in this case. These expressions can
be used for the within-class predictors in a mixture model with degeneracies.

In a mixture factor analysis model, the degeneracies mentioned here may be limited to only
a subset of the classes, or all classes may have degenerate distributions. In the former case,
the marginal distribution of the indicators is nondegenerate. In the latter case, it may be either
nondegenerate or degenerate, depending on the types of degeneracies and the parameter values.
When there are classes with degenerate distributions of the indicators y, the formula (11) is invalid,
because y does not have a proper density in such classes. Appendix B gives the appropriate
expressions for the posterior probabilities in this case.

With the adapted expressions for the within-class predictors and posterior probabilities,
prediction of the factor scores in mixture models with degenerate distributions is now relatively
straightforward. For the non-system-wide predictors, we can apply the standard expressions,
using the adapted formulas for the within-class predictors and the posterior probabilities. For the
system-wide linear predictor, expressions (2)–(4) are still valid, and thus the predictor ξ̃L is still
given by (15), with Σ−1

y replaced by Σ+y if it is singular. The system-wide unrestricted predictor ξ̃
is again equivalent to the posterior-weighted unrestricted predictor ξ̂∗.

6 Application to Swedish earnings data

To illustrate our proposed methods we apply the above to an empirical example taken from
Kapteyn and Ypma (2007). They study the relationship between observations of individuals’
earnings obtained from two different sources: self-reports collected in survey interviews which
were subsequently matched to administrative records, presumably pertaining to the same
individuals. We first present the model in Kapteyn and Ypma’s notation and then show how it
is a special case of a mixture SEM. We next present the various predictors for this special case.
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6.1 Combining register and survey data

The data used in Kapteyn and Ypma (2007) come from Sweden. Since we take the parameter
estimates presented in their work as given we only provide a short overview. The data were
collected as part of a validation study to inform subsequent data gathering efforts in the Survey of
Health, Ageing and Retirement in Europe (SHARE). The objective was to compare self-reported
information obtained in a survey with information obtained from administrative data sources
(registers) to learn about measurement error, in particular in respondents’ self-reports. The survey
was fielded in the spring of 2003, shortly after tax preparation season, when people are most
likely to have relevant financial information fresh in their minds. The sample was designed
to cover individuals age 50 and older and their spouses; it was drawn from an existing data
base of administrative records (LINDA) which contains a five percent random subsample of the
entire Swedish population. Out of 1431 sampled individuals 881 responded. Kapteyn and Ypma
investigate the relation between survey data and register data for three different variables. We use
their model on individual earnings without covariates for our illustrative example, which is based
on 400 observations with positive values recorded both in the register and in the survey data.

In the Kapteyn-Ypma model, there is a single latent variable ξ, representing the true value of
the logarithm of earnings of an individual. (As before, we omit the index indicating the individual.)
This true value is not measured directly. However, there are two indicators available, one coming
from administrative data and the other from individuals’ self-reports collected in a survey. Figure 1
depicts the observations: the logs of the survey earnings are plotted against the logs of the register
earnings. In this figure, we see that most points are close to the r = s line that is also plotted.
Thus, for most respondents, earnings as reported in the survey are close to the earnings observed
in the administrative records. But a noticeable number of points is not located close to the r = s
line. Unlike most of the literature in this area, the Kapteyn-Ypma model does not assume that
this is necessarily due to measurement error in the survey earnings. Rather, it is assumed that
both indicators may contain error; the administrative data are not a priori assumed to be error-free.
However, the structure of the error differs between the indicators.

Let ξ and three other random variables, ζ, η, and ω, be all independent of each other
and normally distributed with means and variances (µξ, σ

2
ξ), (µζ , σ

2
ζ ), (µη, σ

2
η), and (µω, σ

2
ω),

respectively. Let r denote the value of log earnings from the administrative data and let s be
the corresponding value from the survey.

It is assumed that, whenever there are errors in the administrative data, they are only due to
mismatching. Let πr be the probability by which the observed administrative value, r, equals
the true value of individual i’s earnings, ξ. 1 − πr is the probability of a mismatch. In case
of a mismatch the administrative value r corresponds to the true value of someone else. This
mismatched value will be denoted by ζ. According to the assumptions made above, ζ is not
correlated with ξ. According to the same assumptions, the means and variances of ζ and ξ are
allowed to differ. This reflects the background of the data collection. The survey data only cover a
subset of the population restricted to individuals age 50 and older and their spouses, but a mismatch
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Figure 1: Survey data versus register data.

may involve an individual from the entire administrative database which is a random sample of the
entire Swedish population. To formalize this part of the model, for the register data, the observed
values r are mixture normal with

r =

 ξ with probability πr (R1)

ζ with probability 1 − πr, (R2)

the first case reflecting a match and the second case reflecting a mismatch.
The second part of the model covers the survey data. Three cases are distinguished. We let πs

denote the probability that the observed survey value is correct. With probability 1− πs the survey
data contain response error, part of which is mean-reverting, as expressed by the term ρ(ξ − µξ),
where ρ < 0 implies a mean-reverting response error in the sense of Bound and Krueger (1991).
When the data contain response error, there is a πω probability that the data are contaminated,
modeled by adding an extra error-term, ω. Contamination can, e.g., result from erroneously
reporting monthly earnings as annual or vice versa. So, collecting the elements of this second
part of the model, for the survey data, the observed values s are mixture normal with

s =


ξ with probability πs (S1)

ξ + ρ(ξ − µξ) + η with probability (1 − πs)(1 − πω) (S2)

ξ + ρ(ξ − µξ) + η + ω with probability (1 − πs)πω. (S3)
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Table 2: Parameterization of the Swedish earnings data model in terms of a mixture SEM.
Class ( j) r s π j τ j B j Ω j

1 R1 S1 πrπs

(
0
0

) (
1
1

) (
0 0
0 0

)
2 R1 S2 πr(1 − πs)(1 − πω)

 0
µη − ρµξ

 (
1

1 + ρ

)  0 0
0 σ2

η


3 R1 S3 πr(1 − πs)πω

 0
µη + µω − ρµξ

 (
1

1 + ρ

)  0 0
0 σ2

η + σ
2
ω


4 R2 S1 (1 − πr)πs

 µζ0
 (

0
1

)  σ2
ζ 0

0 0


5 R2 S2 (1 − πr)(1 − πs)(1 − πω)

 µζ
µη − ρµξ

 (
0

1 + ρ

)  σ2
ζ 0

0 σ2
η


6 R2 S3 (1 − πr)(1 − πs)πω

 µζ
µη + µω − ρµξ

 (
0

1 + ρ

)  σ2
ζ 0

0 σ2
η + σ

2
ω


Having established the distributions of r and s separately, we notice that the distribution of (r, s)
is a mixture of 2 × 3 = 6 classes.

6.2 Formulation as a special case of the general model

We can now express the parameters of the general model in this paper in terms of the parameters
of the Swedish earnings data model as given above. We have

y =
(

r
s

)
and it is easy to see that κ j = µξ andΦ j = σ

2
ξ for all classes and that for the rest the correspondence

between the parameters is shown in table 2. A striking feature is that Ω j is singular for classes
1, . . . , 4. So there is a degree of degeneracy in the model, cf. the discussion in section 5.

Given these expressions, it is straightforward to combine them to obtain the mean and
covariance matrix of the observations y per class according to (3a) and (3b). The result is presented
in table 3. It is interesting to see that modeling a few simple, reasonable points of departure implies
a rather formidable looking structure. As indicated above, Σ1 is singular, because y takes on values
in the subspace y1 = y2, i.e., r = s, whereas Σ j is nonsingular for j = 2, . . . , 6.

6.3 Predictors

Given this structure, we now turn to the issue of prediction. We discuss a number of predictors,
following the taxonomy presented in table 1.
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Table 3: Within-class means and covariance matrices.
Class ( j) µ j Σ j

1
 µξ
µξ

  σ2
ξ σ

2
ξ

σ2
ξ σ

2
ξ


2

 µξ
µξ + µη

  σ2
ξ (1 + ρ)σ2

ξ

(1 + ρ)σ2
ξ (1 + ρ)2σ2

ξ + σ
2
η


3

 µξ
µξ + µη + µω

  σ2
ξ (1 + ρ)σ2

ξ

(1 + ρ)σ2
ξ (1 + ρ)2σ2

ξ + σ
2
η + σ

2
ω


4

 µζ
µξ

  σ2
ζ 0

0 σ2
ξ


5

 µζ
µξ + µη

  σ2
ζ 0

0 (1 + ρ)2σ2
ξ + σ

2
η


6

 µζ
µξ + µη + µω

  σ2
ζ 0

0 (1 + ρ)2σ2
ξ + σ

2
η + σ

2
ω


Table 4: Within-class predictors.

Class ( j) ξ̂U, j ξ̂ j

1 1
2 (r + s) 1

2 (r + s)
2 r r
3 r r
4 s s

5 µξ +
1

1 + ρ
(s − µξ − µη) µξ +

(1 + ρ)σ2
ξ

(1 + ρ)2σ2
ξ + σ

2
η

(s − µξ − µη)

6 µξ +
1

1 + ρ
(s − µξ − µη − µω) µξ +

(1 + ρ)σ2
ξ

(1 + ρ)2σ2
ξ + σ

2
η + σ

2
ω

(s − µξ − µη − µω)

Within-class predictors We consider the predictors per class first. They are given in table 4, and
are obtained after some straightforward derivations involving the inversion of some 2×2 matrices.
Notice that in the cases involving a singular Ω the expressions for the predictors in the marginal
rather than the conditional form have to be used, cf. the discussion in section 3. Notice also that
for classes 5 and 6, the expressions for ξ̂U, j can be obtained from the corresponding expressions for
ξ̂ j by putting σ2

η = σ
2
ω = 0, i.e., by ignoring the measurement error variances in the computation.

Weighted predictors Moving down the rows of table 1, we obtain overall predictors by
weighting the ξ̂U, j and ξ̂ j with the probabilities π j to obtain

ξ̂U = ar + bs + c
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with

a = πr(1 −
1
2πs)

b = 1
2πrπs + (1 − πr)

{
πs + (1 − πs)

1
1 + ρ

}
c = (1 − πr)(1 − πs)

{
µξ −

1
1 + ρ

[
µξ + (1 − πs)(µη + πωµω)

]}
and

ξ̂ = ar + bs + c

with

a = πr(1 −
1
2πs)

b = 1
2πrπs + (1 − πr)

πs + (1 − πs)

(1 − πω)
(1 + ρ)σ2

ξ

(1 + ρ)2σ2
ξ + σ

2
η

+ πω

(1 + ρ)σ2
ξ

(1 + ρ)2σ2
ξ + σ

2
η + σ

2
ω




c = (1 − πr)(1 − πs)

µξ − (1 − πω)
(1 + ρ)σ2

ξ

(1 + ρ)2σ2
ξ + σ

2
η

(µξ + µη)

− πω

(1 + ρ)σ2
ξ

(1 + ρ)2σ2
ξ + σ

2
η + σ

2
ω

(µξ + µη + µω)

 ,
after again some straightforward algebraic manipulations.

Posterior-weighted predictors We continue the discussion in section 5 and elaborate it for the
present case. Consider the event r = s. If the observation is drawn from class 1, the conditional
probability of observing this event is 1, whereas this conditional probability is 0 if the observation
is drawn from any of the other five classes. Hence, the conditional probability that j = 1 given
this event is 1: p1((r, r)′) = 1 for all r and p j((r, r)′) = 0 for j = 2, . . . , 6. Conversely, using the
same logic, p1((r, s)′) = 0 for all s , r. In the latter case,

p j(y) =
π j f j(y)∑6

k=2 πk fk(y)
, j = 2, . . . , 6.
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It follows that

ξ̂∗U =

1
2 (r + s) = r = s if r = s∑6

j=2 p j(y) ξ̂U, j if r , s

ξ̂∗ =

1
2 (r + s) = r = s if r = s∑6

j=2 p j(y) ξ̂ j if r , s.
(16)

Evidently, these expressions cannot be further elaborated.

System-wide predictors The last row of table 1 presents four predictors. As argued in section
4.3, expressions for the two unbiased predictors ξ̃LU and ξ̃U could not be found, so here we only
elaborate the projection-based predictor ξ̃L and the conditional expectation-based predictor ξ̃.

We consider ξ̃L first. It requires the mean and covariance matrices of y and ξ. We weight the
rows of table 2 with the π’s to obtain

µy =

 πrµξ + (1 − πr)µζ
µξ + (1 − πs)(µη + πωµω)


Σy =

(
σrr σrs
σrs σss

)
Σξy = σ

2
ξ(πr, 1 + (1 − πs)ρ)

where

σrr = πrσ
2
ξ + (1 − πr)σ

2
ζ + πr(1 − πr)(µξ − µζ)

2

σrs = πr

[
πs + (1 − πs)(1 + ρ)

]
σ2
ξ

σss =
[
πs + (1 − πs)(1 + ρ)

2
]
σ2
ξ + (1 − πs)σ

2
η + (1 − πs)πωσ

2
ω

+ (1 − πs)
[
πs(µη + πωµω)2 + πω(1 − πω)µ2

ω

]
.

Substitution in (15) yields, after some straightforward manipulations,

ξ̃L = ar + bs + c

with

(a, b) = σ2
ξ(πr, 1 + (1 − πs)ρ)Σ

−1
y

c = µξ − a[πrµξ + (1 − πr)µζ] − b[µξ + (1 − πs)(µη + πωµω)],

where we have not given an explicit expression for Σ−1
y . We finally turn to ξ̃. As was already stated

in section 4.3, ξ̃ = ξ̂∗. The formula for the latter has been given by (16).
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Table 5: Parameter estimates.
ξ ζ ω η

µ 12.28 9.20 −0.31 −0.05
σ2 0.51 3.27 1.52 0.01

Table 6: Predictions, with weights, ξ̂U, j (or ξ̂ j) = ar + bs + c.

ξ̂U, j ξ̂ j
Class ( j) π j a b c a b c

1 .15 0.5 0.5 0 0.5 0.5 0
2 .69 1 0 0 1 0 0
3 .13 1 0 0 1 0 0
4 .01 0 1 0 0 1 0
5 .03 0 1.01 −0.11 0 0.99 0.12
6 .01 0 1.01 0.19 0 0.25 9.32

ξ̂U : 0.89 0.11 −0.00 ξ̂ : 0.89 0.11 0.05

6.4 Prediction

We now turn to the empirical outcomes of the prediction process. In essence we are after
something in fact quite simple. We have two possibly conflicting figures on the same variable,
and we want to combine the information from the two sources in an optimal way. We do so on the
basis of a simple model, and of the estimation results from that model. These are from Kapteyn
and Ypma (2007), where also an extensive discussion of these results can be found. Means and
variances of the normal distributions are given in table 5. Further, πr = .96, πs = .15, πω = .16,
and ρ = −.01.

Table 6 contains a first series of prediction results. The top panel of the table presents results
per class. The second column gives the class probabilities. The largest class is the second one,
representing the case of measurement error, but no mismatch. The remaining columns present the
numerical results corresponding with table 4. The predictors in that table have been rewritten as
a linear function ar + bs + c of r and s, the three weights a, b and c being given for ξ̂U, j first and
next for ξ̂ j.

As was already apparent from table 4, the last two rows of the top panel are the most interesting
ones. These represent the cases of a mismatch, hence the value from the register is discarded and
only the value from the survey is used; and the latter suffers from measurement error. If there is
no (further) contamination, the unbiased predictor is obtained from the survey figure by slightly
overweighting it, and the unrestricted predictor is obtained by slightly downweighting it. If there is
contamination, the results diverge strongly. The unrestricted predictor is predominantly a constant,
plus some effect from the survey, whereas the unbiased predictor is very similar to the predictor
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obtained when there is no contamination.
The bottom panel of the table gives the results for the predictors ξ̂U, j and ξ̂ j that are obtained

by weighting the preceding rows by the prior probabilities given in the second column. Apart
from the constant c, the results from the two predictors only differ from the third digit onwards,
and imply a 89% weight to the register data and a 11% weight to the survey data.

The linear projection-based predictor ξ̂L can also be expressed as a linear combination of r
and s:

ξ̃L = .22r + .55s + 2.85.

This is a striking result, with only very low weight given to the register data, vastly unlike the case
with ξ̂U and ξ̂.

These predictors are based on uniform weights across the (r, s) space. The predictors ξ̂∗U and ξ̃
are based on posterior weighting and cannot be expressed as a simple function of r and s since the
weights now depend on y = (r, s)′ through the densities p j(y), cf. (14). In order to get a feeling for
these predictors, we have computed the relative weight given to r (as compared to s) over the (r, s)
space. The result for ξ̂∗U is given in figure 2 and the result for ξ̃ is given in figure 3. We see that
both figures are quite similar. In the middle of each figure the predictor is (almost) fully dominated
by r, but further from the mean of ξ (µξ = 12.28), more weight is attached to s. Remarkably, the
relative weight seems to be rather insensitive to the value of s and largely depends on the value of
r only.

In order to obtain an overall comparison of the performance of the five predictors we have
computed their reliabilities. The reliability of a proxy is a measure for the precision with which it
measures the latent variable of interest. When ξ is one-dimensional, the reliability of a proxy x is
the squared correlation between ξ and x. Thus, the reliability of r is π2

rσ
2
ξ/σrr and the reliability

of s is [1 + (1 − πs)ρ]
2σ2
ξ/σss. The reliability ϕ2 of a linear combination x = ar + bs + c is

ϕ2 =

{
aπr + b[1 + (1 − πs)ρ]

}2
σ2
ξ

a2σrr + b2σss + 2abσrs
,

which, of course, does not depend on c. For posterior-weighted predictors, reliabilities cannot be
computed analytically since they are nonlinear combinations of r and s. We have computed the
reliabilities of those predictors by simply drawing a large sample (100,000 observations) from the
model and computing the squared sample correlation between factor and predictor.

The results are given in table 7, for the five predictors considered throughout, plus r and s as
a reference. We also report the mean squared errors of the predictors, MSE = E(predictor − ξ)2,
which are, of course, strongly negatively related to the reliabilities, although they are not perfect
substitutes. Note, e.g., that MSE does depend on c. In addition, we present the bias E(predictor−ξ)
and variance Var(predictor − ξ).

The table shows some striking results. The register data r, which in a sense could be interpreted
as representing the true data, have a (squared) correlation with the true data as defined implicitly
by the model of less than a half. Informally stated, r is a clear loser, which is very surprising.
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Table 7: Precision of the predictors
predictor reliability MSE bias variance
r .47 .54 −.13 .52
s .69 .23 −.08 .22
ξ̂U .53 .43 −.12 .41
ξ̂ .53 .43 −.12 .41
ξ̂∗U .97 .01 .00 .01
ξ̃L .76 .12 .00 .12
ξ̃ .98 .01 .00 .01

Apparently a high probability of being exactly correct is not sufficient and the small probability of
being an independent arbitrary drawing from a different distribution has a dramatic consequence
for the quality of the indicator. The survey data s perform considerably better than r. The
predictors obtained by prior-weighting per class perform poorly, but the predictor based on linear
projection performs much better. However, both predictors that employ posterior weighting are
nearly perfect, again, of course, against the background of the model postulated. We stress that
these empirical findings are only meant to illustrate latent variable prediction in mixture models.
We have taken the Kapteyn-Ypma model as given.

In the last two columns of table 7, we see that the biases of the first four predictors are sizeable,
but the squared biases are negligible compared to the variances, so that the variances dominate the
MSEs. It is also noteworthy that both r and s have negative bias. The bias of r is due to mismatch,
whereas the bias of s is due to the negative means of the measurement error η and contamination
ω. The estimated negative biases of r and s are identified on the basis of the r = s cases, which
are higher up on the earnings distribution (on average) than the other cases.

7 Discussion

In a sense, the paper has dealt with a very simple question. We are given two numerical values
for the same quantity. What is the best guess as to the truth? As always, getting to a sensible
answer involves some model building, necessarily based on some assumptions. The model in case
was of the mixture factor analysis type, and we were hence drawn into the field of factor score
prediction in mixture SEMs. It appeared that, to the best of our knowledge, this field had not yet
been systematically explored, leading to the current paper.

Taking the standard factor score prediction literature as our point of departure, we
systematically explored the options for constructing predictors for the mixture case. This produced
five predictors for further consideration. Two of these are based on weighting the predictors per
class by prior weights, and two more are based on posterior weights. One of these appears to
be the predictor that is obtained as the conditional expectation of the latent variables given the
indicators. A fifth predictor is simply the linear projection of the latent variables on the indicators.
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Figure 2: Relative weight of r in ξ̂∗U.

We applied the thus filled toolkit to the case of Swedish earnings data, where two
measurements were available per individual. For the cases where the two measurements coincided,
we took the corresponding value as the true value, which hence was assumed known with certainty.
To incorporate this element of certainty required an extension of the model formulation. This led
to the consideration of labeled classes and degenerate distributions.

In the case study of the Swedish earnings data, we needed a yardstick for comparison of
performance. For this, we took the reliability of the predictors. The major conclusion for this
case is that posterior-weighted predictors perform extremely well, much better than the indicators
themselves or the linear-projection based estimator. A topic for further research is to check the
generality of this finding.

Appendix

A Single-class prediction with degenerate distributions

When degeneracies are present in the model, (9) is still correct, provided that in (7) and (8) Σ−1 is
replaced by Σ+, the Moore-Penrose generalized inverse of Σ. This encompasses the nondegenerate
case, because Σ+ = Σ−1 if Σ is nonsingular. The unrestricted minimum MSE predictor is ξ̂ with
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Figure 3: Relative weight of r in ξ̃.

this minor change in its definition.
An unbiased predictor may not exist when degeneracies are present. A trivial example is when

B = 0 and Φ is nonzero. Then y contains no information about ξ and E(h(y) − ξ | ξ) = E(h(y)) − ξ,
where E(h(y)) does not depend on ξ. Hence, E(h(y) − ξ | ξ) does depend on ξ and, in particular, it
cannot be zero irrespective of the true value of ξ.

The other extreme is obtained with Ω = 0 and B = I, so that y = ξ, and thus y is an unbiased
predictor of ξ with zero MSE. A necessary and sufficient condition for the existence of an unbiased
predictor is that the matrix BQ has full column rank, where Q is the matrix whose columns are
the eigenvectors corresponding to the nonzero eigenvalues of Φ. If Φ = 0, an unbiased predictor
ξ̂U = κ also trivially exists. In the following we will assume that Φ , 0.

Using this condition and the condition that BQ has full column rank, we can adapt the analyses
of Amemiya (1985, sections 1.4 and 6.1.5) to our notation and, if Φ is singular, extend them with
the restriction ξ = κ + Qξ1 for some ξ1, or, equivalently, Q′

⊥
ξ = Q′

⊥
κ. Here and in the following,

if A is a p × q matrix of rank r ≤ q, A
⊥

denotes a p × (p − r) matrix such that A′
⊥

A = 0 and
A′
⊥

A
⊥
= Ip−r, provided r < p. We can now distinguish the following cases:

1. Ω is nonsingular. Then ξ̂U = κ + Q(Q′B′Ω−1BQ)−1Q′B′Ω−1(y − µ). The MSE is nonzero in
this case.

2. Ω = 0. Then ξ̂U = κ + Q(Q′B′BQ)−1Q′B′(y − µ). This is equal to ξ with probability 1.
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3. Ω is nonzero, but singular and H′
⊥

BQ has full column rank, where H is the matrix
whose columns are the eigenvectors corresponding to the nonzero eigenvalues of Ω. Then
ξ̂U = κ+Q(Q′B′H

⊥
H′
⊥

BQ)−1Q′B′H
⊥

H′
⊥

(y−µ). Again, this is equal to ξ with probability 1.

4. Ω is singular, H′
⊥

BQ does not have full column rank, and Q is square and nonsingular. Let
R ≡ B′H

⊥
. Then R

⊥
exists and is well-defined. Let κ∗ ≡ (R+)′H′

⊥
(y−τ) = (H′

⊥
B)+H′

⊥
(y−τ).

Then
ξ̂U = κ

∗ + R
⊥

(R′
⊥

B′Ω+BR
⊥

)−1R′
⊥

B′Ω+(y − τ − Bκ∗).

Now the MSE is nonzero.

5. Ω is singular, H′
⊥

BQ does not have full column rank, and Q is not square. Then R ≡
(B′H

⊥
,Q
⊥

) and R
⊥

both exist and are well-defined. Let

κ∗ ≡ (R+)′
(

H′
⊥

(y − τ)
Q′
⊥
κ

)
.

Then ξ̂U = κ
∗ + R

⊥
(R′
⊥

B′Ω+BR
⊥

)−1R′
⊥

B′Ω+(y − τ − Bκ∗). The MSE is nonzero in this case
as well.

These expressions for ξ̂U all give a best linear unbiased predictor (BLUP) of ξ, which is best
unbiased (BUP) as well given the normality assumption for ε. However, other BLUPs may exist.
Consider, for example, τ = 0, B = (1, 1)′, and Ω = 0. Then the relevant expression above gives
ξ̂U =

1
2 (y1 + y2), but ξ∗ ≡ ay1 + (1 − a)y2 is BLUP for every a. As long as the data are consistent

with the model, such other BLUPs are necessarily equal to the expressions given here (with
probability 1). However, in a mixture model, the weighted predictors using prior probabilities
as weights may be different for different “BLUPs”. We will not study this in more detail and only
use the expressions given here.

B Posterior probabilities in mixture models with degenerate
distributions

In a mixture of normals, if all the class-specific covariance matrices Σ j are nonsingular, the
posterior probabilities of the classes are given by (11). Note that this does not require Ω j or Φ j
to be nonsingular or B j to have full column rank. On the other hand, singularity of Σ j necessarily
implies singularity of Ω j; so there is a relationship.

If Σ j is singular, (y | class = j) does not have a proper density and thus (11) is not well-defined.
Hence, if this is the case for some or all of the classes in the model, the computation of the posterior
probabilities has to be adapted. The basic principles are easiest to understand by looking at some
simple examples.

25



1. Let there be two classes, µ1 = 0, Σ1 = 0, µ2 = 1, Σ2 = 0, and 0 < π1 = 1 − π2 < 1.
We have a mixture of two degenerate normal distributions. If an observation is drawn from
class 1, it is equal to 0 with probability 1, whereas if an observation is drawn from class 2,
it is equal to 1 with probability 1. Hence, if y = 0, it follows immediately (or from Bayes’
rule for probabilities) that p1(y) = 1 and p2(y) = 0. Conversely, if y = 1, then p1(y) = 0
and p2(y) = 1. Other events have (prior) probability zero of occurring and can therefore be
ignored.

2. Let there be two classes, µ1 = 0, Σ1 = 0, µ2 = 0, Σ2 = 1, and 0 < π1 = 1 − π2 < 1.
We have a mixture of a degenerate normal distribution and a nondegenerate one. Again,
if an observation is drawn from class 1, it is equal to 0 with probability 1, whereas if an
observation is drawn from class 2, it is unequal to 0 with probability 1. Hence, if y = 0,
p1(y) = 1 and p2(y) = 0 and if y , 0, p1(y) = 0 and p2(y) = 1.

3. Let there be three classes, µ1 = 0, Σ1 = 0, µ2 = −1, Σ2 = 1, µ3 = 1, Σ3 = 1, and π1, π2,
and π3 are all nonzero. We have a mixture of one degenerate normal distribution and two
nondegenerate ones. Again, if an observation is drawn from class 1, it is equal to 0 with
probability 1, whereas if an observation is drawn from classes 2 or 3, it is unequal to 0 with
probability 1. Hence, if y = 0, we find that p1(y) = 1 and p2(y) = p3(y) = 0. Conversely, if
y , 0, p1(y) = 0, but the observation could be from either class 2 or class 3. The posterior
probability for class 2 can be written as

p2(y) = Pr(class = 2 | y, class ∈ {2, 3}) Pr(class ∈ {2, 3} | y).

If y , 0, the second factor is equal to 1. The first factor is simply (11) restricted to
classes 2 and 3, with the “prior” probabilities π j replaced by π j|{2,3} = π j/(π2 + π3). But
the denominator of this drops out of the resulting expression, so we can simply use the π j
themselves as well.

4. Let there be two classes, µ1 = (−1, 0)′, µ2 = (1, 0)′,

Σ1 = Σ2 =

(
1 0
0 0

)
,

and 0 < π1 = 1 − π2 < 1. We have a mixture of two degenerate normal distributions in two
dimensions, so the density of y does not exist and we cannot use (11) directly. However, it
is clear that the second dimension does not give any information about class membership.
The marginal distribution of the first element of y, y1, is a mixture in one dimension of
two nondegenerate normal distributions with means −1 and 1, respectively, and both having
variance 1. The prior probabilities of these are π1 and π2. Thus, the posterior probabilities
are the posterior probabilities associated solely with the marginal distribution (and outcome)
of y1. These posterior probabilities are obtained by applying (11) to this one-dimensional
problem.
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To analyze the general case, let K j be the matrix whose columns are the (orthonormal) eigenvectors
of Σ j corresponding to its nonzero eigenvalues. Then, with probability 1, if y is drawn from class j,
it can be written as y = µ j + K jx j for some random vector x j, which has lower dimension than
y if Σ j is singular. In fact, x j can be defined as x j = K′j(y − µ j). Conditional on being drawn
from class j, x j is normally distributed with a positive definite covariance matrix. Now define the
hyperplane P j that consists of all points of the form µ j + K jx, i.e.,

P j ≡ {z | ∃x such that z = µ j + K jx} = {z | (I − K jK
′
j)(z − µ j) = 0}.

The dimension d j of P j is the number of columns of K j, or, equivalently, the number of elements
of x. The hyperplane P j and the outcome y are called inconsistent (with each other) if y < P j.

The posterior probabilities p j(y) can now be computed as follows:

1. Given the outcome y, p j(y) = 0 if P j and y are inconsistent with each other, as in
Examples 1–3 above. Eliminate these classes from further analysis.

2. Let dmin be the smallest dimension of the hyperplanes that are consistent with y, i.e., it is
the minimum of the d j for the classes that have not been eliminated in the previous step.

3. For all remaining classes, if d j > dmin, then p j(y) = 0, as in Examples 2 and 3 above.
Eliminate these classes from further analysis.

4. We now have a set of classes whose hyperplanes P j are the same. (Mathematically, it is
possible that there are intersecting hyperplanes and y lies on the intersection, so that the
remaining P j are not the same, but such an event has probability zero of occurring and can
thus be safely ignored.) In general, their µ j, Σ j, and K j will be different, but they are related
through

y = µ j + K jx = µi + Kiw

for some x and w, from which we derive

w = K′i (µ j − µi + K jx)

and K′i K j must be nonsingular, so that there exists a nonsingular matrix Γi j such that
K j = KiΓi j. Choose a point µ∗ that lies on the hyperplane and a set of basis vectors of
the hyperplane, collected in the matrix K∗. Obvious candidates are one of the µ j’s in the
current set and the corresponding K j. The posterior probabilities do not depend on this
choice. In Example 4 above, we could choose µ∗ = (−1, 0)′ and K∗ = (1, 0)′.

5. Compute y∗ ≡ K∗′(y − µ∗) This is distributed as a mixture of normal distributions with
probabilities proportional to π j for the classes still under consideration and corresponding
means and covariance matrices equal to µ∗j = K∗′(µ j − µ

∗) and Σ∗j = K∗′Σ jK
∗, respectively.

In Example 4 above, with µ∗ = (−1, 0)′ and K∗ = (1, 0)′, we have y∗ = y1 + 1, µ∗1 = 0,
µ∗2 = 2, and Σ∗1 = Σ

∗
2 = 1.
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6. By construction, Σ∗j is nonsingular for the classes under consideration, and thus the posterior
probabilities for the classes still under consideration are found by applying (11) to the
reduced problem, i.e., where f j(y) is replaced by the density function of the Ndmin

(µ∗j ,Σ
∗
j)

distribution evaluated in y∗.
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