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Abstract

Partial sums of lagged cross-products of AR residuals are defined. By studying the sample
paths of these statistics, changes in residual dependence can be detected that might be missed
by statistics using only the total sum of cross-products. Also, a test statistic for white noise is
proposed. It is shown that the limiting distribution of the test statistic converges weakly to a
vector Brownian motion with independent elements under the null hypothesis of no residual
autocorrelation. An indication of the circumstances under which the asymptotic results
apply in finite-sample situations is obtained through a simulation study. Some considerations
are given to the empirical size and power of the test statistic vis-à-vis the Ljung-Box (1978)
portmanteau statistic, and a diagnostic test statistic proposed by Peña and Rodriguez (2002).
An empirical example illustrates the importance of examining partial sums of time series
residuals when inadequacies in model fit are anticipated due to a change in autocorrelation
structure.
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1 Introduction

Let {Xt} be a stationary, discrete time, scalar process. Suppose {Xt} is generated by the AR

model

Xt −
∞∑

j=1

φjXt−j = εt, t = 0,±1, . . . (1)

where {εt} are i.i.d. random variables such that E(εt) = 0, E(ε2
t ) = σ2 < ∞ and Cum(εt) = κ4,

|κ4| < ∞.1 We also require that the function A(z) = 1 − ∑∞
j=1 φjz

j be analytic on an open

neighborhood of the closed unit disk D in the complex plane and has no zeroes on D. Now,

given n + p∗ observations {Xt;−p∗ + 1 6 t 6 n}, the φj ’s in (1) can be estimated by fitting

a long AR(p∗) model to the data, where p∗ ≡ pn is a sequence of positive integers depending

on the sample size n. The least squares estimate φ̂p∗ = (φ̂1, . . . , φ̂p∗)′ of φp∗ = (φ1, . . . , φp∗)′ is

given by φ̂p∗ = (
∑n

i=p∗+1 Xi−1X
′
i−1)

−1
∑n

i=p∗+1 Xi−1Xi where Xi = (Xi, . . . , Xi−p∗+1)′. The

corresponding sequence of residuals {ε̂t} is defined by ε̂i = Xi − φ̂
′
p∗Xi−1, (i = 1, . . . , n). The

initial values ε̂−p∗+1, . . . , ε̂0 are set to zero if p∗ > 0.

Given the above setup, one of the first questions that one can ask about the residual time

series is simply “Is it white noise?”. More formally, the problem of interest is to test the

hypothesis of zero autocorrelation up to order m, i.e. H0 : γk/γ0 = 0, (k = 1, 2, . . . ,m),

versus the alternative hypothesis H1 : γk/γ0 6= 0 for at least one k, where γk = E(εtεt−k)

(|k| < ∞). Common practice is to use a function of the lag k sample autocovariance, say

R̂(n, k) =
∑n

t=k+1 ε̂tε̂t−k. Examples are the Box-Pierce (BP) test statistic, defined as QBP
m =

∑m
k=1 n{R̂(n, k)/R̂(n, 0)}2, and the Ljung-Box (LB), defined as QLB

m =
∑m

k=1{n(n + 2)/(n −
k)}{R̂(n, k)/R̂(n, 0)}2.

Clearly, both the BP and the LB statistics only use the end points of a residual series,

representing the total sums R̂(n, k). In this paper we advocate the use of partial sums of lagged

cross-products of lag k < n residuals, defined as

R̂(j, k) =
j∑

t=k+1

ε̂tε̂t−k, (k + 1 6 j 6 n;n > 1). (2)

By studying the sample paths of R̂(j, k), for various values of j, more subtle changes in residual

correlation structure may be detected; see Section 5 for an example. Also, based on (2), various
1Formally, the cumulants κ1, κ2, . . . are defined by the identity in t exp{∑∞

ν=1 κν(it)ν/ν!} = φ(t) with φ(t)

the characteristic function. Subject to conditions of existence of moments, κν can be expressed in terms of the

central moments µν . For instance, κ1 = 0, κ2 = µ2, κ3 = µ3, and κ4 = µ4 − 3µ2
2. The cumulant of order ν exists

if µν and lower µ’s exist.
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omnibus test statistics for white noise can be defined. In the following we focus on the test

statistic

n−2Q̂m =
m∑

k=1

n∑

j=k+1

{
R̂(j, k)/R̂(n, 0)

}2
. (3)

Notice that, when j = n, the expression on the right hand side of (3) becomes n−1QBP
m . Hence,

the test statistic n−2Q̂m incorporates information contained in the jth (k + 1 ≤ j ≤ n) subset

of the residual series.

MacNeill (1978) studied the limiting process of partial sums of, fixed-design, regression

residuals. MacNeill and Jandhyala (1985) extended these results to non-linear regressions. Bai

(1993) considered the limiting process of partial sums of residuals in stationary and invertible

ARMA models. Yu (2007) considered high moment partial sum processes for residuals obtained

from stationary ARMA models, i.e.
∑j

t=k+1 ε̂i
t (i = 2, 3, 4). Also, Kulperger and Yu (2005)

constructed high moment partial sums processes for residuals from GARCH models. Most of

these works have benefited from the literature (see, e.g., Csörgő and Horváth (1997) for an

extensive review) on CUSUM test statistics, often used for testing model structure changes via

cumulated sums of squared regression residuals R̂(j, 0).

The properties of R̂(j, k) were studied by De Gooijer and MacNeill (1999) for fixed-design

regression models. They showed that the resulting Gaussian process is characterized in terms of

(i) regressor functions, (ii) the serial correlation structure of the noise process, (iii) the distribu-

tion of the noise process which, for linear time series, reduces to the 4th-order cumulant of the

error process, and (iv) the order of the lags of the cross-product residuals. These four factors

affect the limiting process of R̂(j, k) independently.

The plan of the paper is as follows. In Section 2, we first derive the asymptotic null distribu-

tion of
∑n

j=k+1{R̂(j, k)/R̂(n, 0)}2. Next, in Section 3, we consider the finite-sample distribution

of
∑m

k=1

∑n
j=k+1{R(j, k)/R(n, 0)}2, where R(j, k) =

∑j
t=k+1 εtεt−k, a quantity closely related

to (2). Using moment properties of this quantity, the large-sample distribution of n−2Q̂m is

established in Section 4. We also compare, via a small-scale simulation study, the empirical size

and power of n−2Q̂m vis-à-vis QLB
m and a portmanteau test statistic recently proposed by Peña

and Rodriguez (2002); see Section 4 for details. In Section 5, we demonstrate that the R̂(j, k)’s

are a useful tool in detecting a change in the residual correlation structure obtained from a long

AR model fitted to a time series consisting of IBM closing stock prices. In addition, we enhance

the usefulness of the proposed test statistic. Finally, Section 6 concludes.
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2 Asymptotic null distribution of
∑n

j=k+1{R̂(j, k)/R̂(n, 0)}2

To examine the test n−2Q̂m, it is useful to consider initially the limit distribution of R(j, k). In

addition to the basic assumptions in Section 1, the asymptotic results require that
∑∞

ν=−∞ |γν | <
∞. Then the spectral density function f(λ) = (1/2π)

∑
|ν|<∞ e−iλνγν , (λ ∈ [−π, π]) exists. If

the spectral density is positive, that is, if

f(λ) > a > 0, λ ∈ [−π, π], (4)

the process can be expressed either as (1) or as an MA(∞) representation, i.e. Xt =
∑∞

j=1 ajεt−j ,

where aj are uniquely determined by the relation A−1(z) =
∑∞

j=0 ajz
j for |z| ≤ 1. Then there

exists constants ρ ∈ (0, 1) and C > 0, such that max{|φj |, |aj |} ≤ Cρj for all j ≥ 0.

We require a central limit theorem for time series. Conditions that guarantee convergence in

distribution of n−1/2
∑[nt]

j=1 εj , t ∈ [0, 1], to the normal with zero mean and variance {2πf(0)t},
are those given by Brillinger (1973). These conditions are stated in terms of cumulant functions,

defined as follows: Cκ+1(ν1, ν2, . . . , νκ) = Cum{εj+ν1 , εj+ν2 , . . . , εj+νκ , εj}. Stationarity to order

κ+1 is implicit in this definition. When necessary we assume the cumulants exist. Moreover, we

assume that for some finite Lκ, κ = 1, 2, . . . , the mixing condition (Brillinger, 1973, Assumption

I)

|Cκ+1(ν1, ν2, . . . , νκ)| < Lκ/
κ∏

j=1

(1 + ν2
j ) (5)

is fulfilled. Assumption (5) can be weakened, for instance, by an α-mixing assumption.

Consider the zero-mean process {χ̃(t, k), t ∈ [0, 1]} defined as follows:

χ̃(t, k) = χ(t, k)− n1/2(t− k

n
)γk, (n ≥ 1), (6)

where n1/2χ(t, k) = R([nt], k)+(nt− [nt])2ε[nt]+1ε[nt]+1−k, with [nt] denoting the integer part of

nt. Let K(s, t|k, n) = Cov{χ̃(s, k), χ̃(t, k)} denote the covariance kernel of the process (6). De

Gooijer and MacNeill (1999) showed that, uniformly in s and t, K(s, t|k, n) → K(k)min(s, t),

where

K(k) = 2π

∫ π

−π
(1 + e2iλk)f2(λ)dλ + F (k) (7)

and where F (k) =
∑
|νi|<∞Cum(εi, εi+k, εi+ν , εi+k+ν). Moreover, under assumptions (4) and

(5) and provided the spectral density of the noise process is square integrable, the m-vector

(χ̃(t1, k), χ̃(t2, k), . . . , χ̃(tm, k)) has a non-trivial asymptotic probability distribution that is nor-

mal with zero mean and covariance matrix ‖ K(k)min(ti, tj) ‖. Next, define the process
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{Bε, t ∈ [0, 1]} as Bε(t) = {K(k)}1/2B(t) with {B(t), t ∈ [0, 1]} the standard Brownian motion

process. Assume Wε is the measure in C[0, 1] corresponding to Bε(·). Then, under assumptions

(4), (5), and provided the covariance function of the noise process is square integrable, it is easy

to show that Pεn =⇒ Wε, where ‘⇒’ denotes weak convergence in distribution. Thus the process

(6) converges weakly to Brownian motion.

Now consider the limit process of R̂(j, k). First, we define the following two sequences of

stochastic processes, both possessing continuous sample paths,

n1/2θ(t, k) = R̂([nt], k) + (nt− [nt])2ε̂[nt]+1ε̂[nt]+1−k, t ∈ [0, 1], (8)

D(t, k) = n1/2{χ(t, k)− θ(t, k)}, t ∈ [0, 1]. (9)

Let In denote an n × n matrix and In−k(t) an n × n matrix with the first [nt] − k diagonal

elements equal to 1, the next equal to nt− [nt], and all other elements equal to zero. Also, let

Ik,n(t) be the n× n matrix given by

Ik,n(t) =




Ok×n

I [nt] O[nt]×(n−[nt])

O(n−k−[nt])×[nt] U (n−k−[nt])×(n−[nt])


 ,

with Oa×b denoting an a× b null matrix, and U (n−k−[nt])×(n−[nt]) is an (n−k− [nt])× (n− [nt])

matrix with the element in the first entry equal to nt − [nt] and the remaining elements equal

to zero. Then (9) can be rewritten as

D(t, k) = (φ̂p∗ − φp∗)
′X ′

nIk,n(t)In−k(t)εn + ε′nIk,n(t)In−k(t)Xn(φ̂p∗ − φp∗)

−(φ̂p∗ − φp∗)
′X ′

nIk,n(t)In−k(t)Xn(φ̂p∗ − φp∗)

= Ht1{θ(t, k)}+ Ht2{θ(t, k)}+ Ht3{θ(t, k)}, say,

where Hti{·} (i = 1, 2, 3) are continuous functions of θ(t, k).

To assert that the large-sample distribution theory for {θ̃(t, k), t ∈ [0, 1]} is the same as

that for {χ̃(t, k), t ∈ [0, 1]}, where θ̃(t, k) = θ(t, k) − E{θ(t, k)}, we need the following result,

contained in Lee and Wei (1999). Suppose that p∗ satisfies

n−1/2(p∗)2 log n → 0 and n7/4p∗ρp∗ → 0 for all ρ ∈ (0, 1) as n →∞. (10)

Then, ‖ φ̂p∗ −φp∗ ‖2= Op(n−1p∗). Clearly, the first part of condition (10) requires p∗ not to be

so large that the AR model is overfitted whereas the second part implies that p∗ should not be

too small to avoid a meaningless approximation. A typical p∗ satisfying (10) is c(log n)2 with

c > 0, or unv with u > 0, 0 < v < 1/4.
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In view of the above result, we have

sup
06t61

‖ 1√
n

Ht1{θ(t, k)} ‖ 6 ‖ φ̂p∗ − φp∗ ‖
1√
n

sup
06t61

‖ X ′
nIk,n(t)In−k(t)Xnεn ‖

= Op((p∗)3/2/
√

n) = op(1).

In a similar vein sup06t61 ‖ 1√
n
Ht2{θ(t, k)} ‖6 op(1). Also, it is straightforward to see that

sup
06t61

‖ 1√
n

Ht3{θp∗(t, k)} ‖6‖ φ̂p∗ − φp∗ ‖2 1√
n
‖ X ′

nIk,n(t)εnIn−k(t)Xn ‖= Op((p∗)2/
√

n) = op(1).

Thus, on combining these results, n−1/2 sup06t61 |D(t, k)| → 0 with probability 1. Then, with a

proper normalization, the invariance principle for partial sums of i.i.d. sequences {εt} implies

that

(θ(t, k)/θ(1, 0))− (tγk/γ0)
{K(k)/γ2

0}1/2
⇒ Bk(t), t ∈ [0, 1],

where {Bk(t), t ∈ [0, 1]} is a zero-mean stationary Gaussian process. The covariance kernel

K(s, t|k) = Cov{Bk(s), Bk(t)} of the limit process is given by De Gooijer and MacNeill (1999).

Hence, under Assumptions (4), (5) and those of (10), and provided the spectral density of the

noise process is square integrable, we see that under H0

n∑

j=k+1

{R̂(j, k)/R̂(n, 0)}2 ⇒ K(k)
γ2

0

∫ 1

0
B2(t)dt. (11)

Thus, the asymptotic null distribution of
∑n

j=k+1{R̂(j, k)/R̂(n, 0)}2 depends on the nature of

the data generating process {Xt} through the factor K(k)/γ2
0 .

3 The statistic n−2Tm

A statistic closely related to n−2Q̂m is given by

n−2Tm =
m∑

k=1

n∑

j=k+1

{R(j, k)/R(n, 0)}2. (12)

The mean and variance of n−2Tm can be determined as follows. Defining εj = (ε1, . . . , εj)′, we

can write
∑n

j=k+1 R(j, k) =
∑n

j=k+1 ε′jA(j, k)εj where A(j, k) is an j × j null matrix except

for values 1/2 everywhere on the kth upper and lower diagonal. Since the limiting process of
∑n

j=k+1 R(j, k) is normally distributed it is easy to see that E{R2(n, 0)}r+s = n(n + 2) · · · (n +

2r + 2s− 2). After some algebra it follows that for finite values of n

E{
n∑

j=k+1

R2(j, k)} =
1
2
(n− k)(n− k + 1). (13)
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The mean of n−2Tm is now straightforward to evaluate, and is given by

E{n−2Tm} =
m

2

(
1 +

m2 − 1
6n

− m2 + 6m + 11
6(n + 2)

)
. (14)

Note that if n is large relative to m, (14) is equal to the sum of expected values of m independent

one-dimensional standard Brownian motions, i.e. m/2. After some more algebra it can also be

verified that

E{(
n∑

j=k+1

R2(j, k))2} =
1
12

(40n− 64k − 358kn + 287k2 − 326k3 + 7k4 + 119n2 + 86n3 + 7n4

− 378kn2 + 594k2n− 28kn3 − 28k3n + 42k2n2), (k < n/2), (15)

and

E{
n∑

j=k+1

R2(j, k)
n∑

j=`+1

R2(j, `)} =
1
4
(n− k)(n− k + 1)(n− `)(n− ` + 1)

+
2
3
(n− `)(6kn− 6k`− 8`n + 4`2 + 4n2 − 1)

+
2
3
(`− n + 1)(12k + 5`− 5n− 6k` + 6kn + 4`n− 6k2 − 2`2 − 2n2 − 6), (k 6= `, k < n/2).

(16)

Expressions (15) and (16) were checked in several ways. For instance, by evaluating (15) for

certain values of k and n, we obtained the same results as Sanjel, Provost and MacNeill (2005)

who used a symbolic computational methodology.

The covariance between
∑n

j=k+1{R2(j, k)/R2(n, 0)} and
∑n

j=`+1{R2(j, `)/R2(n, 0)} is given

by

Cov
{ n∑

j=k+1

R2(j, k)
R2(n, 0)

,
n∑

j=`+1

R2(j, `)
R2(n, 0)

}
=

E{∑n
j=k+1 R2(j, k)

∑n
j=`+1 R2(j, `)}

n(n + 2)(n + 4)(n + 6)

− (n− k)(n− k + 1)(n− `)(n− ` + 1)
4n2(n + 2)2

(17)

with E{∑n
j=k+1 R2(j, k)

∑n
j=`+1 R2(j, `)} given in (16). One can show that the covariance is

positive and that, for fixed values of m and `, it goes to 0 as n → ∞. The exact variance of

n−2Tm follows from

V ar{n−2Tm}=
m∑

k=1

V ar
{ n∑

j=k+1

R2(j, k)
R2(n, 0)

}
+2

m−1∑

k=1

m∑

`=k+1

Cov
{ n∑

j=k+1

R2(j, k)
R2(n, 0)

,
n∑

j=`+1

R2(j, `)
R2(n, 0)

}
,

(18)

where for fixed n, Cov{∑n
j=k+1{R2(j, k)/R2(n, 0)}, ∑n

j=`+1{R2(j, `)/R2(n, 0)}} 6= 0. Using
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(14), (15) and (17), the variance of n−2Tm for k < n/2 is given by

V ar{n−2Tm} =
m

3

(
1− m (m− 1)2 (m + 1)2

48n2
+

65m5 − 12m4 − 1480m3 − 240m2 − 25m + 252
2880n

− m(m2 + 6m + 11)2

48(n + 2)2
− 25m5 − 192m4 − 3380m3 − 11580m2 − 16625m + 252

960(n + 2)

+
5m5 − 252m4 − 4720m3 − 26400m2 − 63685m− 2148

960(n + 4)

− 5m5 − 192m4 − 5500m3 − 44700m2 − 152725m + 10332
2880(n + 6)

)
. (19)

For n large relative to m, V ar{n−2Tm} is equal to sum of the variances of m independent one-

dimensional standard Brownian motions, i.e. m/3. A simple check on (14) and (19) is that the

terms in the numerator should have coefficients that sum to zero which, after some algebra, can

be verified. From (13), we see that Tm can be modified into the following unbiased statistic

T ∗m =
∑m

k=1{n(n + 2)}/{(n − k)(n − k + 1)}∑n
j=k+1{R(j, k)/R(n, 0)}2. The properties of this

statistic will not be explored here.

Since n−2Tm is a sum of squares of ratios of quadratic forms in normal random variables

it is reasonable to suppose that its distribution could be approximated by a noncentral χ2

distribution. This distribution can be approximated using a Laguerre polynomial truncated at

some high order. The simplest approximation consists of replacing the noncentral χ2 distribution

by a multiple of central χ2, aχ2
b , say, where a and b are constants chosen so that the approximate

distribution has the same mean and variance as n−2Tm. This implies that a and b are determined

by a = V ar{n−2Tm}/2E{n−2Tm} and b = 2E2{n−2Tm}/V ar{n−2Tm}; see, e.g., Patnaik (1949).

Using Monte Carlo simulations (not shown here), we noted that this approximation to the exact

distribution of n−2Tm is adequate for n = 100, 300, and various values of m.

4 The test statistic n−2Q̂m

4.1 Large-sample distribution

The results of Sections 2 and 3 suggest that, if the model is correctly identified and fitted, the

statistic n−2Q̂m will converge weakly to a vector Brownian motion with independent elements.

That is, we have
m∑

k=1

(∑n
j=k+1(R̂(j, k)/R̂(n, 0))

{K(k)/γ2
0}1/2

)2
⇒ tr{

∫ 1

0
B(t)B′(t)dt}, (20)

where B(t) is the m×1 vector (B(t), . . . , B(t))′. The characteristic function Ψm(t) of tr{∫ 1
0 B(t)

B′(t)dt} is given by
∏∞

n=1{1 − (2/(2n − 1)π)2(
√

2it)2}−m/2. Using the Laplace transform of
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Ψm(t), one can derive the following expression for the limiting distribution function

Ωm(c) = 2(m+2)/2
∞∑

j=0

(−m/2
j

)(
1− Φ

(4j + m

2
√

c

))
, c > 0, (21)

where Φ(·) denotes the standard normal distribution function. The proof of (21) is similar to

the one given by Rothman and Woodroofe (1972) when m = 1. Selected quantiles of (21) are

presented in Table 1. Given the relationship χ2
1(x) = 2Φ(

√
x) − 1, it is clear from (21) that

the limiting distribution of n−2Q̂m is a weighted sum of independent χ2
1 random variables. The

weights are the eigenvalues of a positive definite symmetric matrix.

If {εt} follows a white noise process with κ4 = 0, it is straightforward to see that K(k) = 1

∀k > 1. However, if {εt} is a stationary ARMA process expression (20) indicates that at each lag

k, the large-sample distribution of n−2Q̂m must be adjusted by the factor K(k)/γ2
0 = 2π

∫∞
−∞(1+

e2iλk)f2(λ)dλ/γ2
0 , where the term F (k) has been omitted from (7) because it converges to zero.

For instance, with {εt} AR(1) errors – that is εt = βεt−1 + ut (|β| < 1), where ut are i.i.d.

random variables such that E(ut) = 0, E(u2
t ) = 1, and Cum(ut) = 0 – then K(k)/γ2

0 =

{(2k− 1)β2k+2− (2k + 1)β2k −β2− 1}/(β2− 1), (k > 0). For k = 1 this factor ranges from 1.05

for |β| = 0.1 to 18.86 for |β| = 0.9. Thus, one should be careful in using the quantiles reported

in Table 1 if the departure from the white noise model is too large.

Table 1 about here

4.2 Finite-sample distribution: empirical size

In Section 3, we noted that the finite-sample distributions of n−2Tm can be closely approximated

by a aχ2
b distribution. Thus, if the model has been correctly identified and fitted, we expect

that the statistic n−2Q̂m can also be adequately approximated by a aχ2
b distribution, with the

number of degrees of freedom reduced to b− p∗ due to estimating the p∗ AR parameters in the

model. To study this in more detail, we conduct a small-scale simulation experiment, examining

the empirical size and power (Section 4.3) of the test statistic.

For comparison purposes, we also present results for the statistic QLB
m and a new portmanteau

diagnostic test statistic proposed by Peña and Rodriguez (2002) (hereafter referred to as PR).

The latter statistic is defined by

Dm = n[1− |R̃m|1/m], (22)

8



where R̃m = (R̃(n, i−j)/R̃(n, 0)) ((i, j) = 1, . . . , m+1) is an (m+1)×(m+1) symmetric residual

autocorrelation matrix, with typical element R̃(n, i − j)/R̃(n, 0), constructed by utilizing the

standardized residual autocorrelations R̃(n, k)/R̃(n, 0) = {(n+2)/(n−k)}1/2{R̂(n, k)/R̂(n, 0)}.
Under the null hypothesis that the ARMA(p, q) model is correctly identified and fitted, the

distribution of Dm can be approximated by a gamma distribution, G(α, β), where

α =
3m[(m + 1)− 2(p + q)]2

2[2(m + 1)(2m + 1)− 12m(p + q)]
and β =

3m[(m + 1)− 2(p + q)]
2(m + 1)(2m + 1)− 12m(p + q)

.

To examine the empirical significance levels of the three statistics, we generated 10,000

series of lengths n = 100 and 200 from various AR(1) processes with εt ∼ i .i .d . N(0, 1). The

significance levels of QLB
m are obtained by using percentiles of the χ2

m−p−q distribution, and those

of Dm by using the G(α, β) approximation. As for the n−2Q̂m test, critical values are obtained

from the aχ2
b−p∗ approximation with p∗ = b2n1/5c. All models are estimated by the maximum

likelihood method. To save space, only simulation results are reported for the 5% significance

level. Qualitatively similar results were obtained for a 1% level; they are available upon request.

Figure 1 about here

Figure 1.a) shows the empirical sizes of the three test statistics in the case of a white noise

process (no estimation) for n = 100, and m = 2, 3, . . . , 40. Note that for all values of m, there is

a close agreement between the empirical and nominal size of the test statistic n−2Q̂m (squares).

However, for values of m larger than about 10 the empirical sizes of the QLB
m (Dm) statistic,

are considerably higher (lower) than the nominal level. Figure 1.b) shows the estimated sizes of

QLB
m (triangles) and Dm (dots) for n = 100. Here the data are generated from an AR(1) model

with φ1 = 0.3, and the fitted process is an AR(1) model. Comparing Figures 1.a) and 1.b), we

see that the accuracy of the size of the portmanteau tests QLB
m and Dm depends not only on the

choice of m but also on the underlying parameter value.

Figures 1.c) and 1.d) show the estimated sizes of n−2Q̂m (squares), QLB
m (triangles) for

m = 6, 7, . . . , 40, and n = 100. The data are generated from an AR(1) model with parameters

φ1 = 0.3 and 0.5, and the fitted model is an AR(5), so p∗ = 5. The estimated sizes of Dm (dots)

are computed with m = 14, 15, . . . , 40.2 We see that, for all selected parameter values φ1, the

Dm statistic has considerable size distortions when m is less than about 35. A similar result was

also noticed for n = 200. These results contradict Peña and Rodriguez’s (2002, p. 604) claim
2If m is too small it can happen that the gamma distribution has parameters α ≤ 0 or β ≤ 0, which is

numerically infeasible.
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that “. . . The significance level of Dm does not seem to be affected by the value of m . . .”. For

m > 35 the size properties of the n−2Q̂m and Dm statistics are about the same, but still not

very satisfactory as compared to the QLB
m statistic. The latter test is a clear-cut winner in terms

of achieving proper sizes for almost all values of φ1 and m.

The “size distortion” problem of the Dm test has been noted by other researchers. In

particular, Kwan and Wu (2003) performed an extensive simulation study of the finite-sample

performance of the LB, PR, and Monti’s (1994) portmanteau statistics in testing the adequacy of

various AR(1), MA(1), and nonlinear time series models. Their results reveal that the estimated

sizes of Dm obtained from the gamma approximation are substantially larger than the nominal

level when m is small and the parameter values are close to the boundary of the stationary or

invertible region. Also Lin and McLeod (2006) detected serious size distortions of the Dm test

for AR(2) and ARMA(1, 1) models with m = 10.

4.3 Finite-sample distribution: empirical power

The empirical powers of n−2Q̂m, QLB
m , and Dm were obtained for an AR(1) processes (no es-

timation). To conserve space, we summarize the main results. All three tests achieve similar

powers when m is small (m ≤ 3). This is reasonable because evidence of misspecifications is

likely to occur in the first few residual autocorrelations. However, surprisingly, the estimated

powers of Dm are much higher when m > 3. For the LB and PR test statistics these results are

in agreement with power results reported by Kwan and Wu (2003).

Here we compare the empirical powers of n−2Q̂m, QLB
m , and Dm for the following data

generating process: Xt = φ1Xt−1+εt if t = 1, . . . , n/2 and Xt = −φ1Xt−1+εt if t = n/2+1, . . . , n

with εt ∼ i .i .d . N(0, 1). The overall behaviour of the series generated by this process reflects

the behaviour of the empirical series analysed in Section 5. We restrict the set of φ1 values to

the range 0.1 6 φ1 6 0.4. Values of φ1 < 0 are often less encountered in practice while values

of φ1 > 0.5 represent such a bad identification which would be found by an inspection of the

residual, and squared residual autocorrelations. To make the rejection rates comparable across

statistics, the estimated rejection rates are size-adjusted, i.e. the size being common for all three

portmanteau tests.

Figure 2 about here

Figure 2 shows size-adjusted, empirical power results for n = 100, φ1 = 0.2, and 0.4, at the

nominal level of 0.05. Overall, the results in Figure 2 suggests that n−2Q̂m has good power as
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opposed to the QLB
m and Dm statistics. In particular, when m− p∗ is small n−2Q̂m appears to

work well. It is interesting to see that this kind of simple model misspecification is not easily

found by the traditional QLB
m statistic and the new Dm statistic.

5 Example

We now illustrate our test on a time series Xt of 369 IBM daily closing stock prices, covering

the period 17th May 1961–2nd November 1962. The series is listed in Box and Jenkins (1976)

(Series B). They fitted an ARIMA(0,1,1) model Xt − Xt−1 = εt + 0.09εt−1 to the raw series,

but find evidence of model inadequacy. The inadequacy may be due to a change in the MA

parameter, i.e. a change in the autocorrelation structure. Wichern, Miller and Hsu (1976)

adapted an AR(1) model for the first differences Yt = log(Xt)− log(Xt−1). Figure 3.a) shows a

plot of {Yt}. Subsequently, these authors identified two potential time points for a step change

in the variance, at data points 180 and 235.

Figure 3 about here

Later, Tyssedal and Tjøstheim (1988) reanalysed the {Yt} series. They determined a change

point in the second week of May 1962 (at data point 248). Going back to some historical records

Tyssedal and Tjøstheim noted that the Dow Jones index dropped sharply in May 1962, with on

May 28th its largest fall ever recorded since the 1929 crash. This fall is attributed to a conflict

between the Kennedy Administration and several leading steel corporations. Early April 1962

United States Steel announced a price increase averaging $6.00 a ton, and the other large steel

companies were expected to follow suit. In his public statements President Kennedy escalated

the steel controversy into a crisis; he made it known, through word and symbolic deeds, that his

administration would not stand for the steel companies’ behavior. Figure 3.b) presents plots of

R̂(j, k) =
∑j

t=k+1 YtYt−k against j (j = k + 1, k + 2, . . . , 368; k = 1, 2 and 3). For all values of

k we see changing patterns of R̂(j, k) between j = 230 and j = 250, confirming Tyssedal and

Tjøstheim’s (1988) conclusion.

Table 2 about here

As a start, values of the test statistics QLB
m and Dm (m = 2, . . . , 33) were computed, using

residuals obtained from an AR(1) model fitted to {Yt}. For all selected values of m the test

statistic QLB
m rejects the H0 of white noise at the 5% level, while this is not the case with the
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test statistic Dm. Next, to allow for a fair comparison between the test statistics n−2Q̂m, QLB
m ,

and Dm, we fitted AR(p∗) models to the series {Yt} with p∗ = 5, 6, . . . , 27. In fact, using AIC,

the “best” model identified in the class of pure AR models is an AR(27).

Table 2 provides summary information on the significance of the three test statistics. In the

columns labeled p∗ = 5, 6, . . . , 11, three entries are given: The first entry concerns test results

of n−2Q̂m, the second entry test results of QLB
m , and the third entry test results of Dm. A

“+” denotes significantly different from zero at the 5% level, a “−” denotes not significantly

different from zero at the 5% level; and “×” denotes no results for the Dm test are available for

a particular combination of m and p∗ due to the fact that α ≤ 0 or β ≤ 0; see also footnote

2. In the columns labeled p∗ = 12, 13, . . . , 27, test information is only provided for n−2Q̂m and

QLB
m (2 entries per column). The asymptotic 5% critical values of n−2Q̂m were computed by the

aχ2
b−p∗ approximation.

From Table 2 we make the following observations. When p∗ = 5, n−2Q̂m rejects the H0 of

no residual autocorrelation for m = 6, 7, and 8. Both QLB
m and Dm display similar results for

the entire range of possible values m. When 6 ≤ p∗ ≤ 17, there is no indication to reject the H0

on the basis of the n−2Q̂m test statistic. On the other hand, when 6 ≤ p∗ ≤ 15, QLB
m detects

residual autocorrelation for almost all values of m. The Dm statistic reveals similar results for

p∗ ≤ 11. The lack of model adequacy detected by these last two test statistics is mainly due to

a single significant residual autocorrelation at lag 16.

When 18 ≤ p∗ ≤ 27, similar conclusions about H0 emerge from both test statistics n−2Q̂m

and QLB
m for several combinations of m and p∗. Particularly, the results for (m − p∗) ≤ 4 give

ground to reject the hypothesis of model adequacy at the 5% level. Note, however, that for

p∗ = 26 and 27, n−2Q̂m still provides an indication of model misspecification while this is no

longer the case with QLB
m . Hence, it is recommended not to rely completely on the results of the

QLB
m statistic, with the obvious caveat that our results for n−2Q̂m are intended as an illustration

of the use of the proposed test in practice, not as an in-depth analysis of the series under study.

6 Concluding remarks

A new statistic n−2Q̂m for testing white noise has been proposed. The test is based on partial

sums of lagged cross-products of AR residuals R̂(j, k). These latter quantities may be viewed

as useful complements to the partial sums of squared residual process R̂(j, 0), often used for

detecting parameter changes. Indeed, we showed in Section 5 that n−2Q̂m can aid in determining
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changes in (residual) correlation structure in conjunction with an examination of the sample

paths of R̂(j, k). Moreover, our simulation study indicated that n−2Q̂m has satisfactory null

distribution and power, as compared to two other portmanteau tests, if m − p∗ is properly

chosen. Thus, the proposed test can complement other tests when there is structural change in

the autocorrelations.

Various additional simulations may be considered, including testing the adequacy of nonlin-

ear time series models using squared residuals. This will be an objective of further study. From

a theoretical point of view, we believe that asymptotic results on the higher moments of par-

tial sums of lagged cross-products of residuals, i.e.
∑j

t=k+1(ε̂tε̂t−k)i (i = 2, 3, . . .), are needed.

Based on these results new (robust) goodness-of-fit tests for (non)linear time series processes

with heavy tailed innovations can be developed.
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PEÑA, D. and RODRIGUEZ, J. (2002). A powerful test of lack of fit for time series. Journal

of the American Statistical Association, 97:601-610.

ROTHMAN, E.D. and WOODROOFE, M. (1972). A Cramér von-Mises type statistic for testing

symmetry. The Annals of Mathematical Statistics, 43:2035-2038.

SANJEL, D., PROVOST, S.B. and MacNEILL, I.B. (2005). On approximating the distribution

of an alternative statistic for detecting serial correlation at a given lag. Journal of Probability

and Statistical Science, 3:229-239.

TYSSEDAL, J.S. and TJØSTHEIM, D. (1988). An autoregressive model with suddenly chang-

ing parameters and an application to stock market prices. Applied Statistics, 37:353-369.

WICHERN, D.W., MILLER, R.B. and HSU, D-A. (1976). Changes of variances in first-order

autoregressive time series models - with an application. Applied Statistics, 25:248-256.

YU, H. (2007). High moment partial sum processes of residuals in ARMA models and their

applications. Journal of Time Series Analysis, 28:72-91.

14



Table 1: Some selected quantiles of the test statistic n−2Q̂m for the white noise process {εt}.

Probability

m 0.01 0.025 0.05 0.1 0.5 0.90 0.95 0.975 0.99

1 0.0345 0.0444 0.0565 0.0765 0.2905 1.1958 1.6557 2.1347 2.7875

2 0.1269 0.1603 0.1991 0.2603 0.7575 2.0622 2.6241 3.1859 3.9286

3 0.2645 0.3282 0.3998 0.5082 1.2480 2.8256 3.4596 4.0813 4.8907

4 0.4376 0.5350 0.6412 0.7964 1.7438 3.5410 4.2339 4.9054 5.7703

5 0.6393 0.7714 0.9119 1.1115 2.2414 4.2274 4.9715 5.6863 6.6005

6 0.8642 1.0308 1.2045 1.4458 2.7399 4.8937 5.6840 6.4384 7.3965

7 1.1081 1.3085 1.5139 1.7944 3.2389 5.5457 6.3784 7.1681 8.1664

8 1.3678 1.6011 1.8368 2.1542 3.7382 6.1859 7.0565 7.8802 8.9219

9 1.6411 1.9060 2.1707 2.5229 4.2377 6.8172 7.7256 8.5797 9.6343

10 1.9261 2.2214 2.5138 2.8994 4.7371 7.4418 8.3847 9.2752 10.4964

15 3.4783 3.9126 4.3288 4.8613 7.2358 10.4867 11.6476 12.5856 13.8400

20 5.1761 5.7311 6.2536 6.9106 9.7352 13.4313 14.6504 15.7716 17.1512

25 6.9582 7.6310 8.2478 9.0150 12.2348 16.3271 17.6573 18.8744 20.3647

30 8.8277 9.5888 10.2912 11.1581 14.7345 19.1840 20.6147 21.9194 23.5027
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Figure 1: Empirical significance levels of n−2Q̂m (squares), QLB
m (triangles), and Dm (circles),

n = 100, 5% nominal significance level; a) white noise, b) true model AR(1) with φ1 = 0.3 and
fitted model AR(1); c) true model AR(1) with φ1 = 0.3 and fitted model AR(5); d) true model
AR(1) with φ1 = 0.5 and fitted model AR(5).
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Figure 2: Empirical powers of n−2Q̂m (squares), QLB
m (triangles), and Dm (circles) for Xt =

φ1Xt−1 + εt if t = 1, . . . , n/2 and Xt = −φ1Xt−1 + εt if t = n/2+1, . . . , n with φ1 = 0.2 (bottom
three lines) and φ1 = 0.4 (top three lines); n = 100.
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Figure 3: a) Plot of Yt = log(Xt) − log(Xt−1), for the IBM stock price data; b) Plots of
R̂(j, k) =

∑j
t=k+1 YtYt−k against j (j = k + 1, k + 2, . . . , 368; k = 1, 2, 3).
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