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Abstract

We construct higher order expressions of (weak instrument robust) generalized method
of moment (GMM) test statistics. We use these expressions to obtain Edgeworth approx-
imations of their finite sample distributions and to show the sensitivity to instrument
quality. The Edgeworth approximations show that usage of bootstrapped critical values
that result from resampling the moment conditions reduces the order of the approxi-
mation error of the finite sample distribution of the weak instrument robust statistics
compared to usage of the asymptotic critical values. These results even hold when the
instruments are weak and thus extend previously known results on the bootstrap and the
Edgeworth approximation. We illustrate the resulting reduction of the size distortions
and conduct a power comparison using a panel autoregressive model of order one.

JEL classification: C11, C20, C30

1 Introduction

Two common approaches for reducing size distortions of test statistics are to Edgeworth-
correct the asymptotic critical values, see e.g. Rothenberg (1984), and usage of bootstrapped
critical values, see e.g. Horowitz (2001). Both of these approaches remove the approximation
error of the finite sample distribution of the test statistics up to a higher order in the sample
size than the limiting distribution. This leads to a reduction of the size distortion when we
use critical values that result from these procedures compared to the asymptotic ones. The
regularity conditions under which the Edgeworth approximation, see e.g. Bhattacharya and
Ghosh (1978), and the bootstrap, see e.g. Horowitz (2001), improve the approximation of
the finite sample distribution request that the hypothesized parameters are well identified.
Parameters that are estimated in the generalized method of moments (GMM) with weak
instruments are not well identified, see e.g. Staiger and Stock (1997) and Stock and Wright
(2000). Thus the Edgeworth approximation and bootstrap fail to improve the approximation
of the finite sample distributions of test statistics in GMM with weak instruments.
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To overcome size distortions in GMM with weak instruments, test statistics have been
proposed whose limiting distributions are robust to instrument quality, see e.g. Stock and
Wright (2000) and Kleibergen (2005). The limiting distributions of these statistics apply
under more general conditions than those of the traditional GMM statistics. These limiting
distributions therefore typically lead to a better approximation of the finite sample distribution
than for the traditional GMM statistics. We further improve the approximation of the finite
sample distribution of the weak instrument robust GMM statistics by constructing Edgeworth-
corrections of the asymptotic critical values and an algorithm for obtaining bootstrapped
critical values. We show that usage of either the Edgeworth-corrected critical values or the
bootstrapped critical values reduces the order of the approximation error of the finite sample
distribution. These improvements remain to hold when the instruments are weak and show
that Edgeworth approximations can be constructed even when the parameters are weakly
identified. This provides an extension to the results put forward in Bhattacharya and Ghosh
(1978).

The paper is organized as follows. In the second section, we introduce GMM and define
our GMM statistics of interest: the S-statistic of Stock and Wright (2000), the GMM La-
grange multiplier (LM) statistic of Kleibergen (2005), a GMM extension of Moreira’s (2003)
conditional likelihood ratio statistic and the GMM LM statistic of Newey and West (1987).
The second section also makes the assumptions under which we derive our results. In the
third section, we decompose the statistics into several components that are of a different order
in the sample size. The fourth section provides an algorithm to bootstrap our statistics of
interest and decomposes the bootstrapped statistics into several components that are of a
different order in the bootstrap sample size. The fifth section discusses Edgeworth approx-
imations to the finite sample distributions of the orginal statistics and their bootstrapped
counterparts. The Edgeworth approximations show the higher order improvement that re-
sults from the bootstrap. The sixth section illustrates the theoretical results and conducts a
simulation experiment using a panel autoregressive model of order one. It shows that usage of
bootstrapped or Edgeworth-corrected critical values reduces the size distortion compared us-
age of critical values that stem from the limiting distribution. The sixth section also conducts
a power comparison. The seventh section briefly discusses some further extensions. The eight
section concludes.

Throughout the paper we use the notation: I, is the m x m identity matrix, Py, =
A(A’A)7LA for a full rank n x m matrix V and M4 = I,, — P4. Furthermore, “—” stands

p
for convergence in probability, “7” for convergence in distribution and E is the expectation

operator.

2 Generalized Method of Moments

We consider the estimation of a scalar parameter # whose parameter region is R and for which
the k£ x 1 dimensional moment equation

B(f(0,Y;)) =0, i=1,...,N, (1)

holds. We use a scalar parameter instead of a vector of parameters to simplify the analysis.
We later show how the results extend to the multiple parameter case. The data vector Y; is
observed at individual/time i. The number of equations k exceeds or is equal to the number
of parameters. The k x 1 dimensional vector function f of € is finite for finite values of 6,



continuous and twice continuous differentiable. The unique value of 6, at which (1) holds, is
equal to fy. To estimate € in (1), we use Hansen’s (1982) GMM.
For a data-set (Y;, i = 1,..., N), the objective function for the continuous updating esti-
mator (CUE) reads )
Q) = N fx(6.Y) Vs (0) ™ fu(6,Y), @)

with fy(0,Y) = % ST £i(0), fi(8) = £(,Y;). The covariance matrix estimator V;;(0) that
we use in (2) is the Eicker-White covariance matrix estimator, see Eicker (1967) and White
(1980). Usage of the Eicker-White covariance matrix estimator implies that we do not allow
for dependence between the moments. This is done for expository purposes and we discuss how
to deal with dependence between the moments later. We make extensive use of the derivative
of the moment functions

QN(& Y) = % sz\il (]AQ), (3)

with ¢;(0) = -3 fi(f). We use the Eicker-White covariance matrix estimator as well to estimate
the covariance between the moments and their derivatives. Thus we employ the covariance
matrix estimators:

Vir(0) = & 30 Fil0)F(0) — fn(0,Y) fn(6,Y),
Var(0) = % 2021 @(0) £i(0) — an (0, Y) fn (0, Y, (4)
W) = 30 a(0)a(0) — an(0,Y)an(0,Y),

of the covariance matrices V; ¢ (0) =E(f:(0) f:(0)"), V5 (0) =E(q:(0) f:(0)") and V,,(0) =E(q;(0)3:(0)’),
where f;(0) = f;(0) — fx(0,Y) and §;(0) = ¢:(0) — qn(0,Y). Alongside the independence of
moments across individuals/time, we make some other assumptions. We have grouped all
assumptions in Assumption 1.

Assumption 1. Under Hy : 0 = 6y, the following assumptions hold jointly:

a. The vectors of moments and derivatives (f;(0)" : ¢:(0)")" are independent across individ-
uals/time.

b. For dl(t%) . dl(t%) = ql(t%) — %f(HO)fo(QO)_lfi(HO), it holds that:

E(fi(00)|di(00)) = 0
E(fi(6h) fi(0o)'|di(00)) = Vif(6o) (5)
E(fi(00) fi(00)" @ fi(00) fi(00)'|di(60)) = E(fi(00) fi(00) @ fi(0o) fi(0o)’)-

c. The sixth order moments of f;(0o) and d;(6y) are finite.

Assumption la has been discussed before and justifies usage of the Ficker-White covariance
matrix estimator. Assumption 1b implies that the first, second and fourth order conditional
moments of f;(6y) given d;(fy) are equal to the unconditional moments. The covariance (central
moment) between d;(0y) and f;(0y), fi(0o)fi(00)" and f;(0o) fi(6o) @ fi(00) f:(0)" is equal to zero
because of Assumption 1b. The conditional mean and variance assumptions in Assumption
1b are necessary for the absence of any zero-th order bias in the weak instrument robust
statistics. Assumption 1c is such that the N~2-th order components of the statistics that we
analyze have a finite mean.



Under Hy, d;(0y) is an (infeasible) estimator of the derivative of f;(#) with respect to
0 that is uncorrelated with f;(6y). The zero covariance between d;(6y) and f;(6y) holds by
construction. Assumption 1b implies that the zero covariance between d;(6y) and f;(6y) and
the zero mean of f;(fy) result from the conditional moment restriction: E(fi(6o)|d;(6p)) = 0.
Besides a conditional first moment that does not depend on d;(y), Assumption 1b implies
that the conditional second and fourth moments of f;(6y) do not depend on d;(0y) as well.
Any conditional heteroscedasticity or leptokurticy of f;(6p) is thus not a function of d;(6). A
sufficient condition for Assumption 1b to hold is that f;(fy) and d;(fy) are independent.

A feasible estimator of the mean of d;(6) is

Dy(8,Y) = an(6,Y) — Vyy (0)Vy1(6) fu (6.Y). (6)

Corollary 1. Under Hy : 0 = 0y and Assumption 1, /N fn(00,Y) and VN [ﬁN(QO, Y)— Jg(Qo)],
with Jo(0o) =E[qi(00)] , have independent normal limiting distributions with mean zero and co-
variance matrices Viz(0o) and Vag(0o) = Vaq(00) — Var(00)Vis(00) 1V (6o)'.

Proof. see Kleibergen (2005). m

The asymptotic independence of fy(f,Y) and Dy (,,Y) allows for the construction of
test statistics that test Hy and whose limiting distributions are robust to zero values of Jy(6y).
We use Assumption 1 to determine the higher order properties of three of these statistics and
one whose limiting distribution is only valid under a non-zero value of Jy(6y).

Definition 1. Four different statistics that test Hy : 0 = 0, are:

1. The S-statistic, see Stock and Wright (2000), which is the generalisation of the Anderson-
Rubin statistic, see Anderson and Rubin (1949), towards GMM,

S(00) = N fn(00,Y) Vis(00) " fn(60,Y). (7)

Under Hy and Assumption 1, the S-statistic has a x2(k) limiting distribution regardless
of the value of Jp(6y).

2. The KLM-statistic which is a GMM-Lagrange multiplier (LM) statistic based on the
CUE, see Kleibergen (2005):

KLM(f) = N fx (00, V) Vs(00) " Duv(00, ) [ Dy (00, Y ) Vyy(60) ™ Doy (00, Y)| B

Dy (00, Y ) Vis(00) (6o, Y).
(8)
Under Hy and Assumption 1, the KLM-statistic has a x?(1) limiting distribution regard-
less of the value of Jy(6y).

3. The GMM-MLR-statistic which is Moreira’s (2003) conditional likelihood ratio (LR)
statistic applied in a GMM-setting, see Kleibergen (2005):

GMM-MLR () = %[S<eo>—r<eo>+¢<s<eo>+r<eo>>2—4[s<eo>—KLMwo)]r(eo)) ,
(9)



A ~ ~ ~ ~ -1 4
with t(6)) = NDy(0o,Y) {qu%) - v;f(eo)vff(eo)—lqu(eo)] Dn(60,Y). Under H,
and Assumption 1, the GMM-MLR statistic has a conditional limiting distribution given
r(fy) in which KLM(6y) and S(6y)—KLM(6y) have independent x*(1) and x*(k — 1)

limiting distributions.
4. The GMM-LM statistic, see Newey and West (1987):

-1

LM(0g) = N f(00,Y) Vy(00)an (60, Y) [QN(%,Y)'fo(Ho)_IQN(eoaY)
v (00,Y) Vi(00) " (00, Y).

Under Assumption 1 and when Jy(6y) has a non-zero value, the GMM-LM statistic has
a x%(1) limiting distribution.

(10)

The above four statistics are commonly used to test the parameters in models that are
estimated using GMM. The (conditional) limiting distributions of the S, KLM and GMM-
MLR statistics are robust to weak instruments while that of the GMM-LM statistic is not.
We added the GMM-LM statistic to illustrate the issues associated with GMM statistics that
are not robust to weak instruments. Since these issues are similar for all non-robust statistics,
we just discuss them for the one for which they are the most straightforward to obtain.

3 Higher order expansions

We construct the higher order expressions of the statistics from Definition 1 by replacing
the covariance estimators involved in these statistics by Taylor expansions around their true
values. For the S-statistic, S(fy), this implies that we use a Taylor approximation of Vj(6o)
around V;¢(0o) while for the KLM statistic, KLM(#), we use Taylor approximations of both
Vir(60) and Dy(6,Y) around V;(6y) and Dy(6p,Y) = %21]11 d;(0p) resp.. The Taylor
approximations of these estimators are stated in Lemmas 1-8 in Appendix A.

Theorem 1 states the higher order expressions of the four statistics from Definition 1.
The order of the different components of the statistics results from the convergence rate of
the expectation of these components given Dy (6y,Y). For the non-robust GMM-LM statistic
(10), Theorem 1 just states some of the elements of its higher order expression. These elements
suffice to show the dependence of the limiting distribution of the GMM-LM statistic on the
quality of the instruments.

Theorem 1. Under Hy and Assumption 1, the higher order expressions of the statistics from
Definition 1 read:
1. For the S-statistic (7):

S(00) = So + +51 + Op(55), (11)

where
So = Nfn(00,Y)'Vis(00) " fn(00,Y) — x*(k)
St= =N2fx (0, YYVi(00) ™ [Vys(00) = Vis(0)| Vis(00) M fw(Bo, V) (12)
B(S1) = —S52E [(£(00)Vis(00) " fi(00))7] + 22 12 + 28] + k.



2. For the KLM-statistic (8):

KLM(0o) = K LMo + § K LM, + 2= K LM; + O,(52), (13)
where
KLMy= Nfx(0,Y)V(0) 2P 1 Vip(0) 2 fn(6,Y)

Vir(0)"2DnN(0,Y)
KLMy = =N*fu(@.Y)VirO) 2P, oy o0 Vin(0) 7% [Vig(0) = Vig (0)]
fo(9)_%PVH(@)-%DN(97y)fo(9)_%fN(9;Y)—
2N fn (0, Y)’fo(9)’%PVH(@)*%DN(W)fo(@’% [fo(9) = fo(9)]
fo(Q)_%vaf(e)f%DNw’ Vi (0)72 fn(6,Y)
KLM, = —ZNQ\/NfN(‘97Y),fo(‘9) M, 1 (6)~3 Dy (9y)vff(9)_%%f(‘9)vff(9)_lfN(97Y)
(D (0, YYV5(0) D (0.Y)] " D0, Yy V3 (0) £ (0.7,
with Vys(0) = v L SN di(00)f(80) — Dn(00,Y) fn(60,Y), and the conditional e:z:pectatw?"fslil)}
these elements given Dy(0o,Y") read:
E[KLMo|Dy(00,Y)] = 1
E[KLM;|Dy(600,Y)] —NT_{ |i<f7,(9()) Vip(0o) 2P Vs 1(60)-3 D60, fo(é’o)%fi(go)y N
2fi(6o) fo(9o)*5Pfo(90)f%DN(9 vy Vis(o)” 2 fi(6o) f:(00) Vs (60) 2

Vi (80)~2 £i(00)| D (G0, )} T 1)} 41

fo(ao)iéDN(QmY)
E \/NKLMQIDN(QO,Y)] = 0

(15)
3. For the GMM-MLR statistic (9) given r(fy):
GMM-MLR(fp) = 1 [50 —1(6o) + \/ (So +1(00))% — 4[So — K LMy r(@o))} +
1 So—1(00) g (16)
2N { Vo007 150 KLMoaoy | 1T
L (6) KLM, + =KLM,) + O,(<5).
N Jermmr—aiso—ramagy L LM R B LMe) + Ol)

4. A part of the higher order expression of the GMM-LM statistic (10) reads:

LM (0) = KLMy+ LLM,; + Ltr (LMDl (Dn(0,Y)V;(0) ' Dy (0,Y)) " Dy (6, Y)/fo(e)*l) +
s LMp, (D (0,Y)'Vi;(8) ' Dn(0,Y)) ",
(17)
where
LMy = =2N?fu(0,Y)'Vig(0) ™ | V4(0) = Vyy(6)] Vs (0) D (0, Y)
(Dn(0,Y)'Vys(0) " D (0, Y)) "D (0,Y) Vir(0)7 (6, Y)
LMp, = 2N { fx(0,Y) fx(0,Y)'Vip(0) Vs (O)Vyp(0) ™ (0,Y) — | Vis(6) = Vig (0)] Vi (6)
fn(0,Y) fn(0,Y ) Vip(0) ™ Var (0) Vi (0) fn(6,Y)}
LMp, = N{fx(0,Y)Vis(0) 7 Var(0) Vi (6) 7 (6,7} "



and the conditional expectations of these elements given Dy(6o,Y") read:
E(LM:|Dn(0o,Y)) = 2 —2tr {E [£:(80) £:(60)' V£ (60) ™ fi(Bo) f:(00))') Vs (B0) 2

fowo)—%DN(eo,Y)fo(e‘))f%}

E(LMp,|Dn(00,Y)) = 2E[fi(60) fi(00) Vi (00) " Var(00) Vi (00) " fi(00)Vis (o)~ D (6o, Y)] —

2R {tr(Vip(00) Vo (60))E (fi(00) Vis(00) " fi(60) fi(Bo)' | D (60, Y)) +

E (fi(60)' Vi (00) " Var(00)' Vi (00) " fi(00) fi(60)' | Dn (60, Y)) +

E (fi(00)' Vi(00) " Vs (00) Vi (00) " fi(00) fi(Bo) | D (6o, Y)) } —

FELfi(00) Vi (00) ™ Vs (00) Vi (60) ™ fi(60) fi(B0) Vi (80) " filBo) fi(Bo)

| D (00, Y)] = %E (fi(B0) Vi (80) ™ Var(00) Vi (6o) " fi(60) fi(60)' | Div (6o, Y'))
E(LMp,|Dn(00,Y)) = (N —1) {[’Uf(fo(90)_1‘/qf(90))]2 + tr(Vyp(00) " Vor(00)Vip(00) ™ Vor(60)') +

tr(Vip(0o) Vs (00)Vir(0o) Vs (60)) } +
E [£i(00)'Vi£(00) Vs (00)Vyr(00) ' £(00))?] -

(19)
Proof. see Appendix B. m

We determined the order of the different elements in the higher order expressions in The-
orem 1 using the conditional expectations given Dy (6y,Y"). To construct these conditional
expectations we first construct the conditional expectation given d;(6y), i = 1,...,N — 1,
and Dy (0p,Y) and then integrate this conditional expectation with respect to d;(6y), i =
1,..., N — 1. Since the conditional expectations just depend on Dy(fy,Y), the latter integra-
tion step does not alter the expressions. We use Assumption 1b to construct the conditional
expectations given d;(fp). The S-statistic does not depend on Dy (g, Y) so Dy(0o,Y") does
not influence the higher order expression of S(f).

The conditional expectation of the different elements of the higher order expression of
KLM(6g) : KLMy, KLM; and KLM,, depend on Dy (60y,Y) but are invariant with respect
to its length. Since they therefore only depend on the direction of Dy(6y,Y), the order of
the conditional expectations does not depend on Dy (6y,Y) and is as stated in Theorem 1.
The equality of the unconditional expectation of f;(6y)f;(6o) and its conditional expectation
given d;(f) is a necessary assumption for KLM(f) to converge to a x?(1) distributed random
variable. If we do not make this assumption, the zero-th order element K LM, alters and no
longer converges to a x2(1) distributed random variable.

The higher order elements of KLM(fy) : K LM; and K LM, result from the different covari-
ance estimators that are involved in KLM(f) : K LM, results from Vf #(0) while K LM, results
from (the infeasible covariance matrix estimator) Vjs(6y). K LM, is therefore comparable to
the S higher order element of S(fy) which also results from V;(6). It is interesting to note
that the higher order element that results from Vjf(6y), i.e. K LMs,, is of a lower order than
the one which results from V;(6), i.e. K LM,. This results from Assumption 1b. Assumption
1b implies that

E[di(00) { £:(00)' Vi1 (00) " fi(00) — £5(00)'Vis(00) " f;(00)} |i # J] =0«

E (di(00) fi(00)' Vi (00) " fi(00)) — E(di(00))E (fi(00)' Vi (0o)~" fi(fo)) =0 (20)
and a similar expression holds for the fourth order moment. Hence,
(2 00) Viston) (X, 60)] -

321 di(00) { £:B0) Vi (60) 7 £i(00) = & S0 s f5(B0) Vi (60) £y (60) } — 0.

7



In the K LM, higher order term, fo(é)_% Vo (0)V(0) " fx(0,Y) is pre-multiplied by vaf(eo)*%DN(eo,Y)

which is a projection on the space orthogonal to Vjs (60)"2Dn(60,,Y). Equation (21) de-
scribes the convergence behavior of Vys(8)Vy;(6) ! fx(6,Y) and shows that it is proportional to
Dn(00,Y) =+ SN di(6o). The projection matrix Mfo(Go)*%DN(Oo,Y) maps V(0) 2Dy (6o, Y)
onto zero which explains why K LM, is of a lower order than K LM;. Thus the higher order
elements that result from Vj;(6) are of a lower order than those that result from V(6y).
The higher order expression of GMM-MLR(6y) stated in Theorem 1 is conditional on r(6y).
It is therefore obtained using a Taylor expansion with respect to the other two components of
GMM-MLR(6) : S(6p) and KLM(6). Identical to KLM(6), all 1-order components of the

higher order expression of GMM-MLR(f,) given 1(6) result from V;(6y).

The higher order expression of LM(fy) in Theorem 1 just states some of the higher order
elements of LM(fy). We only want to show the dependence of the higher order elements of
LM(6y) on Dy (6o,Y) for which we do not need the full higher order expression. We use the
conditional expectation given Dy (6y,Y") to show this dependence. The elements of LM(6y)
in Theorem 1 are such that both LMp, and LMp, are multiplied by a function that is not
invariant with respect to the length of Dy(6p,Y). The conditional expectations show that
LMp, is at most of order zero in N. Multiplied by (Dx(0,Y)V;(6) " Dn(6, V) Dy(0,Y)
and divided by N, the full contribution of LMp, is at most of order \/—lﬁ, which occurs when

Jp(0) equals zero such that (DN(Q,Y)’fo(ﬁ)*lDN(Q,Y))_l Dn(0,Y) is of order /N, so it
can not alter the limiting distribution of LM(fy). The conditional expectation of LMp, is
proportional N. When Jy(6y) equals zero, (Dy (6, Y)’\/ff(t9)_1D]\/(t9,Y))f1 is proportional to
N as well so LMp, changes the limiting distribution of LM(0) in this case since it leads to an
element of zero-th order in NV in the higher order expression of LM(fy). This explains why the
limiting distribution of LM(fy) depends on Jy(6y). The same result can be shown for other
GMM statistics that are not robust to weak instruments as well. For reasons of brevity, we
refrain from showing this for these statistics.

4 Bootstraping weak instrument robust statistics

The N~'-th order components of S() and KLM(f) stated in Theorem 1 both result from
the estimation of V() and are the highest order components present in S(¢) and KLM(0)
besides the zero-th order terms. This suggests that we can obtain a bootstrap approximation
of the finite sample distribution of both S(f) and KLM(#) by just resampling f;(6y) with
replacement!. When we condition on r(6y), GMM-MLR(6) only depends on S(6) and KLM(6)
so we obtain a bootstrap approximation of the conditional finite sample distribution of GMM-
MLR(fy) given r(6y) along the same lines. Theorem 1 shows that the limiting distribution of
LM(#) depends on nuisance parameters so we can not construct a bootstrap algorithm that
resamples LM(#) and that approximates the finite sample distribution of LM() for all values
of the nuisance parameters. We therefore do not construct a bootstrap algorithm for LM(6).

A bootstrap algorithm to approximate the finite sample distributions of S(6y), KLM(6,)
and GMM-MLR(6y) reads:

'We resample f;(fy) instead of f;(y) because the moment condition does not hold for the realized obser-
vations f;(0p), i =1,..., N, see e.g. Hall and Horowitz (1996).



Bootstrap algorithm:

1. Compute D ~n(0o,Y) and r(0y) and set bootstrap sample size B and number of simulations
I.

2. Fori=1,...,1:

(a) Sample {f7(0), j = 1,..., B} independently with replacement from {f;(6,), j =
LN} B
Pr [fj*(eg) :fl(e())} = %, = 1,...,N. (22)

(b) Compute:

f500,Y)i= 5
Vi(0o)i = 3
{

from the bootstrap sample

i1 £7(00) £5(80) = fi(60,Y) 500, Y )
fi(00), j=1,...,B}.
(c) Compute:
S*(00)i = B/f5(0o,Y);Vy;(00); f (00,Y);
KLM*(QO)i: BfB(eoay)i‘/ff(e) PV L (00); QDN(Q Y)fo(eo) fB(907 )
GMM-MLR"(6o); = 3 [S*(60): — 1(60)+
¢ (S*(6): + r(00))* — 4[3° () — KLM"(60),] r(6))

(24)

3. Construct the (conditional) bootstrap distributions of S(6y), KLM(6y) and GMM-MLR(6,)
from the sample {S*(6y);, KLM*(6p);, GMM-MLR*(6y);, i = 1,...,1}.

The bootstrap algorithm is such that E*(f5(00,Y);) = 0, EX(Bf5(00,Y):f5(00,Y).) =
Vi(6) and E*(V7:(6o)i) = V;£(0), where E* is the expectation operator with respect to the
resampling distribution. The above algorithm just bootstraps a sample mean and Assumption
1 is a sufficient condition for the bootstrapped sample mean to satisfy a central limit theorem.
Moreira et. al. (2004) show the validity of the bootstrap for the linear instrumental variables
regression model.

Identical to Theorem 1, higher order expressions for the bootstrap statistics can be con-
structed. These are stated in Theorem 2.

Theorem 2. Under Hy and Assumption 1, the higher order expressions of the bootstrap
statistics S*(0y), KLM*(0y) and GMM-MLR*(0y) defined in (24) read:
1. For the S*-statistic:

S*(00) = S5 + 557 + Op(g2), (25)
where fE(Ho, Y) = % Eszl f; (90)7

S5 = Bf5(00,Y)Vis(00) " £5(00,Y)

Si= B 500, Vi) [Vig00) — V300)] V00 00,y Y

9
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and B(S§) = k and F*(S7) = — 251 {% S0 (Fi00) Vs (00) 2 ilBo) )+ K2 + 2k1} + k.
2. For the KLM*-statistic:

KLM*(6y) = KLM; + %KLMI* + Op(é), (27)
where

KLMg = BfE(HO’Y)"A/f{(eO)_an/ff(eo)%DN(QO,Y)Vf{(Qo)_EfE(QO,Y) A )
KLMi = =Bfj00,Y)Vir(00) 28, o 1p 000y V7700) 72 |Vip(00) = Vi (Bo) | Vip(00) 2
Pfo(QO)iébN(GO,Y)fo(90)75f5<907 Y) - 23f2§<90, Y)/fo<00)7§P‘”/ff(ao)*%ﬁN(ao’Y)vff(eo)ii

[fo(QO) - fo(eo)} fo(90)75MVH(GO)%DN((,O’Y)‘A/ff(HO)*Efé(em Y)

and E* [KLM(;]DN(QO, Y)] ~1,

B [KLMHDN(GO,Y)] = -5 {% POl

Ji(Bo) ff(eO)i%MA (00)*%DN(90,Y)fo(90)7%ﬁ'(eo)) —2(k + 1)} + %.
(29)
3. For the GMM-MLR*-statistic given r(0):

GMM-MLR(0p) = 1 {sg —1(6y) + \/ (S +1(00))* — 4[Ss — KLM) r(@o))l +

T S—1(00) } =
2P { V(85+1(00))"~415(00) - K LM (@0)}x(00)) |

1 r(6o) KLM + O (L),
b \/(SS+r(90))274[55‘7KLM5]r(90)) 1 p(Bz)

Proof. see Appendix B. The results for the GMM-MLR statistic follow from Theorem 1
and Theorems 2.1 and 2.2. m

The higher order expressions of the bootstrap statistics in Theorem 2 are identical to those
of the orginal statistics in Theorem 1. They are also such that the expectations of the higher
order elements converge to the same limits when B equals N and N goes to infinity. This
holds since

Dn(00,Y) = Dn(00,Y) — Vas(00) Vs (00) L fx (00, Y) + Op( %), (30)

which is stated in Lemma 2 in Appendix A, and Vj;(f) converges to zero such that Dy (6o, Y)
and Dy(fp,Y) have the same convergence behavior. This suggests that usage of the boot-
strap distributions of the statistics to determine their significance leads to a higher order of
precision in terms of the order of the sample size compared to the limiting distribution. To
verify this statement we construct the Edgeworth approximation of the statistics and of their
bootstrapped counterparts.
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5 Edgeworth Approximations

The regularity conditions from Bhattacharya and Ghosh (1978) for constructing the Edge-
worth approximation of the marginal finite sample distribution of KLM(f,) are such that
E(Dn(00,Y)) = Jg(6y) # 0. Thus the Edgeworth approximation that results from Bhat-
tacharya and Ghosh (1978) does not allow for weak instruments. We therefore construct
an Edgeworth approximation of the conditional finite sample distribution of KLM(fy) given
Dy(6,Y) that allows for weak instruments. This Edgeworth approximation is based on the
conditional characteristic function of KLM(fy) given Dy(6y,Y). For this characteristic func-
tion to exist, Crameér’s condition has to hold.

Assumption 2. Cramér condition: for a k-dimensional vector t € R¥, it holds that
1im‘|t||ﬂoo sup ’E [exp(it/fj(ﬁo)ﬂdi(ﬁo)]] <1l,57=1,...,N. (31)
We construct the Edgeworth expansions of the S and KLM-statistics and their boot-

strapped counterparts. The Edgeworth expansions are stated in Theorem 3.

Theorem 3. A. Under Hy and Assumptions 1 and 2, the Edgeworth approximations of the
(conditional) finite sample distributions of S(0y) and KLM(0y) read:
1. For S(b,) :

Pr(S(6y) <] = Pryegy () — =2500p 20 (2) + O(N2)

%E(,fl)x) +O(N72),

(32)

= Prxz(k) €r—

where Pryz2y(x) and py2g (@) are the distribution and density function of a x*(k) distributed
random variable evaluated at x and E(S}) is defined in Theorem 1.
2. For KLM(0y) :

Pr[KLM (6) < z|Dn(00,Y)] = Preq)(z) + + (az + bv27) py2qy(z) + o( N7

) 33
= Preq) (z+ & (az + bv27z)) + o(N71), (33)
where
N—1 / -1 -1 2 1
a= “F1E (fz'(eo) Vir(00) 728y, o003 by ooy V1 (00) 2fz'(90)> ] —4} - N
b= S B fl00) Vis(Oo) 2P, 4100 Vi (00) 72 fil00) (34)
FiO0Vis(B0) M, (g Vis(00) 2 £i00)] b = (k= 1),

B. Under Hy and Assumptions 1 and 2, the Edgeworth approximations of the finite sample
distributions of bootstrapped S(0y) and KLM(0y), S*(0y) and KLM*(0y), read:
1. For S* () :

Pr[S*(6p) < z] = Pryeg (x — %E(if)x) + O(B72), (35)

where E(SY) is defined in Theorem 2.
2. For KLM*(6,) :

Pr [KLM* () < | D (60, Y)} — Prew (@) + L (a"z + °V277) peay(x) + o( B

36
= Preq (z+ 5 (a*z +b"V2rz)) + 0o(B™Y), (36)
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Proof. see Appendix B. m

Since E(S7) converges to E(S7) and a* and b* converge to a and b when B equals N and
N goes to infinity, the Edgeworth approximations of the bootstrapped statistics converge to
those of the orginal statistics when B equals N. Usage of bootstrapped critical values then
leads to a higher order efficiency gain, see e.g. Horowitz (2001).

Corollary 2. Under Hy, Assumptions 1 and 2 and when B equals N, the bootstrap critical
values that result from S*(0y) and KLM*(6y) remove the approximation error of the (condi-
tional) finite sample distribution of S(0) and KLM(9) up to/including the order +.

Corollary 2 shows that the bootstrap can provide higher order efficiency gains even in cases
when the parameter of interest is not identified. Corollary 2 therefore extends the previously
known results for the bootstrap which only apply to well identified cases.

Theorem 3 only states results for the S and KLM statistics and not for the GMM-MLR
statistic. Given r(#), the GMM-MLR statistic is only a function of the S and KLM statistics.
The S and KLM statistic are not asymptotically independent but the GMM-MLR, statistic
can as well be specified as a function of

JKLM(6) = S(6) — KLM(6), (38)

GMM-MLR(fp) = & [KLM(fl) + JKLM(6p) — r(6o)+
\/ (KLM(0g) + JKLM(0g) + r(65))* — 4TKLM(6)r(60))

(39)

Under Hy and Assumption 1, the JKLM statistic converges to a x*(k — 1) distributed ran-
dom variable which is independent of the x*(1) random variable where the KLM statistic
converges to, see Kleibergen (2005,2006a). The JKLM statistic can easily be incorporated in
the bootstrap algorithm in Section 4 which using Theorem 3 can then also be shown to lead
to a higher order efficiency gain for approximating the conditional finite sample distribution
of JKLM(6). The bootstrapped critical values of GMM-MLR(#) that result from bootstrap-
ping KLM(f) and JKLM(f) also lead to a higher order efficiency gain for the GMM-MLR
statistic since this statistic is just a function of KLM(#) and JKLM(#), as r(f) is fixed, and
the bootstrap leads to a higher order efficiency gain for both of these statistics.

Corollary 3. Under Hy, Assumptions 1 and 2 and when B equals N, the bootstrap critical
values that result from GMM-MLR*(0y) remove the approximation error of the conditional
finite sample distribution of GMM-MLR () given r(0y) up to/including the order .

It is not possible to construct an Edgeworth approximation of the conditional finite sample
distribution of GMM-MLR(#) given r(f) since the analytical expression of the conditional
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characteristic function of GMM-MLR(6) given r(f) is unknown. We can therefore not proof
the higher order gains from the bootstrap using the Edgeworth approximation for GMM-
MLR(6). Thus the higher order improvement of usage of bootstrap critical values for GMM-
MLR(0) can only be verified using the argument that the bootstrap leads to a higher order
improvement for KLM(6) and JKLM(6) and GMM-MLR(#) is, given r(f), just a function of
these two statistics.

Besides using the bootstrap to achieve higher order improvements for approximating the
(conditional) finite sample distributions of S(#) and KLM(#), the Edgeworth approximations
from Theorem 3 can be used for this purpose as well. It is interesting to note that the
Edgeworth approximations of the (conditional) finite sample distributions of S(¢) and KLM(6)
are almost identical when the f;(0)’s are normally distributed. In that case, E(S;) =k, a = —1
and b = 0 so the corrections of the critical value is (1 — &)z for both S(f) and KLM(9).

6 Power and size comparison for Panel AR(1)

We illustrate the size improvements from using bootstrap or Edgeworth-corrected critical
values for a panel autoregressive model of order one: panel AR(1). An elaborate literature on
panel autoregressive models exists, see e.g. Anderson and Hsiao (1981), Arellano and Bond
(1991) and Arellano and Honoré (2001). For individual i at time ¢, the panel AR(1) model
reads

yt,izci—l—ﬁyt_l,mtsm tzl,...,T,izl,...,N. (40)

A sufficient condition for Assumption 1 to hold is that the disturbances ¢;; are independently
distributed with mean zero and finite sixth order moments. We take first differences to remove
the individual specific effects ¢;, i =1,...,N:

Aytﬂ; :HAyt—17i+A5t,i t:2,...,T, 1= 1,...,N, (41)

with Ay,; = y; — y—1,;. Estimation of the parameter 6 in (41) by means of least squares leads
to a biased estimator in samples with a finite value of T', see e.g. Nickel (1981). We therefore
estimate it using GMM. We specify the moment equation (1) for the panel AR(1) using all
two period and more lagged level values of ;; as instruments, see Arellano and Bond (1991).
The specification of the moment vector f;(6) then reads

Wlth Q02<0) = (Ay3,i — HAyg,i . AyT,i — QAyT_LZ')I and

yi; 0...0 0
0 0
X, = Y 3(T—1)(T —2) x (T —2). (43)
0 0...0 :
Yr—2

We use the Eicker-White covariance matrix estimator (4) with ¢;(0) = % fi(0) = X;Ay_,; for
Ay_1; = (Ayai...Ayr_1,)". Because

fi(0) _  (Xi(Ayi—0Ay_1,)
(Qi(e)) B ( XiAy_1,; )
(7)) @ Do) (5%,
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0 N S(6o) KLM(6y) GMM-MLR(6y) | LM(6,)
A * E A x| kx E A * A
50 (227107174 113.2]120[1.9| 99 17.5 1.3 16.6
05 (100|112 (23 |116| 87 |3.2|39]| 83 9.6 2.9 10.5
250 | 7.7 | 56| 7.6 | 6.8 | 48|50 64 7.4 4.8 6.8
50 [ 225051751411 22(23|10.7| 19.2 1.0 18.8
0.7 1100|114 | 1.8|10.7| 88 | 3.8 38| 7.7 9.8 3.5 11.6
250 | 76 [ 52| 7.1 | 6.0 | 54|57 59 7.0 5.5 7.8
50 | 21.7105(17.8 158 | 1.6|1.9|11.0| 239 0.2 36.3
09 [100|11.1 {22 |10.7| 9.6 |45 |40 | 87 13.4 2.1 25.3
250 | 81 |66 7.0 | 7.1 | 55|62 7.0 9.0 6.3 13.1
50 121501172146 | 1.6|1.7|10.1| 24.5 0.1 44.1
095100 |11.3|123]10.8| 9.9 |42]|4.0] 9.0 13.9 2.4 33.6
250 | 82 [53| 71| 75 (60|61 73 10.7 6.6 25.5

Table 1: Size of the different statistics in percentages that test Hy : 8 = 6, at the 95%
significance level. A: asymptotic critical values, * bootstrapped critical values, E Edgeworth-
corrected critical values, #x bootstrap critical values where also the ¢;(0)’s are resampled.

with Ay, = (Ays,i ... Ayr;)’, and X; (43) consists of lagged values of vy, ,,
0 (0) = ( Vir(0) Var(0) ) (45)

is singular since some of the elements of ( XXAﬁi ) are identical. We therefore obtain [V (0)—

Vo1 (0)Vr(8) Vg (0)]) 1, that is involved in r(6) and thus in GMM-MLR(6), from a generalized
inverse of V(6).

The derivative of the moments, ¢;(f) = X;Ay_1,, is a white noise series when 6 = 1.
The parameter # is therefore not identified in the moment equations when it is equal to one.
Weakly identified values of # occur when 6 is close to one relative to the sample size, i.e. when
1= is small. This implies that the LM(6,) statistic from Definition 1 becomes size distorted

when 6 is close to one relative to the sample size.

Size results We compute the size of S(6), KLM(6), GMM-MLR(f) using asymptotic, boot-
strapped and Edgeworth-corrected 95% critical values in a simulation experiment that uses
the previously discussed panel AR(1) model. To illustrate the sensitivity of the size of LM(6)
to the value of 6, we also compute the size of LM(f) using its asymptotic critical value.

The panel AR(1) model has independent disturbances which are generated from a student
t distribution with ten degrees of freedom, mean zero and variance one so Assumption 1 is
satisfied. The individual specific constants ¢; are specified as ¢; = (1 — 0)u,; where the p,’s
are independent realizations from a N(0,2) distribution. The initial observations yo,; are
simulated such that yo; = p; + €0, where the €y ,’s are independent realizations of standard
normal random variables. The number of simulated datasets equals one thousand.

We compute the bootstrap critical values that result from S*(¢) and KLM*(6) using hun-
dred simulations of bootstrap datasets of N observations. The bootstrap datasets are obtained
using the algorithm in Section 4. We also use a bootstrap which resamples f;(#) and ¢;(6)
jointly and constructs f5(6,Y) and D% (#,Y) from the resampled f;(6) and ¢;(8)’s identical to
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how fn(0,Y) and Dy(6,Y) are obtained from f;(f) and ¢;(#). To distinguish this bootstrap,
which is only used for KLM(@), from the other bootstrap, its results are indicated by .

The Edgeworth-corrected critical values are computed using the Edgeworth approximations
from Theorem 3 where the estimators of E(S;), a and b equal E(S}), a* and b* with B equal
to N.

Table 1 shows the observed size of the statistics when we test at the 95% significance level
in a simulation experiment that uses four different values of 0y : 0.5, 0.7, 0.9 and 0.95 and
three different values of NV : 50, 100, 250. The number of time series observations, 7T, is equal
to 6 for all cases.

Panel 1: Power curves for T'=6, N = 50.
Fig. 1.1-1.4: Power of S(f) when using asymptotic (solid line), bootstrapped (dashed line)
and Edgeworth-corrected (dashed-dotted line) critical values.

Fig 1.1: 65 =0.5 Fig. 1.2: 6, = 0.7 Fig. 1.3: 6, =10.9 Fig. 1.4: 6, = 0.95
Fig. 1.5-1.8: Power of KLM(f) when using asymptotic (solid line), bootstrapped (dashed line),
with resampled ¢;(0) (dotted line) and Edgeworth-corrected (dashed-dotted line) critical values.

Fig 1.5: 0, =0.5 Fig. 1.6: 0, = 0.7 Fig. 1.7: 6, =0.9 Fig. 1.8: 0, =0.95
Fig. 1.8-1.12: Power of GMM-MLR(#) when using conditional asymptotic (solid line) and
bootstrapped (dashed line) critical values and LM(#) (dashed-dotted line).

Fig 1.9: 65 =0.5 Fig. 1.10: 6, = 0.7 Fig. 1.11: 6, =0.9  Fig. 1.12: 5 =0.95

The observed sizes reported in Table 1 show that usage of the critical values that stem
from the asymptotic distributions leads to large size distortions in small samples. Both the
Edgeworth correction and the bootstrap decrease these size distortions in all cases. The
reduction of the size distortion that results from the bootstraps is, however, much larger than
the one that results from the Edgeworth expansion. The reductions result from the higher
order improvements from using the bootstrap and/or the Edgeworth corrections.

The observed sizes of KLM(6) when using the critical values that stem from the bootstrap
that resamples the ¢;(0)’s (xx) are almost identical to those that result from using the critical
values in the bootstrap which uses Dy (0,Y") (x). This results since the resampling of the ¢;(0)’s
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only effects size distortions which are of order (Nv/N)~' while the resampling of the f;(6)’s
effects size distortions which are of order N . The resampling of the ¢;(6)’s is therefore of lesser
importance and does not lead to any further size improvements. Thus the size distortions that
result from the estimation of the covariance matrix, which is a 10x 10 matrix in the simulation
experiment, exceed those that result from D N(0,Y).

Panel 2: Power curves for T'= 6, N = 100.
Fig. 2.1-2.4: Power of S(#) when using asymptotic (solid line), bootstrapped (dashed line)
and Edgeworth-corrected (dashed-dotted line) critical values.

Fig 2.1: §p =05  Fig. 2.2: 6, =07  Fig. 23: 6, =09  Fig. 2.4: 6 = 0.95
Fig. 2.5-2.8: Power of KLM(6) when using asymptotic (solid line), bootstrapped (dashed line),
with resampled ¢;(0) (dotted line) and Edgeworth-corrected (dashed-dotted line) critical values.

Fig 2.5: 6, =0.5 Fig. 2.6: 8, = 0.7 Fig. 2.7: 6, =0.9 Fig. 2.8: 8, = 0.95
Fig. 2.8-2.12: Power of GMM-MLR(f) when using conditional asymptotic (solid line) and
bootstrapped (dashed line) critical values and LM(#) (dashed-dotted line).

Fig 2.9: 6, =0.5 Fig. 2.10: 6, =0.7  Fig. 2.11: 6, =0.9 Fig. 2.12: 6, =0.95

The size distortions of GMM-MLR/(#) exceed those of S(#) and KLM(f) when we use the
critical values that stem from its conditional limiting distribution. The bootstrap reduces
these size distortions which, however, remain larger than for S(6) and KLM(f). The size
distortions for KLLM(0) are in general the smallest both when using asymptotic and bootstrap
critical values.

The size distortions of LM(6) show the sensitivity of its distribution to the value of 6.
Table 1 clearly shows that the size distortions increase when 6, gets closer to one. An increase
of the sample size for the same value of #, decreases the size distortion of LM(f). The same
results can be shown for other statistics whose distributions are sensitive to the value of 6,
like, for example, the Wald t-statistic. For reasons of brevity, we refrain from showing these
results.
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Panel 3: Power curves for T'= 6, N = 250.
Fig. 3.1-3.4: Power of S(#) when using asymptotic (solid line), bootstrapped (dashed line)
and Edgeworth-corrected (dashed-dotted line) critical values.

Fig 3.1: §p =05  Fig. 3.2: §p =07  Fig. 3.3: 6, =09  Fig. 3.4: 6 = 0.95
Fig. 3.5-3.8: Power of KLM(6) when using asymptotic (solid line), bootstrapped (dashed line),
with resampled ¢;(0) (dotted line) and Edgeworth-corrected (dashed-dotted line) critical values.

Fig 3.5: 6, =0.5 Fig. 3.6: 0, = 0.7 Fig. 3.7: 6, =0.9 Fig. 3.8: 0, =0.95
Fig. 3.8-3.12: Power of GMM-MLR(f) when using conditional asymptotic (solid line) and
bootstrapped (dashed line) critical values and LM(#) (dashed-dotted line).

Fig 3.9: 6, =0.5 Fig. 3.10: 6, = 0.7 Fig. 3.11: 6, =0.9  Fig. 3.12: 6y = 0.95

Power comparison To further analyse the performance of the different statistics, we com-
pare the power of the different statistics for the three different values of N : 50, 100 and 250,
and four different values of 6y : 0.5, 0.7, 0.9 and 0.95, that were used in Table 1. Panel 1-3
show these different power curves. All Panels use a value of T" equal to 6 while N = 50 in
Panel 1, N = 100 in Panel 2 and N = 250 in Panel 3.

The power curves in Panel 1, all reveal the large size distortions of the different statistics
when we use the asymptotic critical values. The usage of the Edgeworth-corrected critical
values shifs the power curve downwards but, as already shown in Table 1, not enough to com-
pletely remove the size distortions. The usage of bootstrap critical values makes the statistics
too conservative but the size distortion is much smaller than when using the Edgeworth-
corrected critical values. The power curves show that the statistics have power when using
the bootstrap critical values.

The power curves of KLM(f) in Panel 1 when using the bootstrap and bootstrap with
resampled ¢;(0)’s are almost indistinguisable which is in line with Table 1 and shows that
there is not need to resample ¢;(0).

When 6 = 1, the moment conditions do not identify 6 and the power and size of the
different statistics should coincide. This explains the peculiar shape of the power curves in
Panel 1. It is interesting to see that the size distortions at 6 = 6, are the same as at # = 1 of
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all statistics except LM(#) which is the only statistic whose distribution depends on the value
of 4.

Panel 1 shows that the size distortions of all statistics except LM(#) just depend on N and
not on 6. For LM(6y), Fig. 1.9-1.12 nicely show the increase of the size distortion when we
increase 6.

In Panel 2, all size distortions have decreased compared to Panel 1. Besides that most
general findings from Panel 1 appear in Panel 2 as well: bootstrap power curves lie below
the power curves that result from using the asymptotic critical value, resampling ¢;(#) for the
bootstrapped power curve of KLM(f) does not change it, power and size coincide and 6 = 6,
and 0 = 1 except for LM(0), size distortion of all statistics except LM(6) does not depend on
00.

Panel 3 shows that the power curves that result from using a different critical value become
almost indistinguishable when N = 250. The usage of bootstrap critical values still leads to a
smaller size distortion but the size distortion from using the asymptotic critical value is rather
small as well. It is interesting to see that the size distortion of LM(#) is now small for #, = 0.5
but is still very large for #y = 0.95 which shows the sensitivity of the distribution of LM(6) to
the value of 6.

7 Extensions

Multiple parameters and subsets Sofar we have just been concerned with testing a
parameter vector that consists of only one element. This has been done for expository purposes
and the results extend to a vector of multiple parameters as well. This holds true since one
of the main results of the paper that the N~! approximation errors just result from the
covariance matrix estimator extend towards a multiple parameter setting when Assumption
1b is extended appropriately. We refrain from showing this result since it involves a lot of
additional notation as we have to use vectorization results for matrices.

The extension to tests on subsets of the parameters is less straightforward because no
results on the limiting distributions of such tests without assuming that the partialled out
parameters are strongly identified have been derived for GMM. Kleibergen (2006b) shows
that such tests are conservative in the linear instrumental variables regression model when
we use the asymptotic critical values from the limiting distributions that apply when the
partialled out parameters are well identified.

Dependent observations If the moment equations are dependent, the Eicker-White co-
variance matrix estimator (4) is not consistent. When we can employ a consistent covariance
matrix estimator with a parametric convergence rate as in Hall and Horowitz (1996), the higher
order efficiency of the bootstrap should extend to the case of dependent moment equations.
To account for the dependence between the moments, the block-bootstrap should be used such
that similar to Hall and Horowitz (1996), a correction factor has to be incorporated in the
bootstrapped statistics to take account of the difference between the covariance matrices of
the block bootstrap moments and the orginal moments. In order to do so, Assumption 1 has
to be adapted and further regularity conditions have to be imposed, see e.g. Hall and Horowitz
(1996).
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8 Conclusions

We show that usage of Edgeworth-corrected critical values or bootstrapped critical values lead
to a higher order improvement of the approximation of the finite sample distribution of weak
instrument robust GMM statistics compared to usage of critical values that stem from its
limiting distribution. The bootstrapped critical values are obtained from just resampling the
moments under the hypothesis of interest since the covariance matrix estimator is the sole
contributor to the approximation error of the highest order. It is therefore not helpful to
resample anything more than the moments.

Appendix

A. Lemma 1. When 0 = 0 and Assumption 1 holds, the higher order decomposition of
Vip(0)~t reads

Vi (O = Vi 0) ™ = Vip0) 7 (S FOFO) = Vis(0) Vip(0) ™ + 0p(3),

Proof. To obtain the higher order specification of Vf £(0)71, we specify it as

Vir(0)~t = [fo(e) + (fo(9) = fo(9)>]
= Vir0) = Vi (0) % (S FO)F0) = Vi (0)) Vi (0) ™+ Op(%),

where the O,(4) order of the remainder term results from the /N convergence rate of the
Eicker-White covariance matrix estimator. m

Lemma 2. When 0 = 0 and Assumption 1 holds, the higher order specification of ﬁN(H, Y)
reads:

Dy(0,Y) = Dx(0,Y) = Var(0)Vys(00) " fx(0,Y) + Op(57),
where Vyy(0) = Vis(0) = Var(O)Vi(0) Vi (0) = & o0 di(0) £i(0) — D (8,Y) (6, Y.
Proof. To obtain the higher order specification, we specify D ~(0,Y) as
DN(07 Y) - QN(97 Y) - ‘A/Qf(e)vff(‘g)_lfN<67 Y)
= qn(0,Y) = Vir(O) Vi (0) " i (0.Y) + [qu(Q)fo(@T1 - qf(H)fo(Q)’l] fn(0,Y)
= Dy (0.Y) = [Vas (0) = Var (O)V3s(0) Vs (0)| Vs (0) i (6.Y)
- DN(07 Y) - %f(e)vff<60)_lfN<€> Y) + OP(%)?
where we used Lemma 1 for the fourth equation. The order of the remainder terms results

from the v/ N convergence rate of the Eicker-White covariance matrix estimator. m

Lemma 3. When 0 =0 and Assumption 1 holds, the higher order specification of the score
vector sy(0,Y) = Dn(0,Y)'Vi(00)  fn(6,Y) reads

VNsy(0,Y) = VNDx(0,Y ) Vi (0) fw(6,Y) = VNDx(0,Y Y Vs(0) ™ (V35(0) = Vys(6) )
Vi) fn(0,Y) = VN (0, Y Y Vi (0) 7 WVag (0)' Vip (0) 7 fn(0,Y) + Op(5).
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Proof. The decomposition of the score vector is as follows
VNsy(6,Y)
= VNDy(0,Y)Vi;(60) 7  fn(6,Y)
= VF [Da(0,Y) = Vo 0) { Vi) = Vis(0) ™ (Vg 0) = Vi (0)) Vis(0) ™} fi(6,Y)]
{fo(g)’l — Vip(0)™ (fo(Q) - fo(3)> fo(go)*l} fn(0,Y) + Op(5)
= VNDn(0,Y)Vip(0) 7 fn(0,Y) = VNDn(8,Y) Vi(6) ! (fo(e) - fo(9)> Vip(0) ' fv(6,Y)—
VNI (O, YV Vip(0) 7 Var (0) Vis(0) 7 fn(0,Y) + O,(5,).

where the order of the remainder term results from the convergence speed of the covariance
matrix estimator. m

Lemma 4. When 0 = 60 and Assumption 1 holds, the higher order specification of
. . . -1
[DN(Q, Y)V;54(6)" D (6, Y)] reads:

[ w0, YYV5(6) D0, 7)]
[Dy(68,Y Y Vs (6) " Dv(0,Y)] ™ + [D(6,Y Y Vir(6) D (6,Y)]!
{DN (0, Y)Vyp(0)~ [fo(9) - fo(9)} Vi (0) " Dn(0,Y)+
2D(0,Y ) Vis(0)Vap(O)Vis (0) L f(0,Y) } [Dx(0,Y)'Vip(8) D (0,Y)] 7 4+ Oyl3).

. . R -1
Proof. To construct the higher order expression of [DN(Q,Y)’ Vip(0) ™ Dy (6, Y)] , We

first construct that of Dy (6, Y)V(8) ' Dy(6,Y) :
Dy (0,Y)V;(6)~ 1DN(9 Y)
= [Dn(0.) - Tigt0 >{vff<e> L= Vi) (Visl0) = Vig(0)) Vis0) ) 430, 1)]
Vs (0)7 = Vig(6) ™ (V34(8) = Vis(8)) Vis(0) '}
Dy(0,Y) = Vay 0) { Vi (0) ™ = Vis(0) ™ (V4(0) = Vis(9)) Vi (0) 7} (0]
= Dy(0.Y)Vyy(0) D (0.Y) = Dx(0.YYVig(0)" [Vis(6) = Vis(0)] Vs () Dx(0. )~
2DN(0,Y) Vi (0) " Vor (0) Vi (0) " v (0,Y) + Op(5)-
Using the higher order decomposition of f/f £(0)7! from Lemma 1, the higher order expression
for [Du(6,Y)V51(0) 1 Dn(8, V)] results. m

Lemma 5. When 0 =60 and Assumption 1 holds, the higher order specification of
VN (0,Y) Vi (0) " qn (6, Y)

reads:

VNI (0.Y)Vis(6)an(0.Y)
= IR0,V Vig ) Dy 6,) + VN 6, YV Vi 0 VorO)Vis (0) L (0,¥)-
VNI (O.YYVif(0)7 [Vis(0) = Vis(0)] Vis (0 D (6,Y) + Opl):
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Proof. The higher order decomposition results from the specification of Dy(0,Y) and

Vyp(0)~
VNN (0, Y) Vi (0) an(6,Y)
= \/NfN(‘gay),vff( )~ IDN(H Y) + VNN (0, Y) Vi (0) 7 Vp (0)Vir (0) 71 (6, Y)
= VNS0, Y)Vip(0) " Dn(0,Y) + VN fn(0,Y) Vis(0) 1V OV (0) " fn(0,Y)—
VNI (0, Y )V (0) 7 [ V75(0) - wwﬂWA>mmam
VNN (0,Y ) Vip(0) Vo (0) Vi (6) [fo — Vis( )] Vir(@0) ' fn(0,Y) + Opl)-
| ]

Lemma 6. When 60 =40 and Assumption 1 holds, the higher order specification of
[qN(Q,Y)’fo(H) Yan (0, Y)] reads:

ax 0. 730) ax(0,Y)]
= (Dn(0,Y)Vy(0)*Dn(0,Y)) ™ — (Dn(0,Y)'V3(0) Dy (0,Y)) ™"
{2Dn(0,Y ) Vi () Vor (O)Vi(0) 1 (6, Y)+
(0, Y) Vip(0) " Var (0)' Vis(0) Vo (O)Vir(0) 7 (6, Y) = Dn(0,Y ) Vip(6)™

Vip(0) = Vip(0)| Vip(0) " Dn(0,Y) = 2Dn(0,Y ) Vi (0) Vop(0)Vis(6)

Vip(0) = Vip(0)| Vip(0) " fn(0,Y) — (0, Y ) Vyp(0) "1V (0)Vy(6)
Vip(0) = Vi (0)| Vip(0) " Vs (0 )fo(9)_1fN(9,Y)}(DN(9,Y)’fo(Q)_lDN(&Y))*l+
Op(5)-

. -1
Proof. We obtain the higher order specification of [qN(H,Y)’fo(G)_qu(Q,Y)} from
that of qn (60, Y)'Vi;(0) 'qn(8,Y) :

v (0,Y)Vip(0)qn(0,Y) )

= DN (0,Y) + Vg (V31 (O) (0, Y)] [Vig(0) = Vs (0)7 [V35(0) = Vi (0)] Vs ()7
[Dn(0,Y) + Vo (0)Vi(0) " (0, Y)] + Op(5)

= Dn(0,Y)Vis(0) ' Dn(0,Y) +2Dn(0,Y ) Vi (0) " Vo (0)Vip () fn(0,Y)+
fzy(Q,Y)'fo(Q)_quf( Y Vip(0) Vo (0)Vip(0) " fn(0,Y) — Dn(0,Y ) Vis(6)
Vip(0) = Vip(0)| Vir(0) " Dn(0,Y) = 2Dn(0,Y ) Vi (0) Vs (0)Vis(6)~
Vip(0) = Vip(0)| Vir(0) L fn(0,Y) — fn(0.Y ) Vyp(0)~1Vp(0) Vip(0)
Vip(0) = Vip(0)| Vip(0) " Var (0)V3(0) 7 i (0,Y) + Op(3).

~— —

2

Lemma 7. The conditional expectations of the higher order elements of KLM(f,) read

E(KLM,;|Dy(00,Y) = [E(KLM;|d,(0), ..., d(00))
p(dl ..... dn_ )(Ub'"7'UN71’DN(907Y))d,U1---d'UNfla

for j = 0,1,2 and where pu,, . .ay )(V1, .., UN-1|Dn(6o,Y)) is the conditional density of

77777

(dl(go) dN 1(60)) glven DN(Q(), )
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Proof.
E(KLM;|Dn(00,Y) = [[ KLM;ps,,..fxduodn ) Uts ..o un, 01, ..., 0n—1| D (00, Y))

= f[fKLMJp(fl fN)(ul,...,uN|d1,...,dN)du1...duN]

p(dl ’’’’’ dN—l)(Ul"' ,UN— 1|DN(90,Y))dU1...dUN_1
= [E(KLM,|d, (90), ., dn(00))
p(dl ..... dN,1)<U17 ce 7,UN71|DN(907 Y))d'l}l Ce dUNfl,
where pir,  fadiydn ) (U5 - UN, V1, -, UN—1| D (6o, Y)) is the conditional density of ( f1(6o),
oy fn(00),d1(6o), ..., dn—1(6p)) given Dx (6o, Y) and we used that conditioning on (d; (6y), . . .,
dn-1(00), Dn(00,Y)) is identical to conditioning on (dy(0y), . .., dn—_1(0y), dn(00)) since Dy (6o,Y) =
% 2511 diwo)- u

Lemma 8. The conditional expectations of the higher order components of S(6y) and KLM(6,)
are such that

E(S = [ SiPreor, ¥;4(60)) (s v)dudv
E(KLM;|Dy(00,Y)) = [[[ KLM P (00,Y),75 5 00), Vef(eo))(u,v,w|DN(€0,Y))dudvdw,
for j = 0,1,2 and where p(fN(eo,Y),fo(Oo))<u’ v) and p(fN(eo,Y),fo(oo),Vof(oo))(“=U=w|DN(‘90=Y))

are the joint sampling distribution of f (6o, Y") and V};(6) and the conditional joint sampling
distribution of (fx(0o,Y"), Vir(0o), Var(6o)) given Dy(6p,Y) in a sample of size N.

Proof.
E(S)) = ij(fN(907 Y), fo(eo))P(fl ----- )(“h ouy)duy . duy
= [[S;(fn(6o,Y), fo(Qo))p(fN(eo V). Vr(00)of1ref )(u v, U1, . .., uy; ) dudvduy ... duy;,
= Pty (W v, 1, un [ (00, Y), Vi4(60))
[f Si(fn (0o, ),fo(90))29(”(9075/)7‘7”(90))(u,U)dudv] duy ... duy;,
= fSlp(fN(eo,Y),fo(oo))(UaU)dUdU

where S;(fn(0o,Y), Vys(fo)) indicates that S; is a function of (fx(fo,Y), Vis(60)),

P(fx (80Y),711(60), froo fNj)(u, v, U1, ..., uy,;) is the joint density of (fn(6o,Y), Vis(6o), f1,-.., fn;)
with N; a scalar smaller than N which is such that there is an invertible relationship between

(fN(907 Y)7 fo(90)7 fl; LI fNJ) and (fla LI fN)?p(ﬁ ..... fNj)<'U/,U,U1, cee 7uNj|fN<007 Y)? ‘A/ff(QO))
is the conditional density of (fi,..., fx,) given (fnx(6o,Y), IA/ff(é’O)).

E(K LM;| Dy (6,,Y))
= [ KLM;(fn(00,Y), ‘A/ff(@o), %f(e()))

p(fl 77777 fndis..., dNil)(ul,A. .. ,uN,Avl, N ,UN_1|DN(6’0, Y))du1 Ce dUNdU1 Ce dUN_l
= JELM;(fx(00,Y), Vs (6o), Vs (6o))
p(fN(90,Y),fo(90),‘79f(90),f1 ..... fle,dl,...,de2)(u7 V,W, U, ... 7uNj17U17 cee 7UNj2 |DN(907 Y))

dudvdwduy . .. duy; dvy . ..doy;, 1
= fp(fl ..... fle’dh_“’dez)(u,'U,'LU,ul,...,ule,'Ul,...,UN].2|fN(9(),Y),fo(@o),%f(@o),DN(QQ,Y))

[f KLM;(fn(00,Y), fo(90)7 Vef(90))p(fN(eo,Y),fo(eo),ng(90))(Uv v, w|Dn(0o,Y))dudvdw
duy . .. duN].1 dvy . .. vaj2_1
= JEKLM;(fn(00,Y), Vi (00), Vor(00))P( 1y (00,1771 (60).70 00)) (s Vs WD (00, Y) ) duduvduw
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where KLM-(fN(QO, Y), Vis(6o), Vas(6o)) indicates that K LM; is a function of (fx (8o, Y), Vi (),
ng(é’o)), 77777 Frsdisdy 1) (UL, - uN, V1, N1 Dn(60,Y)) is the conditional density of
(fi,... ,fN, dl, ...,dy_1) given Dy (6y,Y), N;, and N,, are scalars which are such that given
Dn(00,Y) there is an invertible relationship between (fx (6o, Y), Vi;(00), Var(6o), fi, - . ., Iy,
dy,...,dn,) and (f1,..., fn,di, ... dy_1), P (00, )77 100). V0 B0 fros b, 7d17_“7de2)(u, v, W, U,

S UNSy, VL, - - - UN, [ D (0, Y')) is the conditional density of ( fx(6o,Y), fo(eg), %f(eo), iy,
Iy sdas ,dn;,) given Dy (600,Y), ps..... fle,dl,---,dNﬂ)(Uv U, WUty ey UNGy, Uy ee ey UN, | fn(6o,Y),

Vi(60), Vas(8o), Dn(60,Y)) is the conditional density of (fi, ... Iy, diy -, dny,) given
(fn(00,Y),Vir(00), Vor(6o), Dn(0o,Y)). m

B. Proof of Theorem 1. R
a. S-statistic: We use the decomposition of V;¢(#)~! from Lemma 1 to obtain the higher
order components of the S-statistic:

S(0) = Nfn(O,Y)Vp(0) fn(0,Y) = fn(0,Y) Vi (0)7 [fo(9) = Vi O)| Vi (0)~ (0, Y)+
Op(7)-

We determine the order of the different components by constructing their expectations. It

is directly obvious that the expectation of N fx(6,Y)Vis(0)~'fn(6,Y) is equal to k since

E(f:(0)f;(0)") = V¢#(0) when i = j and equals zero when i # j.
The expectation of N fy(0,Y)V;s(0)~" |:fo(9) — fo(H)] Vip(0) 1 fn(0,Y) results from

B[N0, vffw)-l [735(0) = Vis(0)] Vi (0 (6.7
=N2 le y Ziz (fl? 12 fo) 71 le fl?»}

=N2 211 %1 ff ia (fﬂfzz fo) folz fZ:J

=N3 Zzl Zzz fl2 214 213 fuj

# > 2127&1‘1 zlvff (fi £, fo) Vis f“} +E [+ > fi Vf}l (fifl, = Vis) Vf;‘lfﬁ] -
% Zil Zmeil fo fu fo fi,| —E [ﬁ Zil Zmﬁn fo flz fo fzz]
iy st«én WVir fo fflfn - B [N3 Yo Vg fu £ Vi 1]
:N2 Z’Ll i1 f;‘lfll fflfll} - [N2 Zn fflfll]
5 S S SV F Vi Fie| = B35 X Lo FaVi P f Vi ] —
% Do Dainris Jia fflflz fflfll —E 5= 2, LV LV £
= XSE (Vi F)"] - & - 3t 8+ 2],
where f; = f;(0), fi = fi:(0) — [5(0,Y), Vi = V}4(0) and i = Zgzl. The above expres-

sion consists of second and fourth order moments of f;. It uses the independence of f;, and f;,
for i; # is and that E(f;) = 0 which explains why no third order moments are present in the ex-

pression. The above expression shows that N fx (6, Y) V¢ (6) ™ [fo(G) — fo(é)] Vir(0) 1 fn(6,Y)
is of the order + and we can specify S(0) as

S(0) = So+ 151 + 0, (<L),
where Sy = N fn(60,Y ) Vi (60) " fn(600,Y) - Y2(k), so E(Sy) = k, and S; = —N2fn(6o,Y)

Vir(0o)™! [fo(%) - fo(9o)] Vip(00) ™ (6o, Y), E(S1) = —%E[(ﬁvf}lﬁ)ﬂ e+ AL (K2 4 24]

mmmmmmmmm
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The order of the remainder term in the expression of S(#) results from the order of the highest
order component that is left out: fn(0,Y) Vi, (6)~* [fo(ﬁ) — fo(Q)} Vip(6)~? [fo(ﬁ) — fo(Q)}

Vip(0) 1 fn(0,Y). To determine the order of this component, we construct its expectation:

EMM@m%wr[ﬁw wwﬂmw>ﬁww—wwjm«%m&n}
= Elwm2, /i _f > i (Ffly = Vig) Vi 3o, (fisfiy — Vi) Vir, 2 i
= Elgm:2, f’ . Z (fi £}, fo) fo > (fisfly = Vi) fo > fis] —
QE_ [NLZ 1f 215 fzs ZZG i6 f1f is (fl3fz3 fo) fo ZM fm] -
Ea f“fo > is fis 2 iV i b i Jin 2 I fo > i, fia)
= % Zz ff (fnfu fo) ff (lef“ fo) le}
% Zz 2127&1‘1 quf (fn fo) fo (fizfz‘z _fo) fo Jio | +
2 szl Y, (f“ = Vi) Vi (Funlly = Vi) Vif fin| =
[NL > iy fflfu (fu [ = Vi) Vf}lfil} +
Dy Dintin zlvfflfn fo (szfu Vis) Vf_flfiz_ +
Yo X T Vi £ £ Vs (fin iy = Vi) fflf%z_ +
Zz’ Ziz;éil i fflflz (f’bg fo) fil_ +
Yo Doz Vs £ fo (fiafty = Vir) Vis' fia | +
> Zizgéh in fflfh (fzz f) fflle_ +
Zi Zig;ﬁil in fflflz Vi (fzz i fo) fil_ +
Zi 212#11 levfflfn folfzz folfm
2ot Dinin T Vi fin Vg B Vig fin | +
Zi Zig;ﬁil i fflflz fflfiz ; f}lfil

7]

i i Vi T B Vi fa £ Vs i }
o SV BBV P LV Fi] + B |55 500 S SV B Vi Finf Vi ] +
izz’zs«én Wi fafi Vi FadVig fio | + B |55 S s FaVig Fa £ Vi fi F Vg Fin
o Lo Fa Vit Fud Vi L o Vi o +E_% 2y Liain 6 Vis Fad Vi Fia B Vig i
o Lo [6Vir fa Vi Fiuf, fflf%z_ T E | w5 X D [oVer FuafoVis fu B Vi fi
o Liain o Vir T Vs fiad Vi Jia | + B | 55 X0 P S Vi i IV JiaF Vi fi
b L S Vi Fad Vi B Vi fo| + B |3 T, o, SV Vi faf, Vi fi
o Lo [hVir fali Vi fiu fflfn_ + B |85 20 D FuVir TS Vig i fVig fia)

5 iy

5 iy

5 20

5 iy

—

'%F'%%'%F'%F'%%'%F'%F'%%'%F'%F'%P'ih'%k'%%'%k'%k'ﬁk'%F'%F'ﬁk'%k

i D T Vig b Vig fin f}lfil +E Yinzin T Vi fi £ Vif fin i, f}lfil_
YA WA WA A RS Dizin T Vig Fa P Vig i Vi o)
i Linrin T Vg Vi fio B, fflf%z_ +E Y T Vg Fn B Vi fio B fflf“_
i1 Zig;ﬁil i1 fflfzz fflfil 12 f}lfiQ_ +E Ziﬁéil i1 fflfzz fflfiz i1 fflfiz_

mmmmmmmmmmmmmmmmmmmmmwmmmm

[SZRN N W B v B wr I N BN B NN B g

2z 2 2 2 2 2 2
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1 -1 -1 -1 -1 71 -1

E mZil Ziz;éil 11 ff flz ff fl2 ff f'Ll +E N5 Zzl 2127&11 11 ff flz ff fil ',fo fiz
1

E m Z’il Ziz#’il fo flg fo le fo fll + E N5 27,1 222757,1 fo flg fo f7«2 fo f'll

The above expression consists of sixth order moments, combinations of second and fourth
order moments and combinations of third and third order moments and uses that f;, and f;,
are independent for i; # i and that the first order moments of f; are zero so no fifth order
moments appear. Assumption lc implies that the expression is finite. The maximal order
of the above expression is # which explains the order of the remainder term in the higher
order specification of the S-statistic. This shows that “the double error” that results from the
covariance matrix estimator has a higher convergence rate, N2, than the “single error”, %
The same holds true for the other statistics such that, since we are only interested in the low
order errors of the remainder term, we leave out the double errors of the covariance matrix
estimators.

. . . -1
b. KLM-statistic: Using the higher order components of [DN(Q,Y)’fo(ﬁ)’lDN(é’,Y)]

and sy(0,Y") from Lemmas 3 and 4, the KLM statistic has the following higher order compo-
nents:

KLM(0) = KLMy+ +KLM, KLM; + O,(+),

1
T wE
with
_1 _1
KLMQZ NfN(Q,Y)Ifo(H) ZPfo(O)f%DN(O,Y)‘/ff(Q) 2fN(€,Y)

KLM; = —N?fn(6, Y)’fo(e)—%Pvff(e),%DN(e’Y)fo(G)—% [fo(g) - fo(Q)}

_1 _1
VitO) 28, -4 poryV1£0) 72 fn(0,Y)—
22 (0, Y)'vffw)*aPvff@f%wy)wf<e>*a V3s(0) = Vis (0)]
Vir(0)~ ZMV 0 oo VO 2N (0Y)

KLM, = —2N2\/_fN(9 Y)Vi(0)72 M, 6} Do V@) 2 Var(0)Vis (0) i (6,Y)

[Dx(0,Y)' Vs (0) D (0,Y)] DN(9 Y)'Vis(0) fn(0,Y)

We determine the order of the four different components using their conditional expecta-

tions given Dy (6,Y"). To construct these conditional expectations, we use Lemma 7 and first

construct the conditional expectations of the different components of KLM(fy) given d;(6),
1=1,...,N:

1.E [NfN(e YYVirO) P, o ap o Vir(0) fN(Q,Y)|di}
= {V *P -1 Vf_f% ( [% Zz fu 1|di] +E [% 212 Zil;ﬁig fiz U@D} =1

Vis 2Dn

2.(-)E [N2fzv(9 Y)'Vis(6) 2P, 1 (6)~4 D fo(9)’% [fo(9)—vff(9)}

Vf{(9)7§Pvff(a)* ( )"fN(H Y)I
= E %Zil fo2P —f%D %(Efolz 12 fo) fo P % Nfo% Zigfi3|di
= B|XS AVi P, Vit (S dufl = Vi) Vit B s, Vit S fuld| -
E _W . Vi PVJ;% Vid o fu X £V P v NVf_f% 2y fi3|di]
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= B :% i S FVir P f% Nfo% (fully = Vir) Vi P v DNfo%fini} +
B S0 £V P, 4, Vit Gl = Vi) VP By, Vi fuld| -
Bl 20 Yo anf Bt fo AT Fyos Nfo%fiz’di -
E #Zn i Vi P Vo foQf%z Vi P*% Nfo%fw’di -
B X S Vi P, 1, vff FufVif P, ” NVf_f%fi1|di -
E |z S0 LV P v Dy fo AT By Nfo fuld;
2

= %{E (fi’Vf}EPfo%DNfofi> |dz‘] —4r -
3. (=2x) E [NQfN(&Y)’fo(e)’%PVH(@)*%DN(W)WJ‘(H)’% [fo(e) - fo(e)]

Vit My ot  Vir(0) 5 (0,
= K szl fo —% f}% (ZZQ ﬁzﬁg_vff) fo%vaf%DNfo% 21‘3 fis|di
= E ﬁzz‘l WVis P 45 Vit (S, fufly — Vi) Vf}%Mf;%DNVf}% i fialdi| —
B |3 S 1LV P}% T F S SV M s, Vi S fold]
- E NZ“ VAP %DNfo% (S Jials = Vir ) Vi vaf%DNfo% fi1|di]+
D ﬁzz-l WV B, Vi (ufh = Vi) vf‘ﬁM }%DNw}%fMdi}—
R DI DI N P v iy fof“ 2M vl Nfo%fini_ -
E Wzn i Vi P Vo foszz foZM 3 Nfo%fini -
B Y S fAV P 4, vff FufL Vi M - NVf}%filldi_ _
E (% 2, Vi P v oy fo Fudi Vi M voh DNfozfinz‘}
= NT{ {f{ ffzpvff%DNfofifz"foMvf%DNfo%fﬂdz} —(k—l)}-

4. (=2x) E [szN(H,Y)’fo(e)_%vaf(g) sy V1702 Var (V5 (0)7

(0¥ (D6, Y) Vi (0) D(0. V)] D0V Vg0 )L (0,Y)di]

_1 - _ -1
= E N Zzl fo f—f%DNfoz Zig dz‘gfz‘/Q‘/Jffl Zig Jis [DkaﬁDN}
Dy Vi 2, fz‘4|d'}
_% - . _ -1
= K %Zzl 1,1V Mf}%D fo ZQ dz2fz,2V 1213 fis [D;VfolDN}

D?VVf_fl Zi4 Jia ’dZ} - N2 Zzl fo l fo ZZQ di,
Zi5 i/5vf}1 Zig fi3 [D%VfileN} Dg}a/ff 21'4 fZ4|dz}



- E{% DDHD DA A Mf,fl V2 di fL Vi i [DNVi D]

[D\ Vi Dy] ™ Dkvf—flfﬂdi} +E {N S i i Jh Vi M }%DNVf}
diy f1, Vi1 fio [Diy Vf?lDN}_l [vavf}lDN]_l DEVfolf“wZ}
E {% > i D iain “fo M VAo fo di fL,Vii fir [DNViF Dn] ™
[ngvf;le]*l DV f2<2|dz} +E|%>, i’lvf}? va;%DNVf}Ed“ /
Vi fi [vavf}lDN]_l vavf}lfi1|d'

= {N 2 qusz “Apy Vil Vi £ Vi Dy [DA Vi D)™ 1|di]

= 0,

(NI

-1

1
since MV_1 Vii? >, dip = 0 and where Dy = Dy(6,Y).

EDN
Given Dy (6, Y'), the above conditional expectations do not depend on (dy(6y), - .., dy—1(6o))
such that the conditional expectations of the different higher order elements of KLM(fy) given

Dy (00,Y) read
_1 2
{ (flvff Vo foQf%) | D

N—
N
[ Vit Py, fo AT Vb Nvf?fﬂDNH“L%

E[KLMy|Dx(0o,Y

E[KLM|Dy(60,Y) = — —2(k+ 1)+

E [\/NKLMz\DN(em Y)} =

c. GMM-MLR statistic. To expand the expression of the GMM-MLR statistic, we use a
Taylor approximation of S(6) around Sy and KLM(6y) around K LM, :

GMM-MLR(0,) = 1 [SO — (o) + \/ (So +1(60))2 — 4[So — K LM, r(@o))] +

SIS P So—1(6o) S+
2N { V/(S+£(00))°—4[S(00)— KLM(60))(00)) |
1

£(0) (KLM; +

L L KLM,)+ O,(%).
N \/(So+1(00))2—4[S(60)— K LM (60)]r(60)) 2) b(5v2)

d. LM statistic. We just show that the higher order components of LM(f) depend on
Dy (0,Y). We therefore only construct a higher order decomposition which we uses just the
(Dn(0,Y)' Vi (0) 1Dy (0, Y)) " '-element from the higher order specification of

X 21
[qN(Q, Y)' Vi (0) gn (6, Y)] in Lemma 6.

LM(0) = Nfy(O. Y)Y Vis(0) 2Py ooy o0 Vir(0) 2 fx(0.Y)
~ N [fw(0.Y)Vir(0) " Du(0,Y) + (0, Y Y Vir(0)Vop(0)Vis (0) (8. Y )~
P30 YYVis(0)7 [Vis(0) = Vip(0)] Vig (0) D (0,Y)] (Dn(0, Y Y Vi (0) Dy (6,Y))
(0, Y YV (0) D (0, Y) + fu(6,Y Y Vig (0) Vg ()3 (6) (6, Y) -
In(0,Y) Vip(0)~ [fo(9) - fo(H)] Vi (0)"' D (0, Y)}
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= Nfn(0,Y)Vis(0)*Dn(0,Y) (Dn(0,Y ) Vyp(0) D (0,Y) ™" Dy (0,Y ) Vi (0) " (6, Y )+
ON (0, Y) Vi (0)Vop (0)Vip (0)~ (6, Y) (D (0, Y) Vi (0)* D (6,Y)) ™
Dn(0,Y)Vip(0) 1 fn (0, Y)+NfN(97 )fo( )"V (0)Vis(0) 7 fn(6,Y)
(Dn(0,Y) Vi (0) ' Dy (0,Y)) Y)Y Vip(0) " Vor(0)'Vip(0) 7 fn(0,Y)—

I (0, )" )

2N fn(0,Y ) Vi ()" [fo( ) — fo(g)] Vi#(0) ' Dn(0,Y) (Dn(8,Y) Vi (0) ' Dy (6,Y)) ™
[Dn(0,Y) Vi ()7 fn(0,Y) + fn(0,Y) Vi (0) " Vs (0) Vi () (0, Y)] +
Nfn(0,Y)Vi(0)7 [fo(g) - fo(Q)} Vi#(0) " Dn(8,Y) (Dn(8,Y)'Vi7(0) ' Dn(6.Y)) ™
Dy (0,Y)Vis(0) ™ [V15(0) = Vip(O)| Vis(0) (6,7

We use the analog of Lemma 7 to obtain the conditional expectation of LM(6) given Dy (6,Y).
We therefore first construct the conditional expectation of the first five elements of the ap-
proximation of LM(#) given d;.

1.E [NfN(QaY)/fo(e)ﬁPvff(o)*%DN(o,Y)fo(e)ﬁfN(Q’Y)|di] =L

2. (2><) B[N £u(0, Y YV (6) Vs (0)V35(6) (6. (D(6. V)V () D(0,Y))
(Q»Y),Vf (0) " fn(0,Y)|d)]
= B\5 0 Vi Var Vi Yo, fio [0, 4 Vig Zudu} S VS d}
= E| LS SV Vi Vit [ A Vit S di] S Vi dz}
- r{ [filfilvff%fvfflfh [, Vi S di] Y LV dﬁ}})
where V,; =V, ¢(0).

3. [N fw(0,Y)Vis(0) Var(O)Vis(0) ™ f(60,Y) (D (0, Y Y Vg (0) Dy (6,7))

In(0,Y ) Vip(0)" Vs (0) V()= fn(0,Y)]di]
E L PV VeV S fa [ Vi o di] T LV ViV S Fld]
%Zzl Vi Vas Vi fu [ diVid i i)™ S, Vi Vir Vi sl +
i S Vi VarVig X Jia [0 40 Vi7 2, diJ_l 2 Vir VagVes fulds| +
1
N

1 -1 -1
le fo ‘/:If fo 2127&11 f12 [213 7,3 fo 27,4 d7f4:| 1;/1 fo ‘/;]/fvff fi2 |dl +
-1

N 2 PV VarVig i [ A Ve X din] 1V VasVis i |d}
, _ _ _ 1
N-— ){[tr(vffl‘/;lf)} "‘tr(vfflvqfvfflv;;f) +tr(vff1‘/;1fvff1‘/;(f)} [Zzg iz f1 > i di,] +

-1

E
E
E
E
E
(

E[(£ViVar Ve )] [, di Vi S dia]

4. (2%) B [Nfn(0.Y)'Vy(0) ™ [V35(6) = Vis(0)] Vi (6) D6, Y)
(Dx(0,Y Y Vi5(0) D (0,Y))™" Dx(0,Y)'Vys(0) (0. YM

E N 211 i1 ff io (sz il2 - fo) vf_f1 Zi3 di3 [224 d;4v ZZs dl5}
Z% dlgvff 217 fl7|d j|
E
> i d

-1

-1

N2 Zzl i1 ff i2 (lefzz ‘/ff) ‘/ff Z’Lg dls [214 14fo Z'Ls d15:|
16 z6 fflfllld]+E[N2 Zzl i1 ff (lele fo) fo ZzgdZB
[214 d’/L4V 215 d’b5:| Z’Lﬁ i ff1f11|dl]
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= B[ T AV Vi T[S V57 T ] S Vi ] -
Wzil fo 213 di [ZM z4vff 215 dzs} Zzs zavff f“ld}
= e[RRIV ) Vi T [, 4077 ] o 7l
L [ Vit S s [0 Vi i)™ S Vi |
= e B (ffiVi fifl) Vi Sy diy [, Vi 5 di] Zw Vi | - %

5. (2X) B [N fu (6, Y)'Vis(0) [Vi(6) = Vig(8)| Vys(0) "D (0, Y)
(Dy(8,Y) Vi (0) D (0.Y) fv(6,Y) Vs (0) Vs (6)' Vs (6) i (6, Y)Idz}
= [N12 i Vi S (Fufty = Vis) Vi Sy iy [, di Vi S ] ™
Z'L@ fflvaff 27,7 fl7|d:|
= [Nz Zil i1 ff Zig;éil (flz iz fo) Vf}l Zig dia [ZM d§4V 215 dls] -
fi/lvf_flvqfvf}lfﬂd‘} +E [ﬁ Zil illvf_fl (filfi/l - fo) Vf
> s dis [ZM di, Vi 215 diy] 127;67&@1 fi,6vff1v:1fvff1fi6|d'j{
E [# Zil i1 ff Zig;éil (fiz iz fo) Vf}l Zig dia [ZM d§4V 215 dls] -
TV VasVid Fald]) + B |5 X Vi S, (Fadly = Vi) Vi
S iy [ Vi Sy din) Vi Var Vi Flds| +
B X £ Vi (Bl = Vir) Vit S dig [0, Vi iy i)
fllvfflvqfvfflfilw‘}
= { AV B Vi X dig [0, &, Vi 2o dis] TUE( Vi VarVis fis)+
tr Z dig [ZM d;4V Z% d%] IE( igvffl‘/;zf fflfiz 1/2) +
UWJHM&M%ZMJWWW“W%&}+
¥ S S Vi Fu Vi Sy diy [y di Vi Sy i)™ z'/lvf}lvqfvf}lf“|d’} -
WZ@ i1 ff 213 dis [ZM d;4V Z% dzs} o folvw” 71fi1|dz}
= S AV Vin)E (f'Vf}lfzf) E(fLVi'V; folf%z ) BV VarVig fuuf7,)]
Vi S dis [ Vi Sy i) )+
el LA Vi Bt B &7 Tl ™
N aVpp Yaf Vg Jidil®il Vi Zaig ®is [ Zaig Pia is s

The five elements of the approximation of LM(#) are such that we can specify it as

LM (8) = LMo+ +LM; + tr (% LMp, (Dy(8,Y)Ves(0) ' Dx(6,Y)) ™" Dn(0,Y)Vyr(6) ) +
sz LMp, (Dx(0,Y)'V;(0) 1Dy (0,Y)) ™

where
E(LM|d;) = 1
B(LMld;) = 2= 2tr [B (fifVi i) Vit S dis [S, di Vi S ia) ™ i Vi
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E(LMp,|d;) = 2E [le fflvqf *1f”\d] 255+ {tr( fflV?zf) (FIViF fif]) +
E(f; fol folfzz ) +E(/ folvqfv iaff) ) -
~E [fV Iqufolfzf' fflf%f/|d] ~E f’ fflvqfvfflef i}
E(LMp,|d;) = (N 1) [tr(vfflvqf)] "‘tr(vfflvqfvffl‘/;f) +tr(‘/ff1‘/11fvff1v:1f)} +
E [(fiViVasVisfi)]
All these conditional expectations are identical to the conditional expectations given Dy (6,Y")
since they only depend on d; through Dy (6,Y).

B. Proof of Theorem 2.
a. S*-statistic: The higher order components of the bootstrapped S-statistic, S*(6), read:

Vi O p0.) -
Vi (0)7 Vi (0) = V1(0)] Vrr(0) 500, Y) + Oyl ).

S'(0) = Bfp(0,Y)
Bf(0,Y)

The expectation of the first component with respect to the sampling distribution of f*, E*,
results from

B (B0, ) V30) 1 1500.Y)] = B [Bor (Vi 2, £ S S
o e (7, )] e (07, 5
tr Af}l Yo EN (S )) + Etr (fo >0 BN Xz E*( i*2)l>
tr (V'S
since E*(f;")

= W=

J;:1 N Zz 1 fif > T %tr <Vf}1 Zﬁ:l % Zi\il fi [Ziﬁéil E*(f;;)']) =k

= %nyﬂ 0 and E*(f:fY) = %Z?j:l fifl = V. The expectation of
Bf5(0,Y)V;(0)! [vf*f(e) —vff(e)} Vi(0)"1£5(0,Y) results from

B |Bf3(0.Y)Vis(6) [x/f*f(e)—vff(e) Vs (6)~ £2(6,7)]

= B &= VY, (fz2 —Vis ) Vii 2 fZ;] -
* * * 71 *
E =L3 /V 212 fzg 214 4, ff Z’Lg fzg] A .
= E BLZ fo Zzg;&il (fizfzz fo) ‘/fflfu] + E* [B2 Zzl fo ( Z*l — fo) Vf_fl 1*1:| -
E* _BLZ Zzg;ﬁzl ’:’V 1f11fz*lv ! _E* B3 Zzl 2227511 ;;/V lfzgfz*,v !
E* -LBZ 212#1 ;;/V 1f12f1*/v 1 . ﬁZil */V 1f11fz*lv 1 }
- B LY ( VS, ) } _E [32 Z“ [V, }_ L (k2 4 2k] —
i 2
* 1 «Y7r—1 rx
E B2 (fz/ ff 1) ]

_ B—Ql [k2 + 2]{]

— B2 (k2 + 2K].

S*(0) = S + 557 + Op(32).
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where S5 = Bf3(0,Y ) Vyr(6) " f5(0,Y), B(S5) = b, and S = = Bf5(0,Y ) Vs (0) ™ [V (0) = Vy4(0)

. N2
Vir(0) 1 f5(0,Y), E*(S1) = =51 5 200, (fgvf*flfi) +k+ B (R2 4 2K
b. KLM-*-statistic: The bootstrapped KLM statistic, KLM*(f), has the following higher

order components:
KLM*(0) = KLM§ + 5 KLM; + O,(35),
where
KLMg = Bfg(0.Y)YVir(0) 2Py o o0 Vir(0) 2 f5(0.Y)
KLM; = =Bfg@.YYVisO) 3P, s o0 Vir(0)7F [Vis(6) = Vis(6)] Vys(6)”

1
003 b V1O IBO0.Y) = 2BIR0.Y ) Vs (0) 2Py oy s Vir(0) 7

V3 0) = Vs 0)| Vi 0)3M, (40 Vi O3 56,7,

|,_.

We determine the order of the three different components using their expected values with
respect to the resampling distribution.

1 E* [Bfgw,Y)'fow)*aPvffw),%m(e,y)vff<9>*afgw,Y)]

= E* B le fo l *NVf}a Ziz 2*2
it e (rafe)' |+
ff N
tr Vf}ipv*%b Vil 5 2 B (1) S B (ﬁl)/} e
fr N
2B B0,V Vi) 2Py 4, 0 Vir(®) 7 [Vis(6) = V3s(0)]
fo(g)_ip‘;ff(g) Y Hr (oY) Vis(6 )fE(Q,Y)}
= K Zzl *'V IAV [Z <f;;fz*, - fo)} Vf}lAVf}l Zin f:u] -
E* _ﬁ Zi1 folAfo [2112 fllz Z113 Z13} vf_fl‘/élvf_f1 Ziu fl*u}
* 1 * Cr—1 AY7—1 £x p£xr
= B gt {0 X Vir AV [( io fo)} Vi AVyp firti H +
B |t {2, VAV | (F s foﬂ VAV S }
E’ % Zil Zilz Zils Zill i1 folAVf_flf112fl13vff1Afo1 111
2 N
A (v av s ) | - v [ (S, vatavgavg ] -
Z“ */v lAv lf“f*’V 1AV 1 ]
1 1 1 1
5 i i S Vi AV TV AV | =
*/ 1 1 s pxs Cr—1
Zzl 21127611 V AV z12‘/ff Avff g |
Z“ */V 1AV 1f“2f*/ v lAv 1

=
|H ' ) ' ) ' B

i12741 Z1 112

B
2
_ — 1 2 F 1
= & [NZzl f’foQP %DN(QOY)foin) —4] — 5

31



with A = Zi7 Cil'7 |:Z ig digv 229 dl9i| 2210 110” AZ qi(eo) - %f(@o)fo(@o)_lfi(eo).

* * & _1 . _ 1 % A
3. (2x) E [Bwa)'vff(e) EP, o b 1O Vi (0) = Vis(0)]
A _1 A Lo
Vis(0) ZMVH(@)J oy 710 2f3(97Y)}
o1 N RN A1
= E* B2 le Z*llv 2P % - V ? Zig |:f1,*2fz>;, - foi| Vf QMV—%b fo2 Zi:; f’;;:| -
11 PN
E* B3 Z’Ll fo l ‘ fo 212 flz ZM MfozM ff%ﬁNfoE z:is fl3‘|
_ i 1 * = T e s ~ A1 fo 1
= E _ﬁ 20 Ziml 'V Pv}%f)Nfo2 [ nfis = Vis } fszVf%DNVf inj i
1 _1 L1
E B2 Zzl Z*llv 2 Af}l fo |:f11fz vff} Mfo%ﬁNfo f11:| -
E* -B3 211 Zlg#zl 11 fo2P }% S V 2 :;f:z/vfsz**%DNVf 2fi*1- -
1
E* 33 211212¢Z1 1*1,‘/ 2P 1 f*lv 2M -4~ ‘/f Zf:; -
I Vi Vg P .
1 Al AL
E* 155 2a Lo Vi Py foqufz*'V 1 T I
f 15 PN
B | &5, fV P o ANfo AL Mosp VarTa| =
B N 1 11 1
= [ﬁ 2= (fz’vffZPf/—%D Vi FifiVig My Vi fi ) = (k= 1)]
s N 1N
so E* [KLM;] =1 and
E* (K LM* B-—1 1 N 7/A7%P ‘A/7%7 ’
[ J= —F (32 ( Ve B oy 1) T
2 W _(A_% =3 F B3 -3 F — 9k +1 1
NZZ;I <fzvff PVf}%DN(Go,Y) £f vaf MVf}EDN(Go Y)Vf ’ ( + ) +B

Proof of Theorem 3.
A.1. For the Edgeworth approximation of the distribution of S(f), we construct the char-
acteristic function of S(fy) :

cfs (o) (7)

= Jexp (itS(0)) Pfy0.).7, 5 0y (W v) dudv
Jexp (it [So + 51 + 755]) p(fN(gyy)’fo(g))(u, v)dudv + o(N~2)
[ exp (1?50) exp (451 + +5.53) p(fN(O,Y),fo(B))(u’ v)dudv + o( N2
J[1+ 48] exp (itSO)p(fN(e,Y),fo(e))(ua v)dudv + O(N~?),

)

where p 7, gy, fo(@))(u v) is the joint density of fx(6,Y) and Vj;(6) for a sample of size N.
The last equation results from a Taylor approximation of exp( ©S + 4 Sg) The order of the
error term results from the Mean Value Theorem and the convergence rates of (%51)2 and
g,

Lemma 8 states that the expected value of S; stated in Theorem 1 is identical to its
expected value with respect to the joint distribution of fn(6,Y) and Vif(0), E(S;). We use
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the limiting distribution of /N fx(0,Y) to obtain the remaining part of the characteristic
function. Since this limiting distribution is N (0, V;£(6)), the addition of exp(itSy) alters the
variance to ——5=V;¢(0). Since fn(6,Y) is transformed to /(1 — 2it) fx (0, Y"), the characteristic

i— 2t
function that results reads

so(t) = (1= 2it) |1+ FbmB(S1) + O(N 2,

where (1 — 2it)"2* results from the Jacobian of the transformation from /N fy(6,Y) to

/N1 = 2it) fx(0,Y) and we used that
~ 2 [V =20 (0.9)] Vi 0 [Vr(0) = Vi®)] Vs 0) 7 [T =20 (0. 7)]

We now use Theorem 2.4 from Phillips and Park (1988) to obtain the Edgeworth approx-
imation from the above characteristic function:

Pr[S(60) < 2] = Prep(z) - %2G8epag (@) + O(N2)

where Pr,z2 ;) (x) and p,2;)(x) are the distribution and density function of a x?*(k) distributed

random variable evaluated at x. The Edgeworth approximation thus amounts to dividing the

1 E(S1)
N k

A.2. For the Edgeworth approximation of the distribution of KLM(f), we construct the
conditional characteristic function of KLM(6y) given Dy (6,Y) :

standard y?(k) critical values by (1 -

cfrimo) (t{Dn(0,Y))
[ exp (ZtKLM(Q))p(fN(e,Y),fo(e) V(o)) (Us ¥ ,w| Dy (0,Y))dudvdw

= Jexp (it |[KLMy+ & KLM, + I KLM| )
p(fN(H,Y),fo(O),Vef(e))(u’ v, w|DN(9 Y))dudvdw + O(Nl

—  [exp (itKLMy)exp (%KLMl + i
p(fN(H,Y),fo(O),Vef(e))(u v, w|Dn(0,Y))dudvdw —|—O(N1

= [ 1+ EKIM + | exo (it Lagg)
p(fN(a,Y),fo(e),ng(a))(u v, w|Dn(0,Y))dudvdw +0(N\/—)

<L

<L

where p . 010,07, (o) (4 U WD (6,Y)) is the conditional density of (i (6,Y), Vy(6), Vos(6))
given Dy (0,Y). To obtain the characteristic function of KLM(f), we note that the exponent
term of the limiting distribution of v/N fy(6,Y") reads

exp [—%N Fn(0,Y)Vi1(0)" (6, Y)] .
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Combining this exponent term with exp(it K LM;), the exponent term becomes

exp [z‘tKLMU — INFn(0,Y)Vip(0) ! fN(e,Y)]
= exp [mvm VisO0) 3P, oy o Vir(0) 2 fn(0,Y)—

Vip(0)"2DN(8,Y)
1 _1
§NfN(0 Y) Q) ( f(9)7%DN(9,Y) + Mfo(9)7%DN(0,Y)) fo(e) ZfN(Qa Y)]

Yy
it
= ep |[~L (U= 2 NIy O, YV 0) 3P, g Vi (0) (0, Y)-
SN0 VigO) My, o Vir@) (0]
= exp|—3 (1—2275)KLM0
(

1 1 _1
NfN(e YYVir0) My, o o Vir(©) sz(e,Y)].

The K LM, higher order component of KLM(f) contains elements of both components,

P )‘/ff( )7%fN(97Y) and MV (0)7%DN(0,Y)fo<9)7%fN(e,Y)’

O 11

of this exponent term:

KLM,

= 2 -3 -3 |V —
= N0 vffw PVHWDW)VH<9> V1s(0) = Vy1(0)]

2N2fN(97Y)/fo(9) ZPVH(Q) LDy (o) fo(g)_i [fo(9) - fo(g)]

fo(e)i%Mfo(ﬂ)’%DN(a,y)fo<) 2fn(0,Y)

and

a= E [NQfN(H’Y),vff(e)_%Pvff(e)—%DN(e,Y)fo(Q)_% [fo(g) - fo(Q)}
Vig(0) 2P, ) Vir(0) " (6,Y)d]

[ff(e) 2DN(0,Y)
N—-1

1 1 2
-3 —3 1
(fz‘/vff PVf}%DNfo fz) ’dz] —4} - N

— 2 / -3 L -3 v _
b= [N N0 Y)Vir(0) 28, o3 pon Vir () [fo(g) fo(Q)}
fo(9)_5vaf(g)—%DN(gjy)fo(Q)_ifN(Q, Y)|dz}

_ N-1 ~3 -3 -3 -3
= 5 {E [fz‘lvff Pvf}%DNfo fifiVsy va}%DNfo fi|di} — (k= 1>}-

!
(0)7%DN(9,Y)‘/ff(0) 2 fN(Q? Y)
Itiplied by /1 — 2it while those of M 1 Vir(0)2 fx(0,Y) remain unaltered
are multip y Vi) S Dy (oy) I ~N(0, .

We take account of these transformations when we construct the charactqristic function of
KLM(6) given Dy (fo,Y") for which we use the limiting distribution of v/N fx(6o,Y) :

The expression of the exponent term shows that the elements of PV
1

el (H Dy (00, Y)) = [ [1 +KLM, + i }exp (it K LMy)
p(fN(G,Y),fo(G),Vef(G))(u v w]DN(Q Y))dudvdw —l—o(N\/—)

L i
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where (1—2it) 2 results from the Jacobian of the transformation from K LM, to (1—2it) K LM,
and we used Lemma 8 to obtain the expected values with respect to the joint distribution of
(fn(8,Y),V;(8),Vis(0)) from Theorem 1. Using Phillips and Park (1988), we obtain the
Edgeworth approximation from the characteristic function:

Pr[KLM (0p) < #|Dn(00,Y)] = Preay(z) + % (az + V27Ebz? ) pey(z) + O(N2)
= Prpeq ($—|—N a:zH—\/%bx?) +o(N72).

The Edgeworth approximation is obtained by using the Fourier transform of the characteristic
function:
p(z) = o= [7 cf,(t) exp [—itz] dt.

2m J—o0

It is well known that (1 — 2it)~2 is the characteristic function of the y2(1) distribution. The
above Fourier transform shows that

P, 2(1)(@) oo i ;
2 2(;) = 8% [% [22 ez (t) exp [—ita] dt} = 7 _(1—21;‘15)% exp [—itz] di

3] ; . 0 .
so the Fourier transform of = 2“5) is — 22 a(;) ) and that of . ’; g pxza(;)(m). The density
—2it

function that results from the characteristic function is therefore:

0, (z 0,
pKLM(QO)(l"DN(QO;Y)) = px2(1)<$) + % [aw% 2b P 2(2 :| —+ O(

3
2

N

When we integrate the density function to obtain the distribution function we obtain:

Pr[KLM (65) < z|Dn(60,Y)] = Pryeqy(z) + % (apy2(s) () + 2bpye)(2)) + O(le/ﬁ).

The density function of the x*(1) random variable is such that p,2(s)(z) = I 1()% \)f Vapem(z) =
VEVEpey(z) since ['(1) = 1 and I'(3) = /7. Similarly, pegs)(z) = F(( )) TPy (T) =

1
%xpx%l) (z) = zpy2(1y(z) since T'(2) = 3T(3). Inserting these expressions, we obtain that

Pr[KLM (0) < z|Dy(00,Y)] = Peqy(x) + % (az + vV270\/Z) py2y(2) + O(5)

= Peq) (z+ + (az +V27by/7)) + O(N\I/]V)'
Thus the Edgeworth approximation alters a x?(1) critical value = towards :c—% (ax +V 27rb\/5) .

B.1. For the Edgeworth approximation of the distribution of S*(#), we construct the charac-
teristic function of S*(6y) :

CfS*(@) (t) = f exp (ztS* (9))p(f]§(97y)’vff(9))(u, v)dudv
Jexp (it [S; + +55]) pirso.v), v, o) (u, v)dudv + o(B™)

= [ [1+ £57] exp (itS5) piss 0.v), V7, (6) o)) (u, v)dudv + o(B™1),

where p( s 9.v),v ff(g))(u, v) is the joint density of f5(0,Y) and V/;(6) for a bootstrap sample of
size B. The order of the error term results from the Mean Value Theorem and the convergence
rates of (%S5} )2 . The addition of exp(itS 5) alters the variance of the limiting distribution of

VBf5(0,Y) so it becomes N (0, —— —= V;£(6)). The characteristic function then becomes
cli(t) = (1= 2it) |1+ L5 B(S) + o(B7)]
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where E(S}) results from the higher order specification of S*(#) in Theorem 2, such that the
Edgeworth approximation reads:

Pr(S* (60) <a] = Pryg (:c - %E(if)m> +o(BY).

B.2. For the Edgeworth approximation of the distribution of KLM*(¢), we construct the
characteristic function of KLM*(6y) given Dy (6p,Y) :

CfKLM*(e) (t’DN (6’0, Y))
= J exp (itKLM"(6)) ps 0.v).v;, (0)) (1, ) dud
= Jexp (it [KLM; + SKLM) P07, 0)) (s v)dudv + o( B~
1

[ [1+LKLM;] exp (itKLMg)p(fg(gjy)y;f(g))(u, v)dudv + o(B~1).

Identical to KLM(0), the exponent term exp(it K LM{) alters the exponent term of the limiting
distribution such that the characteristic function of KLM*(é) reads

cfkrae (o) (t|[?N (60,Y))
= f [1 + %KLMI*} exp (itKLMS)p(f§(97y),Vf‘f(9)) (u, v)dudv + O(Bil)

— (1-2it)3 [1 — L") — 2B + 0(3—1)} ,

1

3 1 > 1

F00)iVer(00) ™2 My, sty (00ry Vi1 (B0 2f(go)} — (k- )} :
The Edgeworth approximation of KLM*(6y) then reads

Pr [KLM* (6,) < x|bN<eo,Y)} = Preg)(@) + L (a2 + v2rb*z} ) peegy (@) + o B)
= Prype (x + % a*z 4\ 2mb* x2 ) +o(B™).
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