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1 Introduction

Testing for residual spatial autocorrelation in the context of the linear regression model (e.g., Cliff and

Ord, 1981, Anselin, 1988, Cressie, 1993) is now recognized as a crucial step in much empirical work in

economics, geography and regional science. The present paper is concerned with finite sample power

properties of tests used for this purpose. More specifically, we aim to shed some light on how power

is affected by the regressors and by the spatial structure.

So far, power properties of tests for residual spatial autocorrelation have received much less atten-

tion than those of tests for residual serial correlation, and have mainly been studied by Monte Carlo

simulation (see Florax and de Graaff, 2004, and references therein). Very few attempts have been

made to derive exact properties of such tests, two notable exceptions being King (1981) and Krämer

(2005). The former paper has established that the most popular test for spatial autocorrelation in

regression residuals, the Cliff-Ord test, is locally best invariant for an important class of alternatives.

The latter paper has generalized some results previously available for tests of serial autocorrelation

(see Krämer, 1985, and Zeisel, 1989); in particular, Krämer (2005) has shown analytically that there

are cases in which the power of some tests for spatial autocorrelation (namely, those whose associated

test statistics can be expressed as ratios of quadratic forms in the regression residuals) can vanish as

the spatial autocorrelation in the data increases. In general, it is fair to state that, while there is some

evidence in the literature that the properties of tests for spatial autocorrelation can be very sensitive

to the regressors and to the spatial structure, little is known about which combinations of regressors

and spatial structures lead to low or high power.

Of course–given the popularity of the linear regression model and the pervasiveness of the issue of

spatial autocorrelation in many empirical investigations–a large number of procedures are available

for the purpose of testing for residual spatial autocorrelation, and one can choose among them on the

basis of the suspected form of autocorrelation or on the basis of the desired properties of the testing

procedure. In this paper, we confine ourselves to a rather simple, and extremely popular, framework.

We assume that the regression errors follow a (first-order) conditional or simultaneous autoregression

(e.g., Cressie, 1993) and we focus on invariant tests (e.g., Lehmann and Romano, 2005). Even in this

simple setup the analytical investigation of exact power properties of tests is complicated. Because

of the availability of many approximating techniques for power functions, this is not necessarily a

problem when interest lies in the properties of a test in the context of a given model, i.e., when both

the spatial structure and the matrix of regressors are fixed. However, when interest is, as in this

paper, in how the properties of a test depend on the regressors and on the spatial structure, none of

the available numerical or analytical approximations is likely to yield conclusive results. One feature of

our approach is that some new properties of the power function of invariant tests are deduced directly

from the density of the pertinent maximal invariant avoiding the need for complicated expressions for

power functions, or approximations to them.

Throughout the paper, Gaussianity is assumed in order to treat conditional or simultaneous autore-

gressions in the same framework: indeed, while simultaneous autoregressions can be easily extended

to non-Gaussian contexts, conditional autoregressions are inherently Gaussian (see Besag, 1974). It

should be noted, however, that, since the density of the maximal invariant remains the same for any

elliptically symmetric model (e.g., Kariya, 1980), the results that we obtain hold more generally for

any SAR model based on an elliptically symmetric distribution.

Our results are as follows. Firstly, we extend the results of Krämer (2005) in several directions:
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we formulate conditions for the limiting, as the autocorrelation increases, power of any invariant test

to be 0, 1, or in (0, 1); we prove that, for any given spatial structure and irrespective of the size of

the tests, there exists a set (of positive measure) of subspaces spanned by the regressors such that the

limiting power of a locally best or point optimal invariant test vanishes; we characterize such “hostile”

subspaces. Secondly, we discuss some conditions that are sufficient for unbiasedness of invariant tests

for spatial autocorrelation and for monotonicity of their power function. Although such conditions

are not necessary, they help to understand the causes of undesirable properties of the tests.

These results call for caution in interpreting the outcome of tests for residual spatial autocorre-

lation. In some circumstances, especially when the number of degrees of freedom is low and large

autocorrelation is suspected, it may be very difficult to detect autocorrelation in the context of spatial

autoregressions. Our results are also relevant outside a formal hypothesis testing framework, because

they imply that there are circumstances in which the practice (e.g., Cliff and Ord, 1981, Anselin,

1988) of interpreting the Cliff-Ord statistic as an autocorrelation coefficient cannot be justified.

The theoretical framework in which we work is presented in Section 2. Section 3 analyzes the

limiting power of invariant tests for spatial autocorrelation. This is done by first considering the

general case of a model with arbitrary regressors, and then specializing the results to zero-mean

models. A small numerical study of the practical relevance of the results is included. Further insights

into the role played by the regressors and the spatial structure in determining the power of invariant

tests of autocorrelation are gained in Section 4, by analyzing the conditions for unbiasedness of the

tests and monotonicity of their power functions. Section 5 concludes by discussing some of limitations

and possible extensions of our analysis. The Appendices contain technical material and all proofs.

2 The Setup

This section presents the context in which our results will be derived. Section 2.1 defines the testing

problem, which is one of testing autocorrelation in a linear regression model. Section 2.2 briefly reviews

the definition of invariant tests, and discusses the advantages of such tests for our testing problem.

2.1 The Testing Problem

Consider a fixed and finite set of n observational units, such as the regions of a country, and let

y = (y1, ..., yn)
′, where yi denotes the random variable observed at the i-th (according to some

arbitrary ordering) unit. We assume that y is modelled according to a Gaussian linear regression

model, i.e.,

y ∼ N(Xβ, σ2Σ(ρ)), (1)

where X is a non-stochastic n× k matrix of rank k < n, β is a k × 1 vector of unknown parameters,

σ2 is an unknown positive parameter, and ρ is an unknown parameter belonging to some connected

subset, to be denoted by Ψ, of the set of values of ρ such that Σ(ρ) is positive definite. We assume

that the function ρ→ Σ(ρ) is differentiable, and that the parameters of the model are identified (in

the sense that the parameter space of the model does not contain two distinct points indexing the

same distribution) and functionally independent. Throughout the paper we will often refer to the

case of a general Σ(ρ), but will be mostly concerned with the specific covariance structures implied

by spatial autoregressive processes.
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There are two distinct classes of Gaussian spatial autoregressions: conditional autoregressive

(CAR) processes and simultaneous autoregressive (SAR) processes. They are both discussed ex-

tensively in many books and articles in the statistics and econometrics literature (e.g., Whittle, 1954,

Besag, 1974, Cliff and Ord, 1981, Anselin, 1988, Cressie, 1993), to which we refer for details concern-

ing the construction and interpretation of the models. Here, we only present the covariance matrices

implied by the models. As in most of the theoretical and empirical literature on spatial autoregressive

processes, we confine ourselves to first-order (or one-parameter) processes.1 Such processes are spec-

ified on the basis of a fixed n× n (spatial) weights matrix W , chosen to reflect a priori information

on relations among the n observations. Typically, for each i, j = 1, ..., n, Wi,j = 0 if i and j are

not neighbors according to some metric deemed to be relevant for the phenomenon under analysis,

whereas Wi,j is set to some non-zero number, possibly reflecting the degree of interaction, otherwise.

For instance, if the observational units are the regions of a country, one may set Wi,j = 1 if two

distinct regions i and j share a common boundary, Wi,j = 0 otherwise. In this paper we assume that

a weights matrix (i) has zero entries along its main diagonal, (ii) is entrywise nonnegative, (iii) is

irreducible. Details concerning such assumptions are in Appendix A.

Let I denote the n× n identity matrix. A CAR specification yields (see Besag, 1974)

Σ(ρ) = (I − ρW )−1L, (2)

where L is a fixed n × n diagonal matrix such that L−1W is symmetric. For each i = 1, ..., n, the

term σ2Li,i represents the variance of yi conditional on all the remaining random variables in y. We

remark that structure (2) constitutes a very natural framework for the study of autocorrelation tests,

even without referring to a CAR interpretation; see, e.g., Anderson (1948), Kadiyala (1970), Kariya

(1980), King (1980).

On the other hand, a SAR process implies

Σ(ρ) = (I − ρW )−1V (I − ρW ′)−1, (3)

where V is a fixed n× n symmetric and positive definite matrix. We note immediately that because

of the assumptions made above thatX is fixed and that β and ρ are functionally independent, models

containing a spatial lag of y among the regressors are not in the class of models considered in this

paper. We shall come back to this point in Section 5.

For the purposes of this paper, specifications (2) and (3) can be slightly simplified. This is because

for our testing problem (defined in the next paragraph), there is no loss of generality in assuming that

Σ(0) = I. Accordingly, from now on and unless otherwise specified, the term “CAR model” refers to

the family of distributions

N(Xβ, σ2(I − ρW )−1), (4)

(for a fixed W ) and the term “SAR model” to the family

N(Xβ, σ2
[
(I − ρW ′)(I − ρW )

]−1
), (5)

(again, for a fixedW ). The normalization to Σ(0) = I emphasizes a crucial difference between CAR

and SAR models: in CAR models there is no loss of generality (as far as our purposes are concerned)

1First-order spatial autoregressions are usually denoted by CAR(1) and SAR(1). Throughout, we drop the specifi-

cation of the order, since this paper is concerned only with first-order processes.
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in assuming that W is a symmetric matrix, whereas in SAR models we have to allow explicitly the

possibility of a nonsymmetric W . In fact, we shall find that there are interesting differences between

SAR models with a symmetric weights matrix, henceforth referred to as symmetric SAR models, and

SAR models with a nonsymmetric weights matrix–henceforth referred to as asymmetric SAR models.

In the context of model (1), our testing problem consists of:

H0 : ρ = 0 versus Ha : ρ > 0. (6)

Here and throughout, ρ > 0 is to be understood as ρ ∈ R+∩Ψ, that is, we leave it implicit that ρ must

belong to the parameter space of the model. The choice of a one-sided alternative rather than a two-

sided one is dictated by the fact that the former is more relevant for many specifications of Σ(ρ). In

particular, under the assumption introduced below, for both CAR and SAR models ρ > 0 represents

positive spatial autocorrelation, a much more common phenomenon in practice than negative spatial

autocorrelation. The assumption is that R+ ∩Ψ = [0, λ−1max), where λmax is the largest eigenvalue in

modulus of W . Some properties of λmax that are important for the results obtained in this paper

are pointed out in Appendix A. Here, we remark that the value ρ = λ−1max can be interpreted as the

analog of a unit root in an AR(1) model (see, e.g., Fingleton, 1999, and Paulauskas, 2006).

2.2 The Tests

For the testing problem defined above, we will focus on the so-called invariant tests. These are now

briefly introduced, with particular attention to point optimal invariant tests and locally best invariant

tests; details on the theory of invariant tests are available in standard references such as Lehmann

and Romano (2005). Generally speaking, a test is said to be invariant if it preserves the symmetries

satisfied by the associated testing problem. More precisely, a test is said to be invariant with respect

to a certain group of transformations of the sample space if it is based on a test statistic that is

constant on each orbit of that group. A necessary and sufficient condition for this type of invariance

is that the test statistic is a function of a maximal invariant under that group.

The testing problem (6) is invariant with respect to the group of transformations y → ay +Xb,

with a ∈ R\{0} and b ∈ Rk (see Appendix B for more details). Let C be an (n− k)× n matrix such

that CC′ equals the identity matrix of order n− k and C′C = I −X(X′X)−1X′ =:MX , and let

‖·‖ denote the Euclidean norm. Fix, without any loss of generality, an arbitrary ı̄ = 1, ..., n. Then, a

maximal invariant under the above group is v := sgn(yı̄)Cy/ ‖Cy‖. Its density, with respect to the

normalized Haar measure on the hemisphere Sn−k :=
{
s ∈ Rn−k : ‖s‖ = 1, sı̄ ≥ 0

}
, is

pdf(v; ρ) = 2
∣∣CΣ(ρ)C′

∣∣− 1

2

[
v′
(
CΣ(ρ)C′

)−1
v
]−n−k

2

(7)

(see Kariya, 1980, equation (3.7)).

Besides the “principle of invariance”, there are at least two other reasons why invariant tests are

particularly appealing for our testing problem. Firstly, invariant tests can be implemented easily.

Since an invariant test statistic must depend on y only through v, its distribution under the null (and

also under the alternative) is free of nuisance parameters, and hence critical values can, in general, be

obtained accurately by Monte Carlo or other numerical methods. Secondly, expression (7) turns out

to be proportional to the marginal likelihood of ρ, which has often been found to provide a better basis

for inference about ρ than the full likelihood of model (1) (especially when k is large with respect to

n); see, for instance, Tunnicliffe Wilson (1989) and Rahman and King (1997).
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It is well known that in general, despite the elimination of the nuisance parameters achieved in

(7), no uniformly most powerful invariant (UMPI) test exists for the testing problem (6). One could

then resort to a test that is optimal according to some exact criterion (see, for instance, Cox and

Hinkley, 1974, p. 102), or to a test that has less clear-cut optimality properties but performs well in

general, such as a likelihood ratio test (which is an invariant test; e.g. Cox and Hinkley, 1974, p. 173)

or its restricted version based on pdf(v; ρ). In the present paper we are particularly concerned with

the tests–named point optimal invariant (POI) tests by King (1988)–that are the most powerful

amongst all invariant tests against a specific alternative ρ = ρ̄ > 0, and with the locally best invariant

(LBI) test, which is obtained as the limiting case for ρ̄→ 0. In general, and certainly for our testing

problem, the locally most powerful test coincides with the test maximizing the slope of the power

function at ρ = 0 (see Lehmann and Romano, 2005, p. 339). The main reasons why we focus on

POI and LBI tests are: (i) POI tests define the upper bound–the so-called power envelope–to the

power attainable by any invariant test of a fixed size; (ii) LBI tests are extremely popular in practice,

especially in the context of CAR and SAR models (see below).

Next, we define the critical regions associated to POI and LBI tests for our testing problem. The

size of a critical region is denoted by α and, to avoid trivial cases and unless otherwise specified, is

assumed to be in (0, 1). Application of the Neyman-Pearson Lemma to the density (7) reveals that

the critical region of a POI test at the point ρ̄ is defined by

v′
(
CΣ(ρ̄)C′

)−1
v < cα, (8)

where cα is a constant such that the size of the test is α.2 Denoting by πρ̄(ρ) the power of such a

critical region, the power envelope of size-α invariant tests is the function that associates the value

πρ(ρ) to each ρ ≥ 0. When needed, we will emphasize the dependence of πρ(ρ) on X by writing

πρ(ρ;X). For a fixed size α, the LBI critical region is defined by

v′CA0C
′v < cα, (9)

where A0 = dΣ−1(ρ)/dρ
∣∣
ρ=0

(King and Hillier, 1985). When −A0 is equal to some spatial weights

matrix W (or to W +W ′), as it is in the case of CAR or SAR models, the LBI test is known in

the literature as Cliff-Ord test (see Cliff and Ord, 1981, King, 1981, Kelejian and Prucha, 2001). The

Cliff-Ord test represents the generalization to regression residuals of the Moran test (Moran, 1950),

and is, by far, the most popular test for spatial autocorrelation in regression models.

Before we continue, some notation is in order. For a q × q symmetric matrix Q, we denote by

λ1(Q), ..., λq(Q) its eigenvalues, labeled in non-decreasing order of magnitude; by mi(Q) the multiplic-

ity of λi(Q), for i = 1, ..., q; by f1(Q), ...,f q(Q) a set of orthonormal (with respect to the Euclidean

norm) eigenvectors ofQ, with the eigenvector f i(Q) being pertinent to the eigenvalue λi(Q); by Ei(Q)

the eigenspace associated to λi(Q), for i = 1, ..., q. Note that, whenW is symmetric, λn(W ) = λmax.

When W is nonsymmetric, its eigenvalues cannot in general be ordered as above, but λmax is still

well-defined.

2Note that in (8), v denotes a realization of the maximal invariant. Throughout the paper, we do not distinguish

notationally between a random variable and its realizations.
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3 Limiting Power

In Section 3.1 we discuss some preliminary results in the context of the general model (1). Then,

for CAR and SAR models, we analyze the limiting power of invariant tests, as the autocorrelation

increases. We consider the case with general regressors in Section 3.2, and without regressors in Section

3.3. Special attention is paid to the cases in which the limiting power vanishes, and to facilitate their

analysis, we will refer to the minimum size such that the limiting power does not vanish. Such a value

of the size of a critical region can be interpreted as a measure of difficulty of testing for autocorrelation.

Finally, in Section 3.4 we report results from numerical experiments aimed at assessing the practical

relevance of the theoretical results.

3.1 Preliminaries

We now present two results that set the scene for the analysis to follow. They both address the

question of how the power of invariant tests of ρ = 0 versus ρ > 0 in model N(Xβ, σ2Σ(ρ)) is affected

by X, for some covariance structure Σ(ρ).

The first result concerns a comparison of the power envelope πρ(ρ;X) when X 
= O and when

X = O. Henceforth, col(X) denotes the column space of the matrix X.

Proposition 3.1 Consider testing ρ = 0 versus ρ > 0 in model N(Xβ, σ2Σ(ρ)). For any X 
= O,

any ρ > 0, and any α,

πρ(ρ;X) ≤ πρ(ρ;O). (10)

In (10) equality is attained if and only if, for some i = 2, ..., n − 1, col(X) ⊆ Ei(Σ(ρ)) and α =

Pr(v′Σ−1(ρ)v < λ−1i (Σ(ρ)).

The circumstances leading to equality in (10) are extremely restrictive, because they pose severe

constraints on X, α, and Σ(ρ). Proposition 3.1 then asserts that, except for such restrictive cir-

cumstances, the presence of regressors has a detrimental effect (with respect to the case in which the

model does not contain regressors, and as long as β is unknown) on the maximum power achievable

by an invariant test for residual autocorrelation. Since it holds for any Σ(ρ), any X, and any α, this

is a rather general result on the role of regressors in testing for residual autocorrelation.

A brief discussion of some limitations of Proposition 3.1 is useful to motivate, and to highlight the

difficulties of, the analysis to follow. First, note that inequality (10) involves two models (the model

with X = O and the model with some X 
=O) with different degrees of freedom. Secondly, it should

be observed that in practice, one is usually more concerned with the power of a specific test than with

a power envelope.3 In light of these comments, an interesting question is which matrices X of a fixed

dimension n × k are favorable, and which are less favorable, to the power of a particular invariant

test, given Σ(ρ). This is a difficult question, because the answer in general depends on ρ and α. In

the present paper, we will provide some answers concerned with specific cases: we will consider the

3For a general Σ(ρ), Proposition 3.1 does not imply that the power function of a particular invariant test when

X = O is uniformly (over ρ > 0) non-smaller than when X �= O. Interestingly, such an implication does hold when

Σ(ρ) is that of a CAR model and the test in question is POI or LBI, because for a zero-mean CAR model the POI

critical region (8) does not depend on ρ̄ (that is, there exists a UMPI test), and hence the power function of any POI

or LBI test coincides with πρ(ρ,O).
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Σ(ρ) implied by a CAR or SAR model, we will mainly focus on large ρ, and, when necessary, we will

restrict attention to POI and LBI tests.4

The second preliminary result presented here considers the limit of the power of an arbitrary

invariant test as ρ approaches some positive value a (from the left, and with a an accumulation

point of Ψ), and links such a limit to the limiting eigenstructure of Ωρ := CΣ(ρ)C′. For notational

convenience, let Ω := lim
ρ→a

Ωρ.

Lemma 3.2 Consider an arbitrary invariant critical region for testing ρ = 0 against ρ > 0 in model

N(Xβ, σ2Σ(ρ)), and let a be some positive value such that Σ(ρ) is positive definite for ρ ∈ (0, a) and

for ρ → a. When λn−k (Ω) is finite, the power of the critical region tends, as ρ → a, to a number

strictly between 0 and 1. When λn−k (Ω) is infinite and has algebraic multiplicity one, the power

tends, as ρ→ a, to 1 if the critical region contains fn−k (Ω), to 0 otherwise.

Lemma 3.2 holds for very general matrices Σ(ρ), including those of CAR, SAR, and (covariance

stationary) AR(1) models. Clearly, the most alarming implication of Lemma 3.2 is that, for some

combinations of Σ(ρ) andX, power can vanish as ρ→ a. We now briefly comment on some intuitions

underlying this phenomenon; details are in Appendix C. In the context of Lemma 3.2, power vanishes

when the statistical model tends, as ρ→ a, to a family of distributions supported on a subset of the

sample space Rn, and such a subset does not intersect the critical region. Now, CAR and SAR models

tend, as ρ→ λ−1max, to be supported on a subspace of Rn, for anyW , whereas an AR(1) model tends,

as ρ→ 1, to be supported on a subspace of Rn only if the initial condition is such that the process is

covariance stationary. Such observations have two important implications for the analysis to follow.

Firstly, the zero power phenomenon is attributable to a characteristic of the statistical model, not of

a particular test. Secondly, the phenomenon deserves particular attention in CAR and SAR models,

because, as ρ→ λ−1max, such models are always concentrated on a subspace of Rn.

3.2 Main Results

We now restrict attention to the power of invariant tests in CAR and SAR models as ρ→ λ−1max (from

the left). Values of ρ close to λ−1max are particularly relevant when the dependent variable y (given X)

exhibits a type of near nonstationarity similar to that due to a unit root in time-series autoregressions

(see Fingleton, 1999, Mur and Trivez, 2003, Lauridsen, 2006).5 For an empirical application involving

a SAR model with ρ close to λ−1max, see, for instance, Kosfeld and Lauridsen (2004). Consideration

of the extreme case ρ → λ−1max in the context of a regression model is interesting also because it

corresponds, in general, to studying power when it is most needed, i.e., when the inefficiency of the

OLS estimator of β is large (see Krämer and Donninger, 1987).

Henceforth, by “limiting power” we mean the limit of the power function as ρ→ λ−1max. By Φy we

denote an invariant critical region defined on the sample space Rn; later, we shall use Φv for a critical

region defined as a subset of Sn−k. Finally, fmax denotes an eigenvector of W pertaining to λmax;

see Appendix A for a precise definition. The key result of this section is the following theorem.

Theorem 3.3 In CAR and SAR models, the limiting power of an invariant critical region Φy for

testing ρ = 0 against ρ > 0 is:

4Other partial answers are available for the Σ(ρ) implied by an AR(1) process; e.g., Tillman (1975).
5The literature on spatial autoregressions with large ρ is particularly substantial outside economics; see, for instance,

Besag and Kooperberg (1995) and Bhattacharyya et al. (1997), and references therein.
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— in (0, 1) if fmax ∈ col(X);

— 1 if fmax ∈ Φy\ col(X);

— 0 otherwise.

Theorem 3.3 asserts that, to some extent, the limiting power of Φy is determined by which of three

mutually disjoint subsets of the sample space (col(X), Φy\ col(X), and the complement of Φy∪col(X))

fmax belongs to. This result is strongly related to Theorems 1 and 2 in Krämer (2005), the most

important differences being: (i) the class of tests considered there (i.e., tests that can be expressed

as ratios of quadratic forms in the regression residuals) and the class considered in the present paper

(i.e., invariant tests) are different, although they intersect; (ii) our result does not require symmetry

of W .

It is worth stressing that Theorem 3.3 holds for any invariant critical region, regardless of the

analytical form of the associated test statistic. In particular, it also holds for invariant tests whose

test statistics are analytically complicated, or, as in the case of a likelihood ratio test,6 unavailable in

closed form.

The practical usefulness of Theorem 3.3 is in providing simple conditions for the limiting power of

an invariant test to vanish, given any matrices X and W . Consider an invariant critical region Φy

that rejects ρ = 0 for small values of some statistic T (y), i.e.,

Φy = {y ∈ Rn : T (y) < cα} . (11)

Theorem 3.3 asserts that the limiting power of such a critical region is in (0, 1) if fmax ∈ col(X), is 1

if fmax /∈ col(X) and T (fmax) < cα, and is 0 if fmax /∈ col(X) and T (fmax) ≥ cα. Such conditions

are typically simple to check because, in most cases, (i) fmax is either known (e.g., it is a vector of

identical entries when W is row-standardized; see Appendix A) or can be computed efficiently (e.g.,

by the power method); (ii) since Φy is similar, cα can be obtained accurately by simulation or other

numerical methods. For instance, it is readily verified that, for the Σ(ρ) implied by CAR or SAR

models, the limiting power of the LBI test is in (0, 1), 1, or 0, depending on whether

f ′max (MXA0MX − cαMX)fmax (12)

is respectively zero, negative, or positive. Analogously, simple algebra reveals that the limiting power

of a POI test is in (0, 1), 1, or 0, depending on whether

f ′max
{
Σ−1(ρ̄)

[
I −X(X′

Σ−1(ρ̄)X)−1X′Σ−1(ρ̄)
]
− cαMX

}
fmax (13)

is respectively zero, negative, or positive. Since they refer to test statistics that are ratios of quadratic

forms in y, the conditions based on (12) and (13) reduce, in the case of a symmetric SAR model, to

conditions given in Krämer (2005).

In the rest of this subsection we take a close look at the vanishing of the limiting power, and,

consequently, we restrict attention to the case fmax /∈ col(X). Suppose that, by application of

Theorem 3.3, one finds that, in the context of a given CAR or a SAR model, the limiting power of

a certain critical region Φy vanishes. Theorem 3.3 itself guarantees that if Φy is enlarged so as to

include fmax, then its limiting power jumps to 1. A practically important question is how large Φy

6Both a LR test based on the full likelihood and its version based on the marginal likelihood are unavailable in closed

form, and, as mentioned in Section 2.2, belong to the class of invariant tests.
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must be in order to avoid the vanishing of the limiting power. To explore this issue, it is convenient

to refer to the minimum size such that the limiting power of a certain test does not vanish. More

formally, we define (allowing, for convenience and contrary to what is done elsewhere in the paper, α

to take the value 1):

Definition 3.4 For an invariant test of ρ = 0 against ρ > 0 in a CAR or SAR model, α∗ is the

infimum of the set of values of α ∈ (0, 1] such that the limiting power does not vanish.

When fmax /∈ col(X), α∗ is a measure of the distinguishability between the null hypothesis ρ = 0

and the alternative ρ→ λ−1max. A large α∗ indicates that a large critical region is necessary to avoid the

zero limiting power problem; α∗ = 0 indicates that the limiting power is 1 for any α; finally, α∗ = 1

means that the limiting power is 0 for any α.7 Note, in particular, that α∗ = 1 identifies the extremely

negative situation in which the zero limiting power problem cannot be avoided by increasing α. A

simple characterization of α∗ is given in the following result.

Lemma 3.5 When an invariant critical region for testing ρ = 0 against ρ > 0 in a CAR or SAR

model is in form (11), and provided that fmax /∈ col(X),

α∗ = Pr(T (y) < T (fmax); y ∼ N(0, I)). (14)

The probability in (14) does not depend on any unknown parameter, and hence can be approxi-

mated accurately by simulation or other numerical methods. We stress that α∗ depends onX (through

col(X), because of the invariance property of the tests),W , the invariant test under analysis, and on

whether a CAR or a SAR model is considered. In particular, for a givenW , a given test, and a given

k, α∗ may depend to a very large extent on col(X). In Section 3.4 we will report some numerical

examples, while Lemmata F.1 and G.1 give conditions for the case α∗ = 0. In the following, we focus

on the other, and most worrisome, extreme, i.e., α∗ = 1. For simplicity, we restrict attention to POI

and LBI tests.

Theorem 1 of Krämer (2005) contains the crucial statement that, in a symmetric SAR model,

“given any matrix W of weights, and independently of sample size, there is always some regressor

X such that for the Cliff—Ord test the limiting power disappears” (note that here “some regressor

X” refers to the case k = 1). Now, from Theorem 3.3 it is clear that whether or not a particular X

(with k ≥ 1) causes the limiting power to disappear depends on α. Thus, if interpreted as holding for

any α, the above statement would imply that for any W there exists at least one regressor such that

α∗ = 1 for the Cliff-Ord test (i.e., the LBI test) in a symmetric SAR model. Unfortunately, whether

this implication is correct remains to be established, because the proof of Krämer’s theorem holds

only when α → 0.8 The next result settles the issue and places it in a more general context. Recall

that m1 denotes the multiplicity of λ1, for a symmetric W . Generally m1 = 1, unless W satisfies

some symmetries; see, for instance, Biggs (1993).

7Recall that we are here focusing on the case fmax /∈ col(X). If fmax ∈ col(X), α
∗ is always zero, by Theorem 3.3,

and hence uninformative. In order to study the power of invariant tests when fmax ∈ col(X), one could define α∗ as

the infimum of the set of values such that the limiting power is greater than some positive value, but this is not pursued

in the present paper.
8This is because d1 in equation (12) of Krämer (2005) is not necessarily positive for any W , unless α → 0. As a

consequence, the regressors that Krämer constructs in his proof do not need to cause the limiting power to vanish when

d1 < 0.
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Theorem 3.6 Consider a POI or LBI test for ρ = 0 against ρ > 0 in the context of a CAR or

symmetric SAR model. For any fixed W , and for any k ≥ m1, there exists at least one k-dimensional

subspace col(X) such that α∗ = 1.

Remark 3.7 With regards to the statement from Krämer (2005) reported above, Theorem 3.6 (i)

establishes that the statement is correct when m1 = 1; (ii) provides a generalization to the case

m1 > 1; (iii) provides a generalization to POI tests and to CAR models.

From the proof of Theorem 3.6 it can be deduced that, in fact, for any k ≥ m1 there exists an

infinity of subspaces col(X), such that α∗ = 1, i.e., such that the limiting power of the selected test

vanishes for any α. Such “particularly hostile” subspaces col(X) are described in Appendix D, where

the conclusion is reached that in CAR and symmetric SAR models it becomes impossible, as ρ→ λ−1max,

to detect large positive spatial autocorrelation when the regressors are the sum of a strongly positively

autocorrelated component and a strongly negatively autocorrelated component.

Having established the existence of subspaces col(X) such that α∗ = 1, the question arises of

how likely it is to run into them. One might suspect that the set of such col(X)’s has measure zero

(with respect to a suitable measure; see the next paragraph). We now show that such a suspicion is

incorrect, because there is always, for any W , any α, and any n − k, a nonzero probability that the

limiting power of a POI or LBI test vanishes.

Let Gk,n denote the set, usually called a Grassmann manifold, of all k-dimensional subspaces of

R
n, and let, for 0 < α < 1, Hk(α) ⊆ Gk,n be the set of k-dimensional col(X) such that the limiting

power of a POI or LBI critical region of size less than α vanishes (for some CAR or symmetric SAR

model). Then, as col(X) ranges over Gk,n according to some probability distribution with respect to

the invariant measure on Gk,n (see James, 1954), we can define zα = Pr(col(X) ∈ Hk(α)). Such a

probability can be interpreted as the probability of zero limiting power of a size-α POI or LBI test, in

a CAR or symmetric SAR model.9

Theorem 3.8 Consider, in the context of a CAR or symmetric SAR model, testing ρ = 0 against

ρ > 0 by means of a POI or LBI test. If col(X) has density that is almost everywhere positive on

Gk,n, with k ≥ m1, then zα > 0, for any W and regardless of how large α or n− k is.

Of course, in some circumstances zα can be very small (e.g., for most combinations of distributions

of col(X) and matricesW , zα is small when n−k or α are large). The important message of Theorem

3.8 is that, under the stated conditions, zα is never zero, or, put differently, in any practical case

there is always a positive probability that the limiting power disappears.

3.3 Zero-Mean Models

We now specialize some of the above results to zero-mean CAR and SAR models (the extension to

models with known and constant mean is trivial). The explicit consideration of the caseX = O serves

two purposes. Firstly, it clarifies–by direct comparison with the regression case–the role played by

the regressors in determining power. Secondly, it allows to focus on the effect of W on power.

Let us start from the following corollary of Theorem 3.3.

9Note that Hk(α1) ⊆ Hk(α2) for any α1 ≥ α2, and hence zα is non-decreasing in α.
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Corollary 3.9 In zero-mean CAR and SAR models, the limiting power of an invariant critical region

Φy for testing ρ = 0 against ρ > 0 is 1 if fmax ∈ Φy, 0 otherwise.

It is instructive to interpret Corollary 3.9 in terms of the Moran statistic y′Wy/y′y associated to

the zero-mean vector y (Moran, 1950). Observe that, when W is symmetric, y′Wy/y′y achieves a

maximum at y = fmax. Thus, Corollary 3.9 says that, when y follows a zero-mean CAR or symmetric

SAR model, an important requirement for an invariant critical region is that it contains the points in

the sample space that lead to an high value of y′Wy/y′y. Rather surprisingly, the situation is not so

intuitive in the case of asymmetric SAR models, because whenW is nonsymmetric y′Wy/y′y is not,

in general, maximized by fmax. Thus, for the case of asymmetric SAR models, Corollary 3.9 implies

that an invariant critical region may have vanishing limiting power even if it contains the values of y

that maximize the Moran statistic.

The case of POI and LBI tests is emblematic of the role played by the symmetry of W .

Proposition 3.10 When X = O and for a POI or LBI test, α∗ = 0 if and only if fmax is an

eigenvector of W ′.

The condition in Proposition 3.10 is always satisfied when W is symmetric, i.e., for CAR and

symmetric SAR models, but is generally not satisfied in the case of asymmetric SAR models (see

Appendix E, where, in particular, it is shown that whenW is row-stochastic the condition is satisfied

if and only if W is doubly stochastic). Thus, Proposition 3.10 says that in a zero-mean CAR or

symmetric SAR model the limiting power of POI and LBI tests is 1 for any α, whereas, typically, in a

zero-mean asymmetric SAR model there are values of α (all values α ≤ α∗ > 0) such that the limiting

power vanishes. The various possibilities for the limiting power of POI and LBI tests are summarized

in Table 1. A simple example follows.

Table 1 about here

Example 3.11 A random variable is observed at n units placed along a line and, in the context of a

zero-mean SAR process, it is to be tested whether ρ = 0 or ρ > 0. Suppose that it is believed that

there is only first-order interaction, and that the interaction amongst first-order neighbors is stronger

in one direction than in the other. Accordingly, W is chosen so that Wi,j , for i, j = 1, ..., n, is equal

to some fixed positive scalar w 
= 1 if i − j = 1, to 1 if j − i = 1, and to 0 otherwise. In Figure 1,

we plot the power function of the Moran test (i.e., the LBI test) for ρ = 0 against ρ > 0, and the

envelope πρ(ρ) for n = 6, w = 10 and α = 0.01. The power has been computed numerically, via the

Imhof method (Imhof, 1961), and is plotted against ρλmax, which ranges between 0 and 1.

Figure 1 about here

Although it is based on a model with an artificialW , Figure 1 illustrates the theoretically impor-

tant point that in an asymmetric SAR model the performance of the Moran test may be extremely

disappointing, even when the model is not contaminated by regressors.

Note that the possibility of a limiting zero power of the Moran test has also implications for the

interpretation of the Moran statistic as an index of autocorrelation. For instance, in the case of

Example 3.11, Figure 1 shows that there exist values 0 < k < λ−1max such that Pr(y′Wy/y′y > k) is

not increasing in ρ over the interval (0, λ−1max), although, as it is easily checked, all correlations implied

by the model are increasing in ρ over the interval (0, λ−1max) (Proposition 4.2 below states that, on the
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contrary, whenW is symmetric the power function of the Moran test is monotonic). In simple terms,

in an asymmetric SAR model the probability of the Moran statistic being large may be very small,

even if all correlations are high. It is clear that in these circumstances the interpretation of the Moran

statistic as an index of autocorrelation cannot be justified.

Having argued that, generally, in zero-mean asymmetric SAR models α∗ > 0, a practically impor-

tant question is which (nonsymmetric) matricesW are associated to large values of α∗. Let us return

for a moment to our example of a SAR model defined on a line.

Example 3.12 For the case of Example 3.11, the Imhof method (or some other numerical approxi-

mation to the null distribution of the Moran statistic) can be used to verify that α∗ is decreasing in

n and increasing in |w − 1|. For the particular case of Figure 1, α∗ is about 0.056, i.e., any Moran

critical region of size less than 0.056 has vanishing limiting power. To give another example, if n = 30

and w = 50, then α∗ is about 0.063. Interestingly, if one closes the line (i.e., if one sets W1,n = w and

Wn,1 = 1), thenW becomes a scalar multiple of a doubly stochastic matrix, and consequently α∗ = 0

by Corollary E.1.

Numerical investigations not reported here show that the message delivered by Example 3.12 is

very general. Namely, large values of α∗ are typically associated to small nonsymmetric W , or, for a

fixed n, to matricesW such that Wi,j/Wj,i is large for at least one pair (i, j). This suggests that the

asymmetry introduced by using row-standardized W ’s (see Appendix A) does not yield large values

of α∗ in zero-mean SAR models, because for such matrices Wi,j/Wj,i ≤ u(A), i, j = 1, ..., n, where

u(A) denotes the ratio of the largest to the smallest row-sum of A.10 Note that the largest possible

value of u(A) over all n × n matrices A is n − 1, obtained for the adjacency matrix of a star graph

(i.e., a graph with one vertex having n− 1 neighbors, and all other vertices having 1 neighbor). Even

in the case of a star graph, the value of α∗ associated to the corresponding row-standardized W is

very small, and decreasing in n. For instance, for the Moran test, when W is the row-standardized

version of the adjacency matrix of a star graph, α∗ > 0.01 only when n < 6 (i.e., the limiting power

of the Moran test is 1 as long as n ≥ 6 and α > 0.01). We can thus conclude that, although in SAR

models asymmetry of W may cause the limiting power of POI and LBI tests to disappear even when

X = O, in practice this typically occurs only for very small values of α or n when the asymmetry

of W is due to row-standardization of a symmetric matrix. As we have seen in Section 3.2, when

X 
= O the situation is very different and, for anyW , the limiting power of POI and LBI may vanish

even for large α. Examples with X 
= O are given next.

3.4 Numerical Examples

In this subsection we report results from a small Monte Carlo experiment aimed at illustrating how

X and W affect the exact power of tests for residual spatial autocorrelation. More specifically, the

objective is to show how sensitive the power of tests of spatial autocorrelation can be toX, for a fixed

W and when ρ is large but not necessarily very close to λ−1max. For simplicity, we restrict attention to

the power, to be denoted by πLBI(ρ), of the Cliff-Ord test in the context of a SAR model. Related

numerical investigations are contained in Krämer (2005).

10 It is interesting to note that the effect of the asymmetry of a row-standardized weight matrix D−1A (or any other

non-symmetric matrix that is similar to a symmetric matrix) can always be eliminated by suitably selecting V in (3).

In fact, model (3) with W =D−1A and V =D−1 is reduced, upon normalization to Σ(0) = I, to a SAR model with

the symmetric weight matrix D−1/2AD−1/2.
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We consider 106 replications of the n× 2 matrix X = (ι : x), where ι is the n-dimensional vector

of all ones and x ∼ N(0, I).11 The weights matrices are derived from the maps of the n = 17 counties

of Nevada and the n = 23 counties of Wyoming. We consider both a binary W , specified according

to the queen criterion (i.e., Wi,j = 1 if two distinct counties i and j share a common boundary or

a common point, Wi,j = 0 otherwise), and its row-standardized version. The average number of

neighbors of a county is 4.35 in Nevada, 4.52 in Wyoming, whereas the sparseness ofW (as measured

by the percentage of zero entries) is 74.40 for Nevada and 80.34 for Wyoming. We shall see that,

despite their similarities, these two spatial configurations are very different from the point of view of

testing for autocorrelation.

Firstly, in order to show how sensitive πLBI(ρ) is to X, in Table 2 we display the percentage

frequency distribution of πLBI(ρ), with W as described above. The size α is set to 0.05, and power

is computed by the Imhof method. We report values for ρ = 0.9λ−1max and ρ = 0.95λ−1max. To give an

indication of how close such points are to λ−1max, the third column of Table 2 gives the average correlation

between pairs of neighboring counties (there are 37 such pairs in Nevada and 54 in Wyoming; averages

over non-neighbors, not reported, are much lower). Note that any correlation implied by a SAR model

tends to 1 as ρ→ λ−1max.
12 By Theorem 3.3, in our experiment limπLBI(ρ) (as ρ→ λ−1max) is either 0

or 1 when W is binary (as, in that case, fmax /∈ col(X) almost surely), whereas it is in (0, 1) when

W is row-standardized (as, in that case, fmax ∈ col(X); cf. Remark F.2). It appears from Table 2

that in the case of Nevada πLBI(ρ) depends to a very large extent on X, even at points that are not

in a very small neighborhood of λ−1max. The dependence is less pronounced in the case of Wyoming.

Table 2 about here

Next, we consider the zero limiting power problem more closely, which requires restricting attention

to binary weights matrices (so that fmax /∈ col(X) almost surely). In Table 3 we display z0.05 (see

Section 3.2), obtained as the observed frequency of times that (12) (with cα computed by the Imhof

method) is positive in our experiment. Note that z0.05 is very large in the case of Nevada, whereas

it is very small in the case of Wyoming. The table also displays the average shortcoming (i.e.,

πρ(ρ) − πLBI(ρ)) of the Cliff-Ord test at ρ = 0.9λ−1max and ρ = 0.95λ−1max, when limπLBI(ρ) = 0 and

when limπLBI(ρ) = 1. It appears that the impact of the zero limiting power problem is not localized

only in a very small neighborhood of λ−1max, because, on average, anX such that limπLBI(ρ) = 0 causes

shortcomings at ρ = 0.9λ−1max and ρ = 0.95λ−1max that are significantly larger than the corresponding

shortcomings associated to an X such that limπLBI(ρ) = 1.

Table 3 about here

We now comment on how the specific cases just analyzed may be representative of more general

situations. The most important concept here is that zα is generally very sensitive to W , n, k, the

choice of a test, α, and the distribution of X. For most matrices W likely to be used in applications

and for most distributions of X, zα is generally small when n− k is large. This suggests that, from a

practical point of view, the zero limiting power problem is mainly a small sample problem. It should

11Observe that, because of its invariance property, the power of the Cliff-Ord test depends on X only through col(X).

Thus, it would be natural to draw X from N(0, In ⊗ Ik), as this would imply that col(X) is uniformly distributed on

the Grassmann manifold Gk,n (see James, 1954). In our simulations, we have modified such a distribution to take into

account the fact that, in practice, an intercept is always included in the regression.
12This is because a SAR model tends to be concentrated on a 1-dimensional subspace of the sample space (see

Appendix C).
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however be noticed that zα is always positive, regardless of n, under the condition in Theorem 3.8,

and that it is possible to construct matrices W (e.g., the adjacency matrix of a star graph or a very

dense matrix) such that, for some distributions of X, zα is large even when n− k is large. Another

interesting point worth emphasizing is that, in general, zα is significantly larger when the regression

includes an intercept. This is because, due to the nonnegativity ofW , ι usually (and especially if the

row sums ofW are all of similar magnitude) yields a large value of the Moran statistic, and therefore

its presence tends to put more probability mass on subspaces col(X) close to the ones defined by

Proposition D.1. Finally, observe that when W is defined on a regular grid, one can study how zα

depends on n explicitly (cf. Table 1 of Krämer, 2005).

To summarize, the main conclusion of our numerical study is that, in some cases, the probability

that the limiting power of the Cliff-Ord test vanishes may well be non-negligible. This obviously

induces a large dependence of the power of the Cliff-Ord test onX when ρ→ λ−1max, but the numerical

results indicate that both the power and the shortcoming may still depend to a large extent on X for

values of ρ in a rather large neighborhood of λ−1max. As we have already mentioned above, this is cause

of concern, because such values may induce a large inefficiency of the ordinary least squares estimator

of β.

4 Unbiasedness and Monotonicity

In this section we turn our attention to global power properties of invariant critical regions for the

testing problem (6). In particular, we discuss some conditions on model N(Xβ, σ2Σ(ρ)) that are

sufficient for POI and LBI tests to be unbiased (for a general Σ(ρ)) and to have power functions

monotonic in ρ (for the Σ(ρ) implied by CAR or SAR models). The conditions are not necessary,

but, as we shall see, (i) are important to understand the structure of the testing problem under

analysis; (ii) in the case of spatial autoregressive models, admit a simple interpretation.

One case in which POI and LBI tests for ρ = 0 against ρ > 0 in N(Xβ, σ2Σ(ρ)) are certainly

unbiased is when X and Σ(ρ) are such that a UMPI test exists (see Remark G.3). This is however

a very restrictive condition, in that it requires the critical region defined by (8) to be independent

of ρ̄. We now formulate two conditions that, when taken together, guarantee unbiasedness of POI

and LBI tests, even in cases when a UMPI test does not exist. Following Horn and Johnson (1985),

a commuting family of matrices is a finite or infinite set of matrices that are pairwise commutative

under standard multiplication.

Condition A The matrices Σ(ρ), for ρ > 0, form a commuting family.

Condition B For a fixed ρ̃ > 0, col(X) is spanned by k linearly independent eigenvectors of Σ(ρ̃).

It is easily checked that Condition A is satisfied by CAR and symmetric SAR models, but not by

asymmetric SAR models (except for very special cases). A well-known characterization of a commut-

ing family of symmetric matrices is that all its members share the same eigenvectors. Thus, when

Condition A holds, Condition B does not depend on ρ̃. Condition B, in any of its many equivalent

formulations, has been often used in the theoretical analysis of regression models with non-spherical

errors, since Anderson (1948). Although it is unlikely to be met in practice, in some circumstances

Condition B may be expected to be satisfied approximately; see the end of this section for CAR and

symmetric SAR models, and Durbin (1970) for the case of serial correlation. There is evidence in the
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literature that the power properties of tests for ρ = 0 when Condition B holds exactly are similar to

those when Condition B holds approximately (e.g., Tillman, 1975, p. 971).

Letting col⊥(X) denote the orthogonal complement of col(X), we obtain:13

Proposition 4.1 Assume that Conditions A and B hold. Then, any POI or LBI test for ρ = 0

against ρ > 0 in model N(Xβ, σ2Σ(ρ)) is unbiased. The unbiasedness is strict except when col⊥(X)

is a subset of an eigenspace of Σ(ρ), in which case the power is α for any ρ > 0.

It is important to note that, while guaranteeing unbiasedness of the tests considered in Proposition

4.1, Conditions A and B are not sufficient for the monotonicity of the power functions of those tests

(not even when X = O). This is because, given a Σ(ρ) satisfying Condition A, a reparametrization

ρ→ f(ρ) may destroy the monotonicity of the power function without causing Condition A to fail. In

fact, monotonicity of the power function in ρ is a much stronger property than unbiasedness, and may

or may not be desirable depending on the specification of Σ(ρ). In general, it is desirable whenever

ρ is interpreted as an autocorrelation parameter. This is the case for CAR and SAR models.

Proposition 4.2 Consider testing ρ = 0 against ρ > 0 in a CAR or symmetric SAR models satisfying

Condition B for one value (and hence all values) ρ̃ > 0. The power function of any POI and LBI test

for ρ = 0 against ρ > 0 is non-decreasing. It is strictly increasing except when col⊥(X) is a subset of

an eigenspace of W , in which case the power is α for any ρ > 0.

Proposition 4.2 implies that, in CAR and symmetric SAR models satisfying Condition B, LBI and

POI test statistics can be regarded as indexes of autocorrelation, because the probability of them

being greater than some constant (i.e. the power of the associated tests) is non-decreasing (as all

correlations between pairs of variables yi and yj) in ρ, over (0, λ−1max). On the other hand, when

Condition B is not satisfied, the power of the tests can be non-monotonic, which makes it difficult to

interpret the underlying test statistics as indexes of autocorrelation (cf. Section 3.3). In Appendix G

we report an additional result, Proposition G.8, that links Proposition 4.2 to the analysis of Section

3.

Next, we attempt to understand in which cases Condition B can be expected to hold at least

approximately, in the context of CAR and SAR models (for examples of cases in which Condition

B is satisfied exactly see Remark G.6). We consider, for simplicity, the case when there is only

one regressor, denoted by x = (x1, ..., xn)
′. Call two units i and j neighbors if Wi,j > 0, and let

x̄i :=
∑
j �=iWi,jxj be the weighted average of the values of x observed at units that are neighbors of i.

Then, the ratio xi/x̄i may be regarded as a measure of “similarity” between unit i and its neighbors

(as far as x is concerned). Further, observe that in CAR and symmetric SAR models Condition B

is met if and only if the ratio xi/x̄i does not depend on i, because in such models the eigenvectors

of Σ(ρ) are the same as those of W and, by the definition of an eigenvector of W , the ratio xi/x̄i

must, for any i, be equal to the corresponding eigenvalue. We may therefore conclude that Condition

B is approximately met, and hence the power of POI and LBI invariant tests has desirable properties,

when x is such that the degree of similarity between i and its neighbors does not vary substantially

with i.14 On the contrary, Condition B is far from being satisfied when different clusters of neighbors

13 In Proposition 4.1, as in Propositions 4.2 and G.8, “any” means for any ρ̄ and any α.
14Note that the fact that the degree of similarity between i and its neighbors does not change substantially with i

does not imply that x is highly autocorrelated. Suppose, for simplicity, that E(x) = 0, so that the Moran statistic

associated to it is x′Wx/x′x. Then, when Condition B is satisfied, i.e. x is an eigenvector of W , x′Wx/x′x equals
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have very different degrees of similarity.

5 Discussion

This paper has investigated a number of exact properties of invariant tests for autocorrelation in the

context of a linear regression model with errors following a (first-order) conditional or simultaneous

spatial autoregressive process. The main message of our analysis is that the power properties of tests

for residual spatial autocorrelation may depend to a great extent on the regressors, especially when

the number of degrees of freedom is small and the autocorrelation is large. Intuitively, this is largely

due to the fact that CAR and SAR models tend, as the autocorrelation increases, to a family of

(improper) distributions supported on a 1-dimensional subspace of the sample space. In particular,

we have characterized the circumstances when the regressors are such that the intersection between

the above subspace and a critical region has 1-dimensional Lebesgue measure zero; in this case the

power of the critical region vanishes as the autocorrelation increases.

In order to derive our exact results, we have worked under some potentially restrictive assump-

tions. More specifically, for the case of SAR models, we have not allowed for spatial lags Wy of

the dependent variable amongst the regressors (see, e.g., Ord, 1975, and Lee, 2002), we have assumed

homoskedasticity of the innovations (i.e., V in (3) is fixed), we have committed ourselves to elliptically

symmetric distributions.15 In future work, it would certainly be of interest to study exact properties

of tests for spatial autocorrelation when such assumptions are relaxed. The main obstacle to this type

of extensions is that invariance would no longer be sufficient to eliminate all nuisance parameters, thus

originating the need to resort to different techniques, or to (asymptotic) approximations.

Two more straightforward extensions of our analysis are as follows. First, while in this paper we

have mostly focused on the power as ρ→ λ−1max, the techniques we have used should also prove useful

to study local power, by studying the right derivative of the power function at ρ = 0. Second, the

results in the paper relative to POI and LBI tests can be extended to allow for misspecification of W

(cf. Kelejian and Prucha, 2001, p. 225). In the paper, we have assumed, for simplicity, that POI and

LBI test statistics are based on a weights matrix that is the same as the one that has generated the

data, but it is clear that misspecification of W may be a practically important issue.16

Appendix A The Weights Matrices

The weights matrices W used in CAR and SAR models are assumed to satisfy the following three

conditions: (i) Wi,i = 0, for i = 1, ..., n; (ii) Wi,j ≥ 0, for i, j = 1, ..., n; (iii) W is an irreducible

matrix (e.g., Gantmacher, 1974, Ch. 13). Condition (i) is required for the validity of CAR models

(e.g., Besag, 1974), and is assumed for SAR models merely for convenience. Condition (ii) is not

required by the definition of the models, but is virtually always satisfied in empirical applications.

Condition (iii) is a natural assumption in a spatial context. An n× n matrix is said to be reducible

if its index set {1, ..., n} can be partitioned into two disjoint and non-empty sets U1 and U2 such that

Ai,j = 0, for i ∈ U1, j ∈ U2; it is said to be irreducible if it is not reducible. In graph theoretic terms,

an eigenvalue of W .
15Note that none of these restrictions applies to CAR models, in the sense that CAR models do not allow for such

extensions.
16Extensions to cover this type of misspecification can be based on the fact that the matrix B in Lemma F.1 does

not need to be a function of the weights matrix appearing in the data generating process.
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irreducibility of a weights matrix amounts to requiring that the graph with adjacency matrixW (that

is, the graph with the n observational units as vertices and an edge from i to j if and only Wi,j 
= 0)

is strongly connected, i.e., has a path between any two distinct vertices (e.g., Cvetkovíc et al., 1980, p.

18). Observe that (ii) implies that (non-circular) AR(1) models are not in our class of SAR processes,

because the matrix W necessary to write the covariance matrix of an AR(1) process as in equation

(3) would be triangular and hence reducible. (We also mention that extensions of condition (iii) to

block diagonal weights matrices with irreducible blocks, as for instance in Case, 1991, are possible,

but not pursued here for simplicity.)

In addition to the three assumptions above, recall from Section 2.1 that W is assumed to be

symmetric in CARmodels, but can be nonsymmetric in SARmodels. The most popular nonsymmetric

weights matrices in applications are those obtained by row-standardizing a preliminary matrix (e.g.,

Anselin, 1988). Formally, by a row-standardized W we mean one that can be written asW =D−1A,

where A is a symmetric (0, 1) matrix (i.e., a matrix containing only zeroes and ones) and D is the

diagonal matrix with Di,i =
∑n
j=1Ai,j , i = 1, ..., n.

Assumptions (ii) and (iii) have the advantage of making the Perron-Frobenius theorem for nonneg-

ative irreducible matrices (e.g., Gantmacher, 1974) available to derive information about the spectral

properties of weights matrices. Let λmax denote the largest eigenvalue in modulus of W . Important

implications of the Perron-Frobenius theorem are: (a) λmax is (real) positive; (b) λmax has algebraic

and geometric multiplicity 1; (c) there exists an entrywise positive eigenvector associated to λmax. In

the paper, the unique entrywise positive and normalized (according to the Euclidean norm) eigenvector

of W pertaining to λmax is denoted by fmax.

Observe that both covariance matrices of CAR and SARmodels are not defined at ρ = λ−1max. In the

paper we assume ρ < λ−1max. Such a restriction is necessary for positive definiteness of the covariance

matrix of a CAR model. For a SAR model, it is not necessary, but has the advantage of guaranteeing

connectedness of R+∩Ψ and of avoiding undesirable behavior of the covariances implied by the model

when ρ > λ−1max. When 0 < ρ < λ−1max, it is easily established (e.g., using eq. (55) of Gantmacher,

1974) that conditions (ii) and (iii) imply that, in both CAR and SAR, models cov(yi, yj) > 0 for any

i, j = 1, ..., n (similarly, it can be shown that when ρ < 0 the covariances may be positive or negative,

but not all of them are positive in a left neighborhood of λ−1max). Thus, for CAR and SAR models, the

alternative hypothesis ρ > 0 represents positive spatial autocorrelation.

Appendix B Definition of Invariant Tests

Let FX the group of transformations y → ay +Xb, with a ∈ R\{0} and b ∈ Rk, and let F+X be the

smaller group obtained when a > 0. In this paper, invariant tests are defined with respect to FX , as

for instance in Berenblut and Webb (1973). More commonly, invariance of tests for autocorrelation in

linear regression is defined with respect to F+X (see, e.g., King, 1988). Under F+X , a maximal invariant

is Cy/ ‖Cy‖, and invariant critical regions are defined on the unit (n− k)-sphere (rather than on an

hemisphere). The class of critical regions that are invariant under FX is equivalent to the class of

critical regions that are invariant under F+X and are centrally symmetric (i.e., they contain a vector t

if and only if they contain −t). The distinction between the two classes of tests, although needed for

the results in Section 3, is not substantive, because tests that are invariant under F+X but not under

FX are never used in practice. (Although a formal proof is not attempted here, it should be possible

to prove that any test that is invariant under F+X but not under FX is inadmissible, i.e., dominated
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uniformly over ρ by a test that is invariant under FX.)

Finally, it is worth clarifying the relationship between invariant and similar tests for testing problem

(6). In Section 2.2, it was noted that invariant tests are similar. In fact a much stronger property

holds: the class of tests that are invariant with respect to F+X coincides with the class of similar tests

for ρ = 0 (see Hillier, 1987), and the class of tests that are invariant with respect to FX coincides

with the class of centrally symmetric similar tests for ρ = 0.

Appendix C A Geometrical Interpretation of Lemma 3.2

In the context of Lemma 3.2, if a ∈ Ψ, then λn−k (Ω) <∞ and thus, as one would expect, the limit of

the power function is in (0, 1). A more interesting case is when a is an accumulation point of Ψ that is

not in Ψ; then, the limit of the power function can be anywhere in [0, 1]. Let ϕ = n− lim
ρ→a

{rk(Σ−1(ρ))}.
Lemma 3.2 asserts that, for the power to vanish as ρ→ a, λn−k (Ω) must be infinite, which requires

ϕ > 0. Now, when ϕ > 0, model N(Xβ, σ2Σ(ρ)) tends, as ρ → a, to a family of (improper)

distributions supported on a ϕ-dimensional subspace, say Λϕ, of R
n. Geometrically, this is apparent

from the fact that the contours of N(Xβ, σ2Σ(ρ)) are the ellipsoids (y −Xβ)′Σ−1(ρ)(y −Xβ) = c

in Rn, for any c > 0, which also shows that, for any fixed β, Λϕ is the translation of lim
ρ→a

{En(Σ(ρ))}
by Xβ (recall from the Introduction that normality is assumed only for convenience, and can be

replaced by elliptical symmetry). Thus, as ρ→ a, the power of a certain test depends on the position

of the critical region in Rn relative to Λϕ. In particular, the power of a test vanishes whenever the

intersection between Λϕ and the critical region has 1-dimensional Lebesgue measure zero. Note that

this statement holds for any test, whether it is invariant or not; if the test is invariant, then the

position of the critical region relative to Λϕ does not depend on β, and the conditions in Lemma 3.2

can be exploited. Our argument makes it clear the the vanishing of the limiting power cannot be

attributed to the specific form of a particular test statistic (as argued, for instance, in Krämer 2005,

p. 490), but is a consequence of a property of the statistical model.

The condition ϕ > 0 required for the power to vanish as ρ→ a emphasizes an important difference

between spatial and time-series autoregressions (recall from Appendix A that, due to the assumption

of irreducibility ofW , the latter are not included in the former). On the one hand, when a = λ−1max in

CAR and SAR models, ϕ = 1 for any W , and hence the vanishing of the power as ρ→ a can always

occur. On the other hand, when a = 1 in a (finite) AR(1) model, in order for ϕ = 0 and hence for the

power as ρ→ a to vanish, it is necessary that the initial condition is specified in such a way that the

model is covariance stationary.

Remark C.1 In the case of an AR(1) model, the power of the Durbin-Watson and some related

tests as ρ→ 1 has been investigated extensively; see Krämer (1985), Zeisel (1989) and Bartels (1992).

Lemma 3.2 shows that the results in those papers can be easily extended to any invariant test for

residual serial correlation.

Remark C.2 A result similar to Lemma 3.2 can be obtained when Σ(ρ), rather than Σ−1(ρ), tends

to a singular matrix as ρ → a. In that case, as ρ → a, the distributions N(Xβ, σ2Σ(ρ)), for any

β, are supported on a subspace of Rn of dimension lim
ρ→a

{rk(Σ(ρ))}. Examples include a spatial

moving average model (e.g., Anselin, 1988), and a fractionally integrated white noise, with ρ being

the differencing parameter and a = 1/2 (see Kleiber and Krämer, 2005).
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Appendix D The Particularly Hostile col(X)’s

In this appendix we provide an interpretation of the subspaces col(X) that, in the context of Theorem

3.6, are “particularly hostile” from the point of view of testing for spatial autocorrelation, in that they

yield α∗ = 1. We limit ourselves to the case k = m1, because, as is clear from Theorem 3.6, the

case k > m1 is trivial. The case k = m1 = 1 is the simplest, and is completely characterized by the

following result.

Proposition D.1 Consider a CAR or symmetric SAR model containing one single regressor, equal

to f1(W ) + ωfmax, for some ω ∈ R, and suppose that m1 = 1. Then, the limiting power a POI or

LBI test for ρ = 0 against ρ > 0 vanishes for any α if |ω| ≥ ω∗, where ω∗ is a threshold that depends

on the model and on the test. Namely, letting

ω1 =

[
λmax − λ2(W )

λ2(W )− λ1(W )

] 1
2

, ω2 =
1− ρ̄λ1(W )

1− ρ̄λmax
, ω3 =

2− ρ̄(λmax + λ2(W ))

2− ρ̄(λ2(W ) + λ1(W ))
,

ω∗ is equal to ω1
√
ω2 for a POI test in a CAR model, ω1ω2ω3 for a POI test in a symmetric SAR

model, ω1 for a LBI test in both models.

Proof of Proposition D.1. The result can be proved following the proof of Theorem 3.6 with

k = m1 = 1. When m1 = 1 and X is a vector proportional to f1(W ) + ωfmax, col(X) ∈ Θ as

long as ω 
= 0. Then, for the LBI test, we need to establish which values of ω yield λ̃ ≤ λ2(W ).

Recalling that the vectors f1(W ) and fmax are normalized, it is easily checked that MXfmax =

[fmax −ωf1(W )]/(1 + ω2). Plugging such an expression in (15), and using the fact that Cf1(W ) =

−ωCfmax (since CX = O), we obtain λ̃ = [λmax + ω2λ1(W )]/(1 + ω2). Hence, λ̃ ≤ λ2(W ) requires

|ω| ≥ [λmax − λ2(W )]1/2 [λ2(W )− λ1(W )]−1/2, proving the part of the proposition relative to the

LBI test. By straightforward extension, the limiting power of a POI test disappears for any α if

|ω| ≥ {λn[Σ(ρ̄)] − λ2[Σ(ρ̄)]}1/2{λ2[Σ(ρ̄)] − λ1[Σ(ρ̄)]}−1/2. The proof of the proposition is then

completed on substituting λi[Σ(ρ̄)] = [1 − ρ̄λi(W )]−r in the last inequality, with r = 1 for a CAR

model and r = 2 for a symmetric SAR model.

Proposition D.1 defines the set of 1-dimensional col(X)’s such that α∗ = 1. For a POI test, it

is easily seen that, as ρ̄ increases, this set becomes smaller and more concentrated in the direction

of fmax. More generally, it can be deduced from the proof of Theorem 3.6 that, when k = m1 ≥ 1,

the particularly hostile col(X)’s are subspaces belonging to the span of f1(W ), ...,fm1
(W ),fmax.

Consider the Moran statistic x′Wx/x′x associated to a (zero-mean, for simplicity) vector x ∈ Rn and

a symmetricW (the standard version of the Moran statistic would include a normalizing factor and a

correction for the sample mean of x that are not relevant here). By the Rayleigh-Ritz theorem (e.g.,

Horn and Johnson, 1985), fmax represents a vector that is most autocorrelated according to the Moran

statistic, and f1(W ), ...,fm1
(W ) represent vectors that are least autocorrelated. Note that λn, the

value of the Moran static when x = fmax, is positive by the Perron-Frobenius theorem, and λ1, the

value of the Moran static when x = f1(W ), ...,fm1
(W ), is negative for tr(W ) =

∑n
i=1 λi(W ) = 0 by

assumption. We may thus conclude that in CAR and symmetric SAR models it is difficult to detect

large positive spatial autocorrelation when the regressors are the sum of a strongly positively autocor-

related component and a strongly negatively autocorrelated component, with the former component

being the dominant one.

19



Remark D.2 An extension of Proposition D.1 that is directly related to the above interpretation, and

can be proved similarly to Proposition D.1, is worth mentioning. If fj(W ) + ωfmax ∈ col(X), with

fj(W ) 
= fmax and fj(W ) /∈ En−1(W ), the limiting power of a LBI test in a CAR or symmetric SAR

model is 1 for any α (i.e., α∗ = 0) provided that ω < [λmax − λn−1(W )]1/2 [λn−1(W )− λj(W )]
−1/2

.

Such an expression can be used to infer howW affects (through its spectrum, under Gaussianity) the

power properties of tests of ρ = 0. For instance, ifW is such that λmax−λn−1(W ) is large, then any

vector X in a large region of the plane spanned by fj(W ) and fmax yields α∗ = 0.

Remark D.3 When m1 = 1, as in the examples we are considering, and col(X) contains a vector

f1(W ) + ωfmax with large ω, the power function of a POI or LBI test goes to zero by Proposition

D.1, but, in general, it does so very rapidly. This is because the condition fmax ∈ col(X) is nearly

satisfied, and hence the power function is close to that when fmax ∈ col(X), which, by Theorem 3.3,

goes to a positive number as ρ→ λ−1max.

Appendix E The Condition in Proposition 3.10

The condition in Proposition 3.10 (i.e., fmax is an eigenvector of W ′) is equivalent to λmax being

perfectly well-conditioned (Golub and Van Loan, 1996, p. 323), which is well-known to be a restric-

tive condition for a nonsymmetric matrix. It should be observed that, for any given choice of the

neighborhood structure of a set of observational units (i.e., any choice of the pairs of units deemed to

be neighbors), the non-zero elements of W can be taken in such a way that λmax is well-conditioned.

(This can be achieved by starting from a nonsymmetric matrixW , and applying the similarity trans-

formation P−1WP , where P is a diagonal matrix with Pi,i = [(fmax)i/(lmax)i]
1/2, and lmax denotes

the left eigenvector ofW associated to λmax. Clearly, the resulting matrix has the same left and right

eigenvector, and hence a well-conditioned eigenvalue of largest modulus.) However, in general, the

choice of weights yielding a well-conditioned λmax is a very particular one, and does not correspond

to a relevant notion of distance amongst the observational units.

The restrictiveness of the condition that fmax is an eigenvector of W ′ is very transparent in the

important case of a row-standardized W , as emphasized by the following corollary of Proposition

3.10.

Corollary E.1 In a zero-mean SAR model with row-stochastic W , the limiting power of a POI or

LBI critical region for testing ρ = 0 against ρ > 0 is 1 for any α if and only if W is doubly stochastic.

Proof. If W is a row-stochastic matrix, then fmax has identical entries. Hence, the condition in

Proposition 3.10 is satisfied if and only if the columns of W , as its rows, sum to 1.

Clearly, a nonsymmetric row-stochasticW is doubly stochastic, i.e., has not only all rows but also

all columns summing to 1, only in very special circumstances. Formally, the restrictiveness of such

circumstances can be deduced from Birkhoff’s theorem on doubly stochastic matrices, which states

that any such matrix must be a convex combination of permutation matrices (e.g., Horn and Johnson,

1985). We remark that the doubly stochastic weights matrices used by Pace and LeSage (2002) are

not relevant here, because they are symmetric.
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Appendix F Proofs and Remarks for Section 3

We first prove an auxiliary lemma, and then all other results in Section 3.

Lemma F.1 Consider, in the context of CAR or symmetric SAR models, testing ρ = 0 against ρ > 0

by means of a critical region

Φv(B) = {v ∈ Sn−k : v
′Bv < cα},

where B is an (n − k)× (n− k) known symmetric matrix that does not depend on α. Provided that

fmax /∈ col(X), α∗ = 0 if and only if Cfmax ∈ E1(B), and α∗ = 1 if and only if Cfmax ∈ En−k(B).

Proof. From (14), we have that, provided thatCfmax 
= 0, α∗ = 0 if and only ifCfmax/ ‖Cfmax‖ =
argmin
v∈Sn−k

{v′Bv}, and α∗ = 1 if and only if Cfmax/ ‖Cfmax‖ = argmax
v∈Sn−k

{v′Bv}. The proposition

follows by application of the Rayleigh-Ritz theorem (e.g., Horn and Johnson, 1985).

Proof of Proposition 3.1. For some matrixX, let ΥX (ρ̄) be the size-α POI critical region, defined

on the sample space. By definition, ΥX (ρ̄) is the size-α critical region that is invariant under the group

FX (defined in Appendix B) and has maximum probability content under N(Xβ, σ2Σ(ρ̄)). Observe

that, by invariance under FX , the probability content πρ̄(ρ̄;X) of ΥX (ρ̄) under N(Xβ, σ2Σ(ρ̄))

is the same as under N(0,Σ(ρ̄)), for any X. Further, note that FX is strictly larger than FO,

because all transformations in FO, i.e. y → ay, are in FX , and there are transformations in FX,

i.e., those with b 
= 0, that are not in FO. It follows that, for any X 
= 0, any ρ̄ > 0, and any α,

πρ̄(ρ̄;X) ≤ πρ̄(ρ̄;O). Since, by the Neyman-Pearson Lemma applied to pdf(v; ρ̄), ΥO (ρ̄) is unique

up to a set of measure zero, a necessary and sufficient condition for πρ̄(ρ̄;X) = πρ̄(ρ̄;O), X 
= O,

is that ΥX (ρ̄) = ΥO (ρ̄). Such a condition is equivalent to y′C′[
(
CΣ(ρ̄)C′

)−1 − cαI]Cy < 0 if

and only if y′[Σ−1(ρ̄) − cαI]y < 0. Thus, since rk(C′QC) ≤ n − k for any (n − k) × (n − k)

matrix Q, the condition ΥX (ρ̄) = ΥO (ρ̄), X 
= O, requires rk(Σ−1(ρ̄) − cαI) ≤ n − k, and hence

cα = λ−1i (Σ(ρ̄)), i = 2, ..., n−1, or, equivalently, α = Pr(y′Σ−1(ρ̄)y/y′y < λ−1i (Σ(ρ̄)), i = 2, ..., n−2

(the cases i = 1 and i = n are excluded because α is assumed to be in (0, 1)). It is now clear that if

cα = λ−1i (Σ(ρ̄)), i = 2, ..., n− 1, then ΥO (ρ̄) is invariant under FX , and hence ΥX (ρ̄) = ΥO (ρ̄) if

and only if col(X) ⊆ Ei(Σ(ρ)), completing the proof.

Proof of Lemma 3.2. Let p(v) := lim
ρ→a

pdf(v;ρ) = 2 |Ω|−
1

2

(
v′Ω−1v

)−(n−k)/2
. If all the eigenvalues

of Σ(ρ) tend to a positive value as ρ→ a, then, by the Poincaré separation theorem (e.g., Horn and

Johnson, 1985), all the eigenvalues of Ω are positive. It follows that the term |Ω|−
1

2 of p(v) is positive

and finite if λn−k(Ω) <∞, and it vanishes otherwise. Let now Ẽn−k(Ωρ) = Sn−k ∩En−k(Ωρ). The

term (v′Ω−1v)−(n−k)/2 of p(v) is infinite if λn−k(Ω) = ∞ and v ∈ Ẽn−k(Ω), positive and finite

in any other case. Combining the results, we have that if λn−k(Ω) = ∞, then p(v) = 0 for any

v /∈ Ẽn−k(Ω). Observe that, since it is the intersection between an hemisphere and the subspace

En−k(Ωρ) containing the centre of the hemisphere, Ẽn−k (Ωρ) is a singleton if and only if En−k(Ωρ)

is one-dimensional. It follows that (i) if λn−k(Ω) is infinite and has algebraic multiplicity one, then

p(v) must be infinite when v ∈ Ẽn−k(Ω); (ii) if λn−k(Ω) <∞, then 0 < p(v) <∞. The proof is now

completed, because the power of a critical region as ρ → a is the probability content of the region

under p(v).
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Proof of Theorem 3.3. For any weights matrix W and any ρ > 0, the matrix (I − ρW )−1 is

entrywise positive (see, e.g., Gantmacher 1974, p. 69, and recall that we are implicitly assuming

ρ < λ−1max). Thus, by Perron’s theorem (Horn and Johnson, 1985, Theorem 8.2.11), λn[Σ(ρ)] has

algebraic multiplicity one for any ρ > 0 and any CAR and SAR model. Also, observe that as

ρ → λ−1max, λn[Σ(ρ)] → ∞ and all other eigenvalues of Σ(ρ) tend to a finite value, because, as it is

easily verified, rk[(I − λ−1maxW
′

)(I − λ−1maxW )] = n − 1. For CAR and symmetric SAR models, the

spectral decomposition Σ(ρ) =
∑n
i=1{λi[Σ(ρ)]f i[Σ(ρ)]f ′i[Σ(ρ)]} immediately shows that the matrix

λ−1n [Σ(ρ)]Ωρ tends to Cfmaxf
′
maxC

′ as ρ → λ−1max, because for those models fn[Σ(ρ)] = fmax.

The same limit result holds also for asymmetric SAR models, since in that case fn[Σ(ρ)]→ fmax as

ρ→ λ−1max (because (I−λ−1maxW
′)(I−λ−1maxW ) has the eigenvector fmax corresponding to its smallest

eigenvalue 0). Now, since rk(Cfmaxf
′
maxC

′) ≤ rk(fmaxf
′
max) = 1, all eigenvalues of Cfmaxf

′
maxC

′

are zero except possibly one, which must then be equal to λ̄ = tr(Cfmaxf
′
maxC

′) = f ′maxMXfmax.

If fmax /∈ col(X), then λ̄ is a positive eigenvalue of Cfmaxf
′
maxC

′ with algebraic multiplicity 1 and

has an associated eigenvector equal to Cfmax, for

Cfmaxf
′
maxC

′Cfmax = Cfmaxf
′
maxMXfmax = λ̄Cfmax.

Because of the continuity of the eigenvalues of a matrix in the entries of that matrix, it is then

easily seen that for any CAR or SAR model such that fmax /∈ col(X), Cfmax span an eigenspace of

lim
ρ→λ−1max

Ωρ associated to the eigenvalue lim
ρ→λ−1max

{λn [Σ(ρ)] λ̄} =∞. If fmax ∈ col(X), then Cfmax = 0

and thus Ωρ =
∑n−1
i=1 {λ−1i [Σ(ρ)]Cf i(W )f ′i(W )C′}, which tends to a matrix whose entries are all

finite. Hence, when fmax ∈ col(X), lim
ρ→λ−1max

λn−k (Ωρ) must be finite. The theorem now follows by

applying Lemma 3.2 with a = λ−1max.

Remark F.2 The condition fmax ∈ col(X) in Theorem 3.3 is satisfied wheneverW in a CAR or SAR

model is row-standardized and an intercept is included in the regression, because row-standardization

implies that fmax has identical entries. Note that here whether W refers to a model before or after

normalization to Σ(0) = I (see Section 2.1) is irrelevant, because the condition fmax ∈ col(X) is

invariant under any invertible linear transformation of y ∼ N(Xβ, σ2Σ(ρ)), where Σ(ρ) is that of a

CAR or SAR model. For any weights matrix that is not row-standardized, in general fmax /∈ col(X),

with the consequence that the limiting power of an invariant test is either 0 or 1.

Remark F.3 An important and immediate consequence of Theorem 3.3 is that, in CAR and SAR

models, the limit of the envelope πρ(ρ) as ρ→ λ−1max is 1 if fmax /∈ col(X), and is in (α, 1) otherwise.

Hence, as ρ → λ−1max in CAR and SAR models, the null hypothesis ρ = 0 can be distinguished (by

means of an invariant tests) from the alternative hypothesis ρ > 0 with zero type II error probability

only if fmax /∈ col(X).

Remark F.4 By Theorem 3.3, whether the limiting power of a certain invariant test is 0, 1, or in

(0, 1) depends on the weights matrix that has generated the data only through fmax, and does not

depend on whether the model is a CAR or a SAR model. This property implies some robustness of

invariant tests, when spatial autocorrelation is large. For example, the limiting power of a certain

invariant critical region is the same for all row-standardizedW ’s appearing in a CAR or SAR model,

because all such matrices have the same fmax.
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Proof of Lemma 3.5. Assume fmax /∈ col(X). By Theorem 3.3, the limiting power of a critical

region in form (11) is 1 if T (fmax) < cα. This is equivalent to stating that α∗ is the probability that

T (y) < T (fmax) under the null hypothesis y ∼ N(Xβ, σ2I), or, by invariance, under y ∼ N(0, I).

Proof of Theorem 3.6. We start from the case of the LBI test, which is slightly simpler than

the case of POI tests. By Lemma F.1, for CAR and symmetric SAR models, the limiting power of

a LBI test vanishes for any α if and only if fmax /∈ col(X) and Cfmax ∈ E1(CWC′). We first

consider the case k = m1. For a fixed W , consider the m1-dimensional subspaces belonging to the

span of f1(W ), ...,fm1
(W ),fmax, and denote by Θ the set of all such subspaces that do not contain

fmax and are not E1(W ). It can be easily shown that, if col(X) ∈ Θ, CWC′ admits the eigenpairs

(λi(W ),Cf i(W )), i = m1+1, ..., n− 1. But then, by the symmetry of CWC′ and the fact that the

vectors Cf i(W ), i = m1 + 1, ..., n − 1 are pairwise orthogonal (because the f i(W )’s are), CWC′

must also admit an eigenvector in the subspace spanned by Cf1(W ), ...,Cfm1
(W ),Cfmax. Since

when col(X) ∈ Θ such a subspace is 1-dimensional, it follows that Cfmax is an eigenvector of CWC′,

i.e.,

CWMXfmax = λ̃Cfmax (15)

for some eigenvalue λ̃. Thus, a col(X) ∈ Θ causing the limiting power of the LBI test to disappear

for any α exists if and only if λ̃ ≤ λm1+1(W ). Observe that as col(X) ∈ Θ approaches a subspace

orthogonal to E1(W ), MXfmax/ ‖MXfmax‖ tends to a vector in E1(W ), which implies that λ̃ →
λ1(W ) (note that, by the definition of Θ, no col(X) ∈ Θ is orthogonal to E1(W )). Hence, by the

continuity of the eigenvalues of a matrix (CWC′ here) in the entries of the matrix itself plus the

fact that λ1(W ) < λm1+1(W ), a col(X) ∈ Θ such that λ̃ ≤ λm1+1(W ) always exists. The extension

to POI tests, for any ρ̄ > 0, is straightforward and is obtained by replacing W with Σ(ρ̄) and λi

by (1 − ρλi)
−r, i = 1, ..., n, in the arguments used above, for any CAR (r = 1) or symmetric SAR

model (r = 2). We have thus proved the proposition for the case k = m1. But, since the power of

an invariant test does not depend on β, it easily follows that, if an m1-dimensional regression space

causes a zero limiting power (of a POI or LBI test in a CAR or symmetric SAR model), then also

all the k-dimensional regression spaces, with k > m1, that contain it but do not contain fmax yield a

zero limiting power. The proof is therefore completed.

Remark F.5 The strongest implication of Theorem 3.6 is perhaps that regression spaces such that

the limiting power of a POI test vanishes can be found even when ρ̄ is large (i.e., close to λ−1max) and

α is large. This is surprising because, by the Neyman-Pearson Lemma, the power at ρ̄ of a POI test

must be larger than α. Since, if fmax /∈ col(X), πρ(ρ) → 1 as ρ → λ−1max (see Remark F.3), it also

holds that the supremum–as col(X) ranges over the set of all k-dimensional, k ≥ m1, subspaces of

R
n–of the maximum shortcoming (e.g., Lehmann and Romano, 2005, p. 337) of any POI or LBI test

is always one, for any W and any α.

Remark F.6 For any POI or LBI test and anyW , T (fmax), regarded as a function from Gk,n to R,

is continuous. Thus, by (14), α∗ is itself a continuous, and generally smooth, function of col(X). It

follows, in particular, that the regression spaces that are close (according to some distance on Gk,n)

to regression spaces yielding a large (resp. small) α∗ yield a large (resp. small) α∗.

Remark F.7 We have not attempted to generalize Theorem 3.6 to asymmetric SAR models, due to

two reasons. Firstly, such models generally do not satisfy the condition fmax /∈ col(X) necessary for
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the zero limiting power problem. This is because the nonsymmetric weights matrices generally used

in SAR models are row-stochastic, implying, as already noted above, that fmax ∈ col(X) as long as

an intercept is included in the regression. Secondly, although the proof of Theorem 3.6 suggests that

regression spaces (of low dimension) such that the limiting power of a POI or LBI test vanishes for

any α always exist also in the context of asymmetric SAR models, the exact characterization of such

regression spaces appears to be more involved. It should be noted, however, that an approximated

characterization can be obtained from Theorem 3.6, by approximating an asymmetric SAR model by

a CAR model with Σ−1(ρ) = I − ρ(W +W ′) (i.e., omitting terms in ρ2).

Proof of Theorem 3.8. By Theorem 3.6, there exists at least one subspace col(X) ∈ Gk,n, k ≥m1,

such that, for a POI or LBI test in a CAR or symmetric SAR model, α∗ = 1. Let T (y) represents the

test statistic associated to a POI or LBI test. Then, by Lemma 3.5, the subspaces col(X) yielding

α∗ = 1 are those that maximize T (fmax), regarded as a function from Gk,n to R. Since T (fmax) is

continuous at its points of maximum, it follows that, for any α, it is possible to find a neighborhood

(defined according to some arbitrary distance on Gk,n) of the points of maximum such that any col(X)

in this neighborhood causes the limiting power of size-α tests to disappear. This implies immediately

that Hk(α) has non-zero invariant measure on Gk,n (see James, 1954), for any α and for k = m1, and

for any POI or LBI tests in any CAR or symmetric SAR model. Since the power of an invariant test

does not depend on β, the result also holds for k > m1.

Proof of Corollary 3.9. The result follows immediately by taking C = I in Theorem 3.3.

Proof of Proposition 3.10. When W is symmetric, i.e., in the case of CAR or symmetric SAR

models, and X = O the eigenspace associated to the smallest eigenvalue of both matrices in the

middle of the quadratic forms in (8) and (9) is spanned by fmax. Thus, when W is symmetric and

X = O, and for a POI or LBI test, α∗ = 0 by Lemma F.1. The part of the proposition relative to

asymmetric SAR models requires a little more work. Observe that if fmax is an eigenvector of W ′, it

must be associated to λ−1max. To see this, call φ the eigenvalue of W ′ associated to fmax. Transposing

both left and right hand sides of the equation W ′fmax = φfmax and post-multiplying them by fmax

yield f ′maxWfmax = φ. But then φ = λmax, because it must also hold that f ′maxWfmax = λmax.

Let Γ (ρ) = [(I − ρW ′)(I − ρW )]−1. By Lemma F.1 with B = Σ−1(ρ̄), to prove the part of the

proposition regarding POI tests in asymmetric SARmodels we need to show thatW ′fmax = λmaxfmax

is necessary and sufficient for fmax ∈ En(Γ (ρ̄)), for any ρ̄ > 0. Clearly, if this holds for any ρ̄ > 0, it

also holds for ρ̄→ 0, establishing the part of the proposition regarding the LBI test in asymmetric SAR

models. The necessity is straightforward, because if Γ (ρ̄)fmax = λn(Γ (ρ̄))fmax, then Γ
−1(ρ̄)fmax =

λ−1n (Γ (ρ̄))fmax. From the latter equation we have (1 − ρ̄λmax)(I − ρW ′)fmax = λ−1max(Γ (ρ̄))fmax,

which requires fmax to be an eigenvector of I − ρW ′ and hence of W ′ (associated to λmax by the

above argument). As for the sufficiency, note that if W ′fmax = λmaxfmax, then fmax is clearly an

eigenvector of Γ (ρ̄), for any ρ̄ > 0. By Perron’s theorem (e.g., Horn and Johnson, 1985, Theorem

8.2.11), a vector in En(Γ (ρ̄)) is entrywise nonnegative (or nonpositive), for any ρ̄ > 0. But, by

the Perron-Frobenius theorem applied to W , fmax is entrywise positive. Hence, fmax must be in

En(Γ (ρ̄)), for any ρ̄ > 0, because, since Γ (ρ̄) is symmetric, if it were not, then it should be orthogonal

to an entrywise nonnegative vector, which is impossible. This completes the proof of the proposition.
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Appendix G Proofs and Remarks for Section 4

We first prove an auxiliary lemma, and then all other results in Section 4.

Lemma G.1 Consider, in the context of CAR or symmetric SAR models, testing ρ = 0 against ρ > 0

by means of a POI or LBI test. Provided that fmax /∈ col(X), α∗ = 0 if En−k(Ωρ) does not depend

on ρ for ρ > 0.

Proof. It can be deduced from the proof of Theorem 3.3 that, for a CAR or SAR model with

fmax /∈ col(X), the limiting, as ρ → λ−1max, eigenspace En−k(Ωρ) is 1-dimensional and contains

Cfmax. It follows that if En−k(Ωρ) does not depend on ρ for ρ > 0, it must be spanned by Cfmax

for any ρ > 0. Thus, for a POI test, α∗ = 0 by application of Lemma F.1 with B = Ω−1
ρ̄ . Since this

property holds for any ρ̄ > 0, it also holds for the LBI test.

Remark G.2 Two particular cases that are easily seen to satisfy the condition in Lemma G.1 are:

(i) W symmetric and X =O; (ii) W symmetric and fmax ⊥ col(X).

Proof of Proposition 4.1. By Lemma 2 of King (1980), C′(CΣ(ρ̄)C′)−1C = Σ−1(ρ̄)R(ρ̄), where

R(ρ̄) := I−X(X′Σ−1(ρ̄)X)−1X ′Σ−1(ρ̄). Then, for any 0 ≤ ρ < λ−1max, any ρ̄, and any α, the power

of the POI critical region (8) can be written as

πρ̄(ρ) = Pr

(
y′Σ−1(ρ̄)R(ρ̄)y

y′MXy
< cα; y ∼ N(0,Σ(ρ))

)
, (16)

where cα is a constant such that the size of the test is α. Under Conditions A and B it is easily seen

that R(ρ̄) =MX and Σ(ρ̄)X =XA, for any ρ̄ > 0. It follows that, under Conditions A and B, the

matrices Σ−1(ρ̄) and MX commute for any ρ̄ > 0, and hence

πρ̄(ρ) = Pr

(
z′Σ(ρ)Σ−1(ρ̄)MXz

z′Σ(ρ)MXz
< cα

)
,

where z ∼ N(0, I). Moreover, under the same conditions, the matrix MX has an eigenvalue 0

with eigenspace spanned by the k eigenvectors of Σ(ρ) that are in col(X), and an eigenvalue 1 with

eigenspace spanned by the remaining eigenvectors of Σ(ρ). Let H be the set of indexes i of the n− k

eigenvalues λi[Σ(ρ)] associated to a set of linearly independent eigenvectors of Σ(ρ) that are not in

col(X). Note that, when Condition A holds, H does not depend on ρ. Under Conditions A and B,

the power of a POI critical region can then be expressed as

πρ̄(ρ) = Pr

(∑
i∈H λi[Σ(ρ)]λ−1i [Σ(ρ̄)]z2i∑

i∈H λi[Σ(ρ)]z2i
< cα

)
, (17)

and its size as

α = Pr

(
z′Σ−1(ρ̄)MXz

z′MXz
< cα

)
= Pr

(∑
i∈H λ−1i [Σ(ρ̄)]z2i∑

i∈H z2i
< cα

)
. (18)

Observe now that the sequences λi[Σ(ρ)], i ∈ H, and λ−1i [Σ(ρ̄)], i ∈ H, are oppositely ordered in

the sense of Hardy et al. (1952) p. 43. Then, the application of Tchebychef’s inequality (Hardy et

al., 1952, Theorem 43) to the weighted arithmetic means (with weights z2i /
∑
i∈H z2i ) of the λi[Σ(ρ)],

i ∈ H, and of the λ−1i [Σ(ρ̄)], i ∈ H, yields that

∑

i∈H

λi[Σ(ρ)]z2i
∑

i∈H

λ−1i [Σ(ρ̄)]z2i ≥
∑

i∈H

z2i
∑

i∈H

λi[Σ(ρ)]λ−1i [Σ((ρ̄)]z2i ,
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for any vector z ∈ Rn, with equality holding only if all the λi[Σ(ρ)] or all the λ−1i [Σ((ρ̄)], i ∈ H,

are the same. Rearranging the terms of the above inequality, one immediately sees that the statistic

appearing in expression (17) is stochastically larger (e.g., Lehmann and Romano, 2005, p. 70) than

that appearing in expression (18), and hence that πρ̄(ρ) ≥ α, for any ρ̄ > 0, any ρ > 0 and any size

α. If there are at least two indexes i, j ∈ H such that λi[Σ(ρ)] 
= λj [Σ(ρ)], i.e., if col⊥(X) is not a

subset of an eigenspace of Σ(ρ), then the last inequality is strict (as we are assuming α 
= 0, 1). We

have therefore proved the part of the proposition relative to POI tests. But, if the proposition holds

for any POI test, i.e. for any ρ̄, then it clearly also holds for the LBI test.

Remark G.3 By the Neyman-Pearson lemma, πρ(ρ) > α for any ρ > 0 (this follows, for instance, by

applying Corollary 3.2.1 of Lehmann and Romano (2005) to the density (7), plus the assumption of

identification of model N(Xβ, σ2Σ(ρ)), or by applying the indirect argument in the proof of Theorem

1 in Kadiyala (1970)). Thus, if a UMPI test exists, the POI and LBI critical regions for the testing

problem (6) are strictly unbiased. In general, Conditions A and B are not sufficient for the existence of

a UMPI test, and therefore Proposition 4.1 is not a consequence of the above inequality. An important

case in which a UMPI exists is a CAR model satisfying Condition B (in fact, Condition B combines

particularly well with a CAR specification because the resulting model is an exponential family with

number of sufficient statistics equal to the number of parameters, k + 2).

Proof of Proposition 4.2. For a CAR or a symmetric SAR model, λi[Σ(ρ)] = [1− ρλi(W )]−r,

for i = 1, ..., n, and with r = 1 for a CAR model, r = 2 for a symmetric SAR model. Inserting such

expressions in equation (17) from the proof of Proposition 4.1, we obtain that the power function of

a POI critical region is non-decreasing in ρ if the statistic

tρ̄(ρ) =

{
∑

i∈H

[
1

1− ρλi(W )

]r
z2i

}−1∑

i∈H

[
1− ρ̄λi(W )

1− ρλi(W )

]r
z2i

is non-increasing in ρ for any vector z ∈ Rn. Direct differentiation of tρ̄(ρ) with respect to ρ and some

simple manipulation show that such a condition is satisfied if

∑

i,j∈H

ai,jz
2
i z
2
j ≤ 0, (19)

with the coefficients ai,j defined by

ai,j = λj
[1− ρ̄λj(W )]r − [1− ρ̄λi(W )]r

[1− ρλi(W )]r[1− ρλj(W )]r+1
.

It is immediately verified that, for each i, j ∈ H such that i 
= j, ai,j + aj,i ≤ 0, with strict inequality

if λi(W ) 
= λj(W ). Thus, given that ai,i = 0 for any i ∈ H, (19) holds, the inequality being strict if

there exist at least one pair of distinct eigenvalues λi(W ), λj(W ) with i, j ∈ H, i.e., if col⊥(X) is not

a subset of an eigenspace ofW . The statement in the proposition relative to the POI critical regions

is therefore proved, and the one relative to LBI follows immediately.

Remark G.4 For CAR models, Proposition 4.2 can alternatively be proved by showing that the

density pdf(v; ρ) has a monotone likelihood ratio under Condition B, and then by using Theorem

3.4.1 of Lehmann and Romano (2005). Such an argument, however, does not extend to symmetric

SAR models.
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Remark G.5 The power functions in Proposition 4.2 are, in fact, typically strictly increasing, be-

cause, unless n − k is small or an eigenspace of W has large dimension below), col⊥(X) is unlikely

to fall into an eigenspace of W . In the special case X = O, the power functions must be strictly

increasing, for col⊥(X) = Rn is certainly not in an eigenspace of W .

Remark G.6 One case in which Condition B is satisfied is a CAR model with mean assumed to be

unknown but constant across observations and with a row-standardized weights matrix. (On setting

L = D−1 and normalizing to Σ(0) = I, the mean of the CAR model becomes proportional to

D
1

2 ι, and the covariance matrix becomes Σ(ρ) = σ2(I − ρD−1

2AD− 1

2 )−1. Since ι is an eigenvector

of D−1A, it follows that D
1

2 ι is an eigenvector of D− 1

2AD− 1

2 and hence of Σ(ρ), implying that

Condition B is satisfied.) When other regressors are included alongside the intercept, a case in which

Condition B has some chances of being met in practice is when the number of eigenspaces ofW (and

hence of Σ(ρ), for CAR and symmetric SAR models) is small relative to n. This typically occurs

when W satisfies a large number of symmetries, in the sense of being invariant under a large group

of permutations of its index set (see Biggs, 1993). An example is when W has constant off-diagonal

entries and zero diagonal entries (see, e.g., Baltagi, 2006, and references therein), in which case W

has only two eigenspaces, the one spanned by ι and the hyperplane orthogonal to it. Thus, for a

such W , Condition B is satisfied whenever the entries of each regressor in the model sum to zero.

Interestingly, if X contains an intercept, then col⊥(X) is a subset of an eigenspace of W , and thus

the power function of a POI or LBI test is flat by Proposition 4.2 (cf. Theorem 5 of Kadiyala, 1970).

Remark G.7 Proposition 4.2 implies that, for CAR and symmetric SAR models satisfying Condition

B, the envelope πρ(ρ) is monotonic. One would expect the same property to hold also for zero-mean

asymmetric SARmodels, but, so far, we have found neither a proof nor a counterexample (by numerical

analysis).

Proposition G.8 Assume that Condition B holds. Then, in CAR and symmetric SAR models the

limiting power of any POI and LBI test for ρ = 0 against ρ > 0 is 1 if fmax /∈ col(X); strictly between

α and 1 if fmax ∈ col(X) and col⊥(X) is not a subset of an eigenspace of W ; α otherwise.

Proof. Under Condition B, if f i(W ) /∈ col(X), for i = 1, ..., n, then f i(W ) ∈ col⊥(X). It follows

that, if f i(W ) /∈ col(X), for i = 1, ..., n, and Σ (ρ) is that of a CAR or symmetric SAR model,

then ΩρCf i(W ) = CΣ (ρ)MXf i(W ) = CΣ (ρ)f i(W ) = λi(Σ (ρ))Cf i(W ), or, equivalently,

{Cf i(W ), i ∈ H}, with H as defined in the proof of Proposition 4.1, is a set of n − k orthogonal

eigenvectors of Ωρ. Thus, in particular, En−k(Ωρ) does not depend on ρ. The proposition follows by

Theorem 3.3, Lemma G.1 and Proposition 4.2.
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CAR symmetric SAR asymmetric SAR

X = O 1 1 either 0 or 1

X 
= O in [0, 1] in [0, 1] in [0, 1]

Table 1: The limiting power of POI and LBI tests of ρ = 0 vs. ρ > 0 in CAR and SAR models, with and

without regressors.

Figure 1: The power function of the Moran test (solid line) and the envelope πρ(ρ) (dashed line) for the

zero-mean asymmetric SAR model described in Example 3.11.



Table 2: Average correlation between neighbors (minimum and maximum correlation in parentheses) and

percentage frequency distribution of the power πLBI(ρ) of the Cliff-Ord test, in model y = Xβ + ε, where ε

is a SAR process and X contains an intercept and a standard normal variate. The power is computed by the

Imhof method over 106 replications of X .

av. neigh. πLBI(ρ)

ρλmax correlation 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

Nevada

binary W
0.90 0.85

(0.70−0.93)
0.11 0.25 28.42 71.05 0.17 · ·

0.95 0.95
(0.87−0.98)

0.29 5.75 36.29 53.43 4.11 0.13 ·

row-st W
0.90 0.88

(0.81−0.93)
· · 0.02 0.16 41.47 58.35 ·

0.95 0.96
(0.93−0.98)

· · 0.01 0.05 1.56 98.38 ·

Wyoming

binary W
0.90 0.80

(0.60−0.92)
· · · 0.02 0.69 99.29 ·

0.95 0.92
(0.77−0.98)

· · · 0.02 0.10 1.76 98.12

row-st W
0.90 0.85

(0.76−0.92)
· · · · · 0.50 99.50

0.95 0.95
(0.90−0.97)

· · · · · · 100

Table 3: Probability of zero limiting power (z0.05) and average shortcoming of the Cliff-Ord test, in the case

of a binary W .

av. shortc. at ρλmax = 0.90 av. shortc. at ρλmax = 0.95

z0.05 πLBI(ρ)→ 0 πLBI(ρ)→ 1 πLBI(ρ)→ 0 πLBI(ρ)→ 1

Nevada 0.77 0.20 0.16 0.32 0.24

Wyoming 5.2·10−4 0.15 0.03 0.26 0.02


