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Abstract

We show that inference on risk premia in linear factor models that is based on the Fama-MacBeth
(FM) and generalized least squares (GLS) risk premia estimators is misleading when the β’s are small
and/or the number of assets is large. We propose novel statistics, that are based on the maximum
likelihood estimator of Gibbons (1982), which remain trustworthy in these cases. We show that the
maximum likelihood estimator is straightforward to compute using the eigenvectors of a characteristic
polynomial. The inadequacy of the FM and GLS t/Wald statistics is highlighted in a power and size
comparison and using daily portfolio returns from Jagannathan and Wang (1996). The power and
size comparison shows that the FM and GLS t/Wald statistics can be severly size distorted. The
monthly portfolio returns from Jagannathan and Wang (1996) reveal a large discrepancy between
the 95% confidence sets for the risk premia that result from the different statistics. The FM and GLS
t/Wald statistics imply tight 95% confidence sets for the risk premia on the yield premium and labor
income growth that only contain small values while the 95% confidence sets that result from statistics
that remain trustworthy in case of small β’s imply much larger 95% confidence sets at considerably
higher and therefore more relevant values of the risk premia.

1 Introduction

Linear factor models are amongst the most commonly used statistical models in finance, see e.g. Lintner
(1965), Fama and MacBeth (1973), Gibbons (1982), Shanken (1992), Fama and French (1992,1993,1996)
and Jagannathan and Wang (1996,1998). This results as many well-known financial models, like, for
example, the capital asset pricing model, imply a linear factor structure for the asset returns. Linear
factor models imply risk premia for the different factors that result from a cross-sectional regression of
the asset returns on the factor β’s where the β’s are obtained from a time-series regression of the asset
returns on the factors. This two step procedure is typically referred to as the Fama-MacBeth (FM)
regression, see Fama and MacBeth (1973). Linear regression estimates are sensitive to collinearity of the
explanatory variables so the estimates of the risk premia that result from a FM regression are sensitive
to collinearity of the β’s. Collinearity of the β’s occurs when they are close or equal to zero and/or when
the β-matrix is almost of reduced rank. Kan and Zhang (1999), for example, show that the estimates of
the risk premia that result from a FM regression are erroneous when the β’s are zero and the expected
asset returns are non-zero.
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FM regressions provide misleading risk premia estimates in more cases than just the one indicated
by Kan and Zhang (1999). We show that FM risk premia estimates are spurious whenever the β’s are
relatively small and their spuriousness is further aggravated when the number of assets is large. Hence,
even for size-able values of the β’s, the risk premia estimates can be misleading when the number of
assets is large. The FM risk premia estimates that are obtained in such settings are typically too small
and their 95% confidence sets indicate an erroneous high level of precision. The erroneous level of
precision of the confidence sets shows that statistical inference based on Wald t-statistics is misguiding
and that the large sample distribution of the t-statistic differs from the normal one. We therefore
propose a number of alternative statistics whose large sample distributions remain unaltered when the
β’s are close to zero. Thus these statistics can be used in a trustworthy manner.

The paper is organized as follows. In the second section, we discuss the FM and Generalized Least
Squares (GLS) risk premia estimators and construct their large sample distributions when the β’s are
small. These large sample distributions are non-standard and imply that Wald statistics, like, for
example, the t-statistic, are misleading when the β’s are small and/or when the number of assets is
large. The third section proposes a number of novel statistics whose large sample distributions remain
unaltered when the β’s are small and/or the number of assets is large. These statistics are based
on the Generalized Method of Moment (GMM) and instrumental variable statistics that are proposed
in Kleibergen (2002,2005a) and Moreira (2003). They lead to inference that is centered around the
maximum likelihood estimator (MLE) of Gibbons (1982) and we show that the MLE results in a
straightforward manner from the eigenvectors of a characteristic polynomial thus avoiding numerical
optimization. The fourth section conducts a size and power comparison. It illustrates the size distortions
of the Wald t-statistics. The fifth section generalizes the test statistics to allow for tests on some of the
risk premia. The sixth section uses data from Jagannathan and Wang (1996) to estimate a linear factor
model for monthly portfolio returns. It shows that, because of the large number of portfolios and the
relatively small β’s of the yield premium and labor income growth that, the FM and GLS risk premia
estimators for the risk premia on the yield premium and labor income growth are downward biased and
lead to small 95% confidence sets at rather low values. The 95% confidence sets of the statistics that
remain trustworthy in case of many portfolios and small β’s indicate much larger 95% confidence sets
at considerably higher values of the risk premia. This shows the importance of usage of these statistics
for inference on the risk premia.

We use the following notation throughout the paper: E(a) is the mean of a random variable a, var(a)
is the variance and cov(a, b) is the covariance between a and b; vec(A) stands for the column vectorization
of the T ×n dimensional matrix A, vec(A) = (a01 . . . a0n)0 when A = (a1 . . . an), vecinvn((a01 . . . a0n)0) = A,
PA = A(A0A)−1A0 and MA = IT − PA for a full rank matrix A and the T × T identity matrix IT ,
ιn is a n × 1 vector of ones, “→

p
” indicates convergence in probability, “→

d
” indicates convergence in

distribution and “=
a
” implies equality in large samples.

2 Risk Premia estimators and small β’s

We analyze the FM estimator in a GMM setting, see e.g. Hansen (1982). We therefore specify the
moments of the factor related (excess) assets returns1 as, see e.g. Cochrane (2001),

E(Rt) = ιnλ1 + βλF
cov(Rt, Ft) = βvar(Ft)

E(Ft) = µF ,
(1)

1All asset returns are in deviation from the riskless return.
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with Rt : the n×1 vector of (excess) asset returns, Ft : the k×1 vector of factors, λ1 : the zero-β return,
λF : the k × 1 vector of factor risk premia, β : the n × k matrix of asset β’s, µF : the k × 1 vector of
factor means and t : the time index of the observation, t = 1, . . . , T . The moment conditions (1) result
from a linear factor model for the asset returns and factors,

Rt = ιnλ1 + β(Ft − µF + λF ) + ut
Ft = µF + vt

(2)

with ut and vt, t = 1, . . . , T : n× 1 and k× 1 vectors of disturbances. These vectors of disturbances are
identically and independently distributed over time with mean zero and n × n and k × k dimensional
covariance matrices Λ (for ut) and VFF (for vt). Because β =cov(Rt, Ft)var(Ft)−1, the covariance between
the disturbances ut and vt is equal to βVFF . The linear factor model (2) can as well be specified as

Rt = ιnλ1 + β(Ft − F̄ + F̄ − µF + λF ) + ut
Ft = µF + vt

¾
⇔
½

Rt = ιnλ1 + β(F̄t + λF ) + εt
Ft = µF + vt

(3)

with F̄t = Ft − F̄ , F̄ = 1
T

PT
t=1 Ft, εt = ut + βv̄ and v̄ = 1

T

PT
t=1 vt. Because of the specification of β,

weighted averages of εt and vt are uncorrelated in large samples. We therefore use the latter specification
in (3) to make an assumption about the behavior of the disturbances of the linear factor model (2) in
large samples.

Assumption 1. When the number of time series observations T becomes large,

1√
T

PT
t=1

⎛⎝ µ
1
Ft

¶
⊗ (Rt − ιnλ1 − β(F̄t + λF ))

Ft − µf

⎞⎠→
d

⎛⎝ ϕR
ϕβ
ϕF

⎞⎠ , (4)

with ϕR : n× 1, ϕβ : nk × 1, ϕF : k × 1, (ϕ0R
... ϕ0β

... ϕ0F )
0 ∼ N(0, V ) and

V =

µ
(Q⊗ Ω) 0
0 VFF

¶
, (5)

with Q =

µ
Q11
QF1

... Q1FQFF

¶
=

µ
1
µF

... µ0F
VFF+µFµ

0
F

¶
: (k+1)× (k+1), Ω : n×n, VFF : k× k, VFF =var(Ft) and

Ω = Λ− βVFFβ
0.

Assumption 1 is a central limit theorem for the disturbances of the linear factor model (3) interacted
with a constant and the factors. It holds under rather mild conditions, like, for example, Assumptions 1
and 2 from Shanken (1992). Because of the independence of the disturbances over time and their finite
variance, Assumption 1 holds under the linear factor model (2) with a constant covariance matrix as
well. Appendix A shows the implications of Assumption 1 for a central limit theorem for the orginal
specification of the linear factor model (2).

For time series observations of Rt and Ft, t = 1, . . . , T, the FM two-pass methodology estimates the

risk premia using a least squares time-series regression estimate of β, β̂ =
PT

t=1 R̄tF̄
0
t

hPT
j=1 F̄jF̄

0
j

i−1
,

with R̄t = Rt − R̄, R̄ = 1
T

PT
t=1Rt. Given β̂, estimators for λ1 and λk are obtained by regressing the

average value of Rt, R̄, on (ιn
... β̂),µ

λ̂1
λ̂F

¶
=

∙
(ιn

... β̂)0(ιn
... β̂)

¸−1
(ιn

... β̂)0R̄. (6)

3



Lemma 1. When Assumption 1 holds, the average returns, R̄, the least squares estimator of the assets
β’s, β̂, and the average factors, F̄ , have a joint large sample distribution that reads

√
T

⎛⎝ R̄− ιnλ1 − βλF
vec(β̂ − β)
F̄ − µf

⎞⎠→
d

⎛⎝ ψR

ψβ

ψF

⎞⎠ , (7)

where ψR, ψβ and ψF are n× 1, nk× 1 and k× 1 independent normal distributed random vectors with
mean zero and covariance matrices, Ω, V −1FF ⊗ Ω and VFF .

Proof. see Appendix B.
Lemma 1 corresponds with Lemma 1 of Shanken (1992). We use Lemma 1 to derive the properties

of the FM risk premia estimator.
When the β’s have size-able values, the FM risk premia estimator has a normal limiting distribution

so Wald t-tests perform adequately. Kan and Zhang (1999) show that the large sample distribution
of the FM risk premia estimator is notably different when the β’s are equal to zero and E(R̄) equals
some n × 1 vector of constants c. The behavior of the FM risk premia estimator differs in other cases
as well. It results from the dependence of the FM risk premia estimator on the β’s. This dependence
is similar to the dependence of the two stage least squares estimator on the quality of the instruments
in econometrics. There is an extensive literature in econometrics that discusses the behavior of the two
stage least squares estimator under limit sequences where the quality of the instruments depends on the
sample size, see e.g. Phillips (1989), Bekker (1994) and Staiger and Stock (1997). Theorem 1 states the
behavior of the FM risk premia estimator in three similar cases for the β’s. The first case corresponds
with Kan and Zhang (1999) and has a zero value of the β-vector. The second case has relatively small
but non-zero elements of the β-vector. We therefore specify the β’s such that they decrease with the
sample size which is analogous to the weak instruments of Staiger and Stock (1999) so we refer to this
case as weak β’s. The third case has all β’s equal to zero except for a fixed fraction of the assets.

Theorem 1. When Assumptions 1 and 2 hold, the behavior of the FM risk premia estimator (6) in
large samples is characterized by:

1. When β = 0 and

(a) E(R̄) = ιnλ1 : µ √
T (λ̂1 − λ1)

λ̂F

¶
→
d

Ã
1√
T
1
ab
0

[Ψ0βMιnΨβ ]
−1Ψ0βMιn

!
ψR, (8)

and the order of finite moments of the limit behavior of λ̂F is equal to n− k while the mean
of the limit behavior of λ̂F equals zero when n > k.

(b) E(R̄) = c :Ã √
T (λ̂1 − 1

ab
0c)

λ̂F −
√
T [Ψ0βMιnΨβ]

−1Ψ0βMιnc

!
→
d

Ã
1√
T
1
ab
0

[Ψ0βMιnΨβ]
−1Ψ0βMιn

!
ψR (9)

where Ψβ =vecinvk(ψβ), a = ι0nMΨβ
ιn, b =MΨβ

ιn.

2. When β has a weak value such that β = βT =
1√
T
B, with B a fixed full rank n× k matrix, and
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(a) E(R̄) = ιnλ1 + βλF :µ √
T (λ̂1 − λ1)

λ̂F − λF

¶
→
dÃ
1√
T
1
ab
0

[(B +Ψβ)
0Mιn(B +Ψβ)]

−1(B +Ψβ)
0Mιn

!
(ψR −ΨβλF ).

(10)

and the order of finite moments of the limit behavior of λ̂F is equal to n− k.

(b) E(R̄) = c : Ã √
T (λ̂1 − 1

ab
0c)

λ̂F −
√
T [(B +Ψβ)

0Mιn(B +Ψβ)]
−1(B +Ψβ)

0Mιnc

!

→
d

Ã
1√
T
1
ab
0

[(B +Ψβ)
0Mιn(B +Ψβ)]

−1(B +Ψβ)
0Mιn

!
ψR,

(11)

where Ψβ =vecinvk(ψβ), a = ι0nMB+Ψβ
ιn, b =MB+Ψβ

ιn.

3. When β =
¡β1
0

¢
, with β1 : n1 × k, n1 is fixed and n

T → c, the bias of λ̂F equals

(β01β1 +W )−1W (µF − λF ), (12)

with W =
£
limn→∞tr( 1nΩ)

¤
V −1FF .

Proof. see Appendix C.

Theorem 1 shows that the large sample distribution of the FM risk premia estimator differs sub-
stantially from normality in case of zero, weak or many β’s. First, Theorem 1 shows that zero or weak
values of β alter the convergence rate of the risk premia estimator. When the moment conditions apply,
so E(R̄) = ιnλ1 (1a) or E(R̄) = ιnλ1 + βλF (2a), Theorem 1 shows that the risk premia estimator λ̂F
converges to a random variable instead of the convergence at rate

√
T to the true value λF in case of

size-able values of β. When the moment conditions do not apply, so E(R̄) = c in (1b) and (2b), the
risk premia estimator λ̂F diverges at rate

√
T both in case of zero or weak β’s. This extends Kan and

Zhang (1999) who show that the risk premia estimator λ̂F diverges when β equals zero and E(R̄) = c
which corresponds with (1b). Second, Theorem 1 shows that the random variable where the risk premia
estimator λ̂F converges to depends on the number of assets since the number of finite moments of this
random variable depends on the number of assets. Hence, when we add assets with zero β’s, the density
of the risk premia estimator becomes more concentrated. The dependence on the number of assets is
further indicated in the third case which shows that the FM risk premia estimator is biased towards µF
when the number of assets is large and the β’s are only non-zero for a relatively small number of assets.
The expression of the bias shows that the FM estimator is more biased towards µF (the factor means)
for smaller values of β.

Although we do not observe the stylized settings from Theorem 1 in practice, Theorem 1 shows
that the traditional asymptotic theory, that is used to conduct tests on the risk premia using the FM
estimator, becomes unreliable when the β’s are rather small and/or only a fraction of the β’s differs
from zero. To illustrate the consequences of Theorem 1, we compute the empirical distribution of the
risk premia estimator λ̂F for some simulated data-sets. We therefore simulate data from the model,

Rt = c+ βFt + εt, t = 1, . . . , T, (13)
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Panel 1: Shapes of densities of λ̂F for small or zero values of β.

-4 -3 -2 -1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

de
ns

ity
 λ

f

λf

-8 -6 -4 -2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

de
ns

ity
 λ

f

λf

Figure 1.1: Density of λ̂F when β = 0, λ1 = 1.24 Figure 1.2: Density of λ̂F when β = 0, λ1 = 1.24
and T = 330 (solid line), 990 (dashed), 1880 and E(R̄) = c ∼ N(0, 0.252In), T = 330 (solid
(dashed-dotted), 3300 (solid with plusses) line), 990 (dashed), 1880 (dashed-dotted), 3300

(solid with plusses)
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Figure 1.3: Density of λ̂F with λF = 1, λ1 = 1.24, Figure 1.4: Density λ̂F with E(R̄) = (ιnλ1 + β,
β = (0.3 0 . . . 0)0 and n = 2 (solid with plusses), +c) with λ1 = 1.24, β = (0.3 0 . . . 0)0,
10 (dashed-dotted), 24 (dashed), 100 (solid line) c ∼ N(0.0.04In), and n = 2 (solid with plusses),

10 (dashed-dotted), 24 (dashed), 100 (solid line)

with E(Ft) = 0 and where the εt’s are independent realizations of N(0,Ω) distributed random variables.
The parameter settings that we use for the simulated data-sets are obtained from Jagannathan andWang
(1996). Unlike other factor models like those in, for example, Fama and French (1992,1993,1996), the
factor model in Jagannathan and Wang (1996) involves factors that do not only consist of portfolio
returns, i.e. the yield premium and labor income growth. We can therefore estimate the non-zero risk
premia on these factors which explains why we use this data-set to illustrate the convergence issues
associated with the FM estimator and test statistics.

The data-set of Jagannathan and Wang (1996) consists of monthly observations from July 1963-
December 1990 of the return on hundred size and β sorted portfolios so n = 100 and T = 330. In this
simulation experiment, the (demeaned) return on the value weighted portfolio is the only factor. The
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covariance matrix Ω results from regressing the size and β-sorted portfolio returns on a constant and
the return on the value weighted portfolio. Figures 1.1-1.4 in Panel 1 show the different elements of
Theorem 1. The value of λ1 that is used for the simulated data-sets results from the FM-estimator (6)
when applied to the data from Jagannathan and Wang (1996).

Figure 1.1 contains the sampling density of λ̂F for different values of the sample size T. It illustrates
Case 1a of Theorem 1. Figure 1.1 shows that λ̂F converges to a random variable when β = 0, the
model is correctly specified and T converges to infinity since it reflects no convergence of the sampling
distribution towards a point mass. The density of λ̂F is centered around zero because the mean of the
demeaned return on the value weighted portfolio is equal to zero. Since β is equal to zero, λF is not
identified so the density of λ̂F is centered around a value of λF that contains no information about λF .

Figure 1.2 illustrates the divergence of λ̂F as indicated by Case 1b of Theorem 1. In Figure 1.2, β = 0
and E(R̄) equals a realization of a normal distributed random variable with mean zero and covariance
matrix (0.25)2In. Figure 1.2 shows that the variance of λ̂F rises when the sample size increases. Hence,
λ̂F converges to (plus or minus) infinity when the sample size converges to infinity. Figure 1.2 coincides
with Kan and Zhang (1999).

Figure 1.3 shows the influence of adding assets whose β’s equal zero to a factor model whose assets
have rather small values of β. The β’s are therefore specified such that only the first one is small and
non-zero, β1 = 0.3. All other elements of β are equal to zero, β2 = . . . = βn = 0. Figure 1.3 shows
the sampling density of λ̂F for various values of n while only the β of the first asset is unequal to zero.
Figure 1.3 thus corresponds with Case 3 of Theorem 1. For small values of n, n = 2, the density of λ̂F is
centered around the true value of λF that is equal to one. When we increase the number of assets n by
adding assets with a zero value of β, the density of λ̂F becomes centered around zero which equals µF .
Figure 1.3 illustrates the issue of estimating a risk premia for a factor that matters only for a fraction
of the assets. Figure 1.3 shows that this estimate becomes more biased when we add assets for which
the factor is irrelevant.

Figure 1.4 shows the consequences of misspecification for the parameter setting that is used in Figure
1.3. We therefore added some misspecification to the asset returns, E(R̄) = ιnλ1 + β + c, where c is a
realization of a N(0, 0.04In) distributed random vector. All remaining parameter values are identical
to the ones that are used for Figure 1.3. Figure 1.4 shows that the density of λ̂F moves towards zero
and that its’ variance increases when we add assets with zero β’s and the model is misspecified. Figure
1.4 reveals a combined effect of the phenomena present in Figures 1.2 and 1.3.

The odd behavior of the FM risk premia estimator for small or zero values of the β’s holds for the
GLS risk premia estimator,µ

λ̃1
λ̃F

¶
=

∙
(ιn

... β̂)0Ω̂−1(ιn
... β̂)

¸−1
(ιn

... β̂)0Ω̂−1R̄, (14)

where Ω̂ is a least squares covariance matrix estimator of Ω, Ω̂ = 1
T−k−1

PT
t=1(R̄t − β̂F̄t)(R̄t − β̂F̄t)

0, as
well. Theorem 2 states the behavior of the GLS risk premia estimator (14) for small or zero values of
the β’s.

Theorem 2. When Assumptions 1 and 2 hold, the behavior of the GLS risk premia estimator (14) in
large samples in case of zero or weak β’s is characterized by:

1. When β = 0 and
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(a) E(R̄) = ιnλ1 :µ √
T (λ̂1 − λ1)

λ̂F

¶
→
d

Ã 1√
T
1
ab
0

(Ψ0βΩ
− 1
2M

Ω−
1
2 ιn
Ω−

1
2Ψβ)

−1Ψ0βΩ
− 1
2M

Ω−
1
2 ιn
Ω−

1
2

!
ψR, (15)

so λ̂F converges to a multi-variate t distributed random variable with location 0, scale param-
eter Q11.FQ

−1
FF and n-k degrees of freedom and the mean of the limit behavior of λ̂F equals

zero when n > k.

(b) E(R̄) = c : Ã √
T (λ̂1 − 1

ab
0Ω−

1
2 c)

λ̂F −
√
T (Ψ0βΩ

− 1
2M

Ω−
1
2 ιn
Ω−

1
2Ψβ)

−1Ψ0βΩ
− 1
2M

Ω−
1
2 ιn
Ω−

1
2 c

!
→
dÃ 1√

T
1
ab
0

(Ψ0βΩ
− 1
2M

Ω−
1
2 ιn
Ω−

1
2Ψβ)

−1Ψ0βΩ
− 1
2M

Ω−
1
2 ιn

!
Ω−

1
2ψR

(16)

where Ψβ =vecinvk(ψβ), a = ι0nΩ
− 1
2M

Ω−
1
2Ψβ
Ω−

1
2 ιn, b =M

Ω−
1
2Ψβ
Ω−

1
2 ιn,Q11.F =Q11−Q1FQ−1FFQF1.

2. When β has a weak value such that β = 1√
T
B and

(a) E(R̄) = ιnλ1 +
1√
T
BλF :

µ √
T (λ̂1 − λ1)

λ̂F − λF

¶
→
d

Ã 1√
T
1
ab
0

[(B +Ψβ)
0Ω−

1
2M

Ω−
1
2 ιn
Ω−

1
2 (B +Ψβ)]

−1(B +Ψβ)
0Ω−

1
2M

Ω−
1
2 ιn

!
Ω−

1
2 (ψR.β +Ψβ(ρ− λF )).

(17)
and the order of finite moments of the limit behavior of λ̂F − λF is equal to n− k.

(b) E(R̄) = c :Ã √
T (λ̂1 − 1

ab
0Ω−

1
2 c)

λ̂F −
√
T [(B +Ψβ)

0Ω−
1
2M

Ω−
1
2 ιn
Ω−

1
2 (B +Ψβ)]

−1(B +Ψβ)
0Ω−

1
2M

Ω−
1
2 ιn
Ω−

1
2 c

!

→
d

Ã 1√
T
1
ab
0

[(B +Ψβ)
0Ω−

1
2M

Ω−
1
2 ιn
Ω−

1
2 (B +Ψβ)]

−1(B +Ψβ)
0Ω−

1
2M

Ω−
1
2 ιn

!
Ω−

1
2ψR,

(18)

where Ψβ =vecinvk(ψβ), a = ι0nΩ
− 1
2M

Ω−
1
2 (B+Ψβ)

Ω−
1
2 ιn, b =M

Ω−
1
2 (B+Ψβ)

Ω−
1
2 ιn.

Proof. see Appendix D.

Theorems 1 and 2 reveal that the FM and GLS risk premia estimators do not have normal limiting
distributions in case of small and/or many β’s. Test statistics that are based on the asymptotic normality
of these risk premia estimators, like, for example, the Wald t statistic, therefore also do not converge to
a normal or χ2 limiting distributions in these cases. Hence, statistical inference that is based on such
statistics is unreliable in case of small and/or many β’s. This shows the need for statistics that remain
trustworthy in such cases.
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3 Tests of the risk premium

We propose a number of alternative statistics to test a hypothesis on the risk premia, like, for example,
H0 : λF = λF,0, whose limiting distributions are not affected by the value or number of β’s. Since our
interest is on the risk premia λF , we remove λ1 from the model by removing the return on the n-th
asset and taking all other asset returns in deviation from the return on the n-th asset.2 The moment
conditions then become

E(Rt) = BλF
cov(Rt, Ft) = Bvar(Ft)

E(Ft) = µF ,
(19)

with Rt = R1t − ιn−1Rnt and B = β1 − ιn−1βn, for Rt = (R
0
1t

... R0nt)0, β = (β
0
1

... β0n)0; R1t : (n− 1)× 1,
Rnt : 1× 1, β1 : (n− 1)× k, βn : 1×k. Under H0 : λF = λF,0, a least squares estimator for B is given by

B̃ =PT
t=1Rt(F̄t + λF,0)

hPT
j=1(F̄j + λF,0)(F̄j + λF,0)

0
i−1

. (20)

We use Assumption 1 to determine the joint behavior of the average returns and the least squares
estimator B̃ under H0 : λF = λF,0 in large samples.

Lemma 2. Under H 0 : λF = λF,0 and when Assumption 1 holds,

√
T

⎛⎝ R̄− B̃λF,0
vec(B̃ − B)
F̄ − µF

⎞⎠→
d

⎛⎝ ψR
ψB
ψF

⎞⎠ ,

where ψR, ψB and ψF are independent (n− 1)× 1, (n− 1)k × 1 and k × 1 normal distributed random
vectors with mean zero and covariance matrices (1 − λ0F,0Q(λF )FFλF,0) ⊗ Σ, Q(λF )FF ⊗ Σ and VFF ,

with Q(λF )FF =
h
limT→∞E

³
1
T

PT
t=1(F̄t + λF )(F̄t + λF )

0
´i−1

and Σ = Ω11 − ιn−1ω1n − ωn1ι
0
n−1 +

ιn−1ωnnι0n−1 for Ω =
µ

Ω11
ωn1

... ω1nωnn

¶
, Ω11 : (n− 1)× (n− 1), ω1n = ω0n1 : 1× (n− 1) and ωnn : 1× 1.

Proof. see Appendix E.

The Wald statistic that is based on the FM risk premia estimator to test H0 : λF = λF,0 reads

FM-W(λF,0) = (λ̂F − λF,0)
0var(λ̂F )−1(λ̂F − λF,0). (21)

For size-able full rank values of β and under H0 : λF = λF,0, FM-W(λF,0) converges in distribution to a
χ2(k) distributed random variable when the sample size gets large. Theorem 1 shows that λ̂F converges
to a non-normal distributed random variable that is centered around zero for weak and zero values
of the β’s. The Wald statistic FM-W(λF,0) (21) does therefore not converge to a χ2(k) distributed
random variable for such values of the β’s. It implies that the Wald statistic is unreliable for conducting
inference in these cases. To indicate a solution to this problem, we note that the Wald statistic that

2The results are invariant with respect to the asset return that is dropped and with respect to which all assets returns
are taken in deviation from.
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tests H0 can be specified as3

FM-W(λF,0) = T (R̄− ιN λ̂1 − β̂λF,0)
0(ιn

... β̂)
∙
(ιn

... β̂)0Θ̂(ιn
... β̂)

¸−1
(ιn

... β̂)0(R̄− ιN λ̂1 − β̂λF,0),

(22)
with Θ̂ = Ω̂(1 + λ̂

0
F (

1
T

PT
t=1 F̄tF̄

0
t)
−1λ̂F ), see Shanken (1992). Lemma 1 shows that R̄ − ιNλ1 − βλF,0

and β̂ are independently distributed in large samples. Because of this dependence, R̄− ιnλ̂1 − β̂λF,0 =

R̄ − ιnλ1 − βλF,0 − ιn(λ̂1 − λ1) − (β̂ − β)λF,0, which is part of FM-W(λF,0) (22), is, however, not
independent of β̂ in large samples. This is the origin of the convergence issues with the Wald statistic
when the sample size gets large and the β’s are relatively small.

Lemma 2 shows that R̄−B̃λF,0 and B̃ are independently distributed when the sample size gets large.
Statistics that are based on R̄ − B̃λF,0 and/or B̃ therefore possess better convergence properties than
the Wald-statistic. We propose some these statistics which are based on the GMM and instrumental
variable statistics that are proposed in Kleibergen (2002, 2005a) and Moreira (2003). Since the linear
factor model is not accomodated by the GMM framework from Kleibergen (2005a), the statistics do
not directly result from the GMM and instrumental variable statistics.

Fama-MacBeth LM statistic The independence of R̄− B̃λF,0 and B̃ in large samples implies that
we can base a statistic with convenient properties on their product.

Theorem 3. Under H 0 : λF = λF,0 and when Assumption 1 holds,

FM-LM(λF,0) = T
1−λ0F,0Q̂(λF )−1FFλF,0

(R̄− B̃λF,0)0B̃(B̃0Σ̃B̃)−1B̃0(R̄− B̃λF,0), (23)

where Q̂(λF ) = 1
T

PT
t=1(F̄t+λF )(F̄t+λF )

0 and Σ̃ = 1
T−k

PT
t=1(R̄t− B̃(F̄t+λF,0))(R̄t− B̃(F̄t+λF,0))

0,
converges to a χ2(k) distributed random variable when the sample size gets large for all values of the
β’s.

Proof. Conditional on B̃ : √T B̃0(R̄− B̃λF,0)→
d
B̃0ψR so given B̃ : T (R̄− B̃λF,0)0B̃(B̃

0
Σ̃B̃)−1B̃0(R̄−

B̃λF,0)→
d
ψ0RB̃(B̃

0
ΣB̃)−1B̃0ψR which implies the unconditional result for FM-LM(λF,0) since R̄− B̃λF,0

and B̃ are independent in large samples as shown in Lemma 2 and Q̂(λF )→
p
Q(λF ), Σ̃→

p
Σ.

The FM-Lagrange multiplier (LM) statistic is based on the FM-Wald statistic in (22) which explains
why we refer to it as a Fama-MacBeth LM statistic. Compared with the FM-Wald statistic (22), the
primary differences are the estimators of the β’s, B̃ instead of β̂, and that λ̂1 is no longer present since
it has been removed by taking the returns in deviation from the returns on the n-th asset. Identical to
the FM risk premia estimator, FM-LM(λF,0) is not invariant to transformations of the asset returns so
it differs in this respect from the standard LM statistics which are invariant to transformations.

GLS-LM statistic The GLS risk premia estimator (14) is invariant to transformations of the asset
returns so we obtain an invariant LM statistic by incorporating the inverse of the covariance matrix in
(23).

3To obtain this expression of the Wald statistic, we note that var(λ̂1, λ̂F ) =

"
(ιn

... β̂)0(ιn
... β̂)

#−1
(ιn

... β̂)0Θ̂(ιn
...

β̂)

"
(ιn

... β̂)0(ιn
... β̂)

#−1
and

"
(ιn

... β̂)0(ιn
... β̂)

#
(
¡ λ̂1
λ̂F

¢− ¡ λ̂1
λF,0

¢
) = (ιn

... β̂)0[R̄− ιnλ̂1 − β̂λF,0].
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Theorem 4. Under H 0 : λF = λF,0 and when Assumption 1 holds,

GLS-LM(λF,0) = T
1−λ0F,0Q̂(λF )−1FFλF,0

(R̄− B̃λF,0)0Σ̃−1B̃(B̃0Σ̃−1B̃)−1B̃0Σ̃−1(R̄− B̃λF,0), (24)

converges to a χ2(k) distributed random variable when the sample size gets large for all values of the
β’s.

Proof. Identical to the proof of Theorem 3.

Unlike the FM-LM statistic (23), the GLS-LM statistic (24) is invariant to transformations of the
asset returns. The GLS-LM statistic (24) does, however, depend on the inverse of the covariance matrix
Σ̃ which can be of a large dimension and therefore difficult to obtain. For example, this is a 99×99
matrix in Jagannathan and Wang (1996).

Factor AR statistic When the disturbances in the linear factor model (2) are independently normally
distributed with mean zero and covariance matrix Ω, we can construct the likelihood function of λ1, λF ,
β and Ω, see e.g. Gibbons (1982). In an identical manner, we can construct the likelihood function for
a linear factor model in which the expected asset returns are not restricted to be equal to ιnλ1 + βλF .
After concentrating with respect to λ1 and β, the difference between the logarithms of the likelihoods of
the unrestricted linear factor model and the restricted factor model under H0 : λF = λF,0 is proportional
to4:

FAR(λF,0) = T
1−λ0F,0Q̂(λF )−1FFλF,0

(R̄− B̃λF,0)0Σ̃−1(R̄− B̃λF,0). (25)

We refer to this statistic as the factor AR statistic (FAR) since it is similar to the Anderson-Rubin
statistic, see Anderson and Rubin (1949), in the instrumental variables regression model. The FAR
statistic is proportional to the square of the Hansen-Jagannathan distance evaluated at λF,0 when we
use Σ̃ as the covariance matrix estimator, see Hansen and Jagannathan (1997).

Theorem 5. Under H 0 : λF = λF,0 and when Assumption 1 holds, the Factor AR statistic (25)
converges to a χ2(n − 1) distributed random variable when the sample size gets large for all values of
the β’s.

Proof. results directly from the large sample behavior of R̄− B̃λF,0 stated in Lemma 2.
Because of the relationship between the FAR statistic (25) and the likelihood function, minimizing

the FAR statistic over λF,0 is identical to maximizing the likelihood. Hence, the maximum likelihood
estimator (MLE) for λF,0 is obtained by minimizing FAR(λF,0) over λF,0.

Misspecification factor pricing tests The GLS-LM statistic (24) is a quadratic form of the deriva-
tive of FAR(λF,0) since5

∂
∂λ0F,0

FAR(λF,0) = c(R̄− B̃λF,0)0Σ̃−1B̃, (26)

with c = −2T
1−λ0F,0Q̂(λF )−1FFλF,0

h
1 + 1

T−k−1FAR(λF,0)
i
. The GLS-LM statistic is therefore equal to zero at

the MLE of λF from Gibbons (1982) which also minimizes FAR(λF,0). Besides the MLE, the GLS-LM
statistic is also equal to zero at other values of λF,0 which set the derivative of the likelihood to zero, like,
for example, local maxima and inflexion points. This hampers inference using the GLS-LM statistic.

4We refer to Appendix G for the construction of FAR(λF,0).
5 see Appendix F for a proof.
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To overcome the difficulty with the GLS-LM statistic, it is convenient to conduct a pre-test that
verifies the validity of the moment conditions E(Rt) = BλF at λF = λF,0 which are part of the moment
equations (19). A statistic that is well suited for this purpose is the factor pricing statistic

JGLS(λF,0) = FAR(λF,0)−GLS-LM(λF,0). (27)

Theorem 6. Under H 0 : λF = λF,0 and when Assumption 1 holds, the factor pricing JGLS (λF,0)
statistic (27) converges to a χ2(n− k− 1) distributed random variable that is independently distributed
of the χ2(k) distributed random variable where GLS-LM (λF,0) (24) converges to when the sample size
gets large for all possible values of the β’s.

Proof. results from the large sample behavior of R̄− B̃λF,0 documented in Lemma 2. The indepen-
dence from GLS-LM(λF,0) results since JGLS(λF,0) projects Σ̃−

1
2 (R̄− B̃λF,0) on the space orthogonal

to Σ̃−
1
2 B̃ where GLS-LM(λF,0) projects it onto.

The factor pricing statistic tests E(Rt) = BλF for a pre-specified value of the risk premia λF . The
FM-LM statistic can be used as well for this purpose

JFM(λF,0) = FAR(λF,0)− FM-LM(λF,0). (28)

Theorem 7. Under H 0 : λF = λF,0 and when Assumption 1 holds, the factor pricing JFM (λF,0)
statistic (28) converges to a χ2(n− k− 1) distributed random variable that is independently distributed
of the χ2(k) distributed random variable where FM-LM (λF,0) (23) converges to when the sample size
gets large for all possible values of the β’s.

Proof. results from the large sample behavior of R̄ − B̃λF,0 documented in Lemma 2. The inde-
pendence from FM-LM(λF,0) results since JFM(λF,0) projects Σ̃−

1
2 (R̄− B̃λF,0) on the space orthogonal

to Σ̃
1
2 B̃ where FM-LM(λF,0) projects it onto.
The factor pricing statistics JGLS(λF,0) and JFM(λF,0) resolve the inferential problems with the

GLS-LM and FM-LM statistics when we use them as pre-tests before we apply the GLS-LM and
FM-LM statistics. A test which tests the adequacy of the moment conditions and H0 : λF = λF,0
with (1− α)× 100% significance then results by applying the JGLS(λF,0) or JFM(λF,0) statistics with
(1−αJ)× 100% significance and in case we do not reject, we apply the GLS-LM(λF,0) or FM-LM(λF,0)
statistics with (1−αLM)×100% significance, where (1−α) = (1−αJ)(1−αLM) so α = αJ+αLM+αJαLM ≈
αJ + αLM , see Kleibergen (2005a,b).

Conditional likelihood ratio statistic The likelihood ratio statistic to test H0 : λF = λF,0 against
H1 : λF 6= λF,0 equals twice the difference between the logarithms of the concentrated likelihoods under
H1 and H0 :

LR(λF,0) = 2 [maxλF lnLres(λF )− lnLres(λF,0)] . (29)

When k = 1, the likelihood ratio statistic can be specified as6

CLR(λF,0) = 1
2

h
FAR(λF,0)− r(λF,0) +

p
(FAR(λF,0) + r(λF,0))2 − 4r(λF,0)JFAR(λF,0)

i
, (30)

with r(λF,0) = Q̂(λF )FF B̃0Σ̃−1B̃, which corresponds with the conditional likelihood (CLR) ratio statistic
of Moreira (2003) for the linear instrumental variables regresssion model.

6 see Appendix G for a derivation of the expression of CLR(λF,0).
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Theorem 8. Under H 0 : λF = λF,0, k = 1, Assumption 1 and given r(λF,0), the conditional likelihood
ratio statistic CLR(λF,0) (30) converges to the random variable:

1
2

£
ϕk + ϕn−k−1 − r(λF,0) +

p
(ϕk + ϕn−k−1 + r(λF,0))2 − 4r(λF,0)ϕn−k−1

¤
, (31)

where ϕk and ϕn−k−1 are independent χ2(k) and χ2(n− k− 1) distributed random variables, when the
sample size gets large.

Proof. results from the large sample behavior of R̄ − B̃λF,0 documented in Lemma 2 and that
FAR(λF,0)→

d
ϕk + ϕn−k−1, JFAR(λF,0)→

d
ϕn−k−1.

The expression of the large sample distribution of the CLR statistic in Theorem 8 only applies when
k = 1. It provides a tight upperbound on the large sample distribution of the CLR statistic when r(λF,0)
is a statistic that tests for the rank of B using B̃ when k exceeds one, see Kleibergen (2005b). The
conditional distribution of the CLR statistic (31) is straightforward to simulate from and results from
simulating independent χ2(k) and χ2(n−k−1) distributed random variables which are alongside r(λF,0)
used to compute the expression in (31). Hence, for every value of r(λF,0), we use another critical value
for CLR(λF,0). When r(λF,0) is large, CLR(λF,0) corresponds with GLS-LM(λF,0) while it corresponds
with FAR(λF,0) for small values of r(λF,0).

Kan and Zhang Misspecification The factor pricing JGLS and JFM statistics, which test the
hypothesis of factor pricing at H0 : λF = λF,0, and the FAR statistic, which tests the joint hypothesis of
factor pricing and H0, have power against the misspecification analysed by Kan and Zhang (1999). The
combinations of the JGLS and GLS-LM statistics and JFM and FM-LM statistics, that were proposed
to overcome the spurious power declines of the GLS-LM and FM-LM statistics, therefore also provide
power against misspecification of the asset returns.

MLE-Wald statistic Besides the FM and GLS Wald statistics, we also compare our novel statistics
with the less often used Wald (t) statistic that is based on the MLE of Gibbons (1982). Proposition 1
shows that the MLE results from the eigenvectors that belong to the largest roots of a characteristic
polynomial.

Proposition 1. Under independent normal distriburbances with fixed covariance matrix Ω, the MLE
of λF in the linear factor model (3) results from the eigenvectors that belong to the k largest roots of
the characteristic polynomial:¯̄̄

θ
h
1
T

PT
t=1

¡ 1
F̄t

¢¡ 1
F̄t

¢0i− h 1T PT
t=1

¡ 1
F̄t

¢R0tiΣ−1 h 1T PT
t=1Rt

¡ 1
F̄t

¢0i¯̄̄
= 0, (32)

with Σ = 1
T

PT
t=1RtR

0
t :

λ̃F =W−10
2 w01, (33)

and where w1 : 1× k, W2 : k× k and
¡w1
W2

¢
contains the k eigenvectors that belong to the k largest roots

of the characteristic polynomial (32),
¡w1
W2

¢
= (q1 . . . qk), with qi, i = 1, . . . , k, the (k+1)×1 eigenvectors

that belong to the k largest (of the k + 1) roots of the characteristic polynomial (32).

Proof. The proof is part of the construction of the conditional likelihood ratio statistic in Appendix
G. It is straightforward to verify that the derivative (26) is zero at the maximum likelihood estimator
when B̃ is constructed using λ̃F .

The MLE can as well be obtained through numerical optimization. The derivative of the likelihood
(26) is, however, equal to zero at all k + 1 combinations of the eigenvectors that can be used to
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construct w1W−1
2 (only one of which gives the MLE). Thus the likelihood function has multiple modes

and numerical optimization does not necessarily provide the MLE since it can as well provide another
value of λF where the derivative of the likelihood is zero. Hence, it is preferable (and much more
convenient) to compute the MLE using Proposition 1 compared to numerical optimization.

The covariance matrix of the MLE equals7

var(λ̃F ) = 1
T (1 + λ̃

0
F

³
1
T

PT
t=1 F̄tF̄

0
t

´−1
λ̃F )

³
B̃0Σ̃−1B̃

´−1
, (34)

where Σ̃ uses the MLEs for λ̃F and B̃, and has led to the errors in variables correction of the covariance
matrix of the FM and GLS estimators proposed by Shanken (1992). For the Wald statistic based on
the MLE, we use the covariance matrix estimator (34).

4 Power and Size Comparison

We analyze the size and power of the different statistics in a simulation experiment that is based on
Jagannathan and Wang (1996). We therefore generate assets returns from the one factor asset pricing
model

Rt = ιnλ1 + β(F̄t + λF ) + εt, t = 1, . . . , T, (35)

with Rt the n × 1 vector of (excess) asset returns, β the n × 1 vector of β’s, λ1 the zero-β return, λF
the risk premium and the disturbances εt are independently normal distributed with mean zero and
covariance matrix Ω. We use parameter settings that are obtained from the data used by Jagannathan
and Wang (1996) so n = 100, T = 330, F̄t is the demeaned return on the value weighted portfolio, λ1
equals the FM estimate λ̂1 and Ω equals the least squares covariance matrix estimate.

We generate asset returns from the linear factor model (35) for three different values of β, 1. β =
β̂VW , 2. β = 0.25β̂VW and 3. β = 0.1β̂VW , with β̂VW the least squares estimator for the β’s of the asset
returns with respect to the value weighted portfolio. We use a range of values of λF and the different
statistics that we discussed previously to test H0 : λF = 3 with 95% significance.

The power curves in Panel 2 reveal the issues involved with the different statistics. The lefthandside
of Panel 2, which consists of Figures 2.1, 2.3 and 2.5, displays the power curves of the FM and GLS
based Wald and LM statistics and the MLE-Wald (MLE-W) statistic. The righthandside of Panel 2,
which consists of Figures 2.2, 2.4 and 2.6, displays the power curves of the CLR, FAR and combinations
of the JGLS and GLS-LM statistics and the JFM and FM-LM statistics. These combinations are such
that a 99% critical value is applied to JGLS and JFM and a 96% critical value to GLS-LM and FM-LM
so the overall size of the tests equals 5%.

The power curves of the FM and GLS Wald statistics in Figure 2.1 for which β = β̂VW show that
the rejection frequency of the FM Wald statistic is approximately 5% at λF = 3 while the size of the
MLE and GLS Wald statistics differ considerably from 5%. Hence, these statistics are size distorted.
Figures 2.3 and 2.5, for which β equals 0.25β̂VW and 0.1β̂VW resp., show that all Wald statistics are
size distorted for smaller values of β while the FM and GLS-LM statistics are not size distorted. These
Figures also demonstrate a spurious decline of power of the FM and GLS-LM statistics at values of
λF which are considerable different from the hypothesized value of three. These power declines result
because the FM and GLS LM statistics are proportional to quadratic forms of derivatives of objective
functions with respect to λF . Hence, the FM-LM and GLS-LM statistics are equal to zero at minima,
maxima and inflexion points of these statistics which explains the spurious power declines of the FM
and GLS-LM statistics.

7The covariance matrix is constructed in Appendix I.
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Panel 2: Power curves of statistics that test H0 : λF = 3 with 95% significance
β = β̂VW : Figure 2.1 Figure 2.2
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β = 0.25β̂VW : Figure 2.3 Figure 2.4
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β = 0.1β̂VW : Figure 2.5 Figure 2.6
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Figures 2.1, 2.3, 2.5: Power curves of FM-W (solid), Figures 2.2, 2.4, 2.6: Power curves of CLR (solid),
GLS-W (dashed), FM-LM (dashed-dotted), MLE-W combination of JGLS and GLS-LM (dashed), com-
(points) and GLS-LM (solid with plusses) statistics. bination of JFM and FM-LM (dashed-dotted) and

FAR (solid with plusses) statistics.
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It is remarkable that the GLS and MLE Wald statistics are already size distorted when β equals
β̂VW in Figure 2.1. This size distortion results from the inversion of the 100×100 (99×99) covariance
matrices Ω̂ and Σ̃. Appendix H explains why this size distortion does not occur for the other statistics
that also contain inverses of 99×99 covariance matrices.

It is interesting to note that although the MLE Wald statistic is size-distorted that the minimum of
the power curve remains approximately at the hypothesized value of three while it shifts upwards for
the GLS and FM Wald statistics when the value of β gets smaller. This results from the downward bias
of the FM and GLS risk premia estimators as stated in Theorem 1. Because of the downward biases of
these estimators, they are on average smaller than the true λF so the power curves attain their minima
at values of λF which are larger than the hypothesized one. The power curve of the MLE Wald statistic
has its minimum approximately at the hypothesized value which indicates that the bias of the MLE
is smaller than that of the FM and GLS estimators. Another interesting feature is that this bias does
not depend on the value of β while, as shown by Theorem 1 and the power curves of the FM and GLS
Wald statistics, the bias of the FM and GLS Wald statistics increases when β gets smaller. For GMM,
it is known that the estimators that are comparable to the MLE in GMM have smaller biases than the
estimators that are comparable to the FM and GLS estimators, see e.g. Newey and Smith (2004) so
similar results hold in linear factor models as well.

Figures 2.2, 2.4 and 2.6 only contain power curves of statistics whose large sample distributions are
unaffected by small or zero values of the β’s. These Figures therefore reveal no size distortion for any of
the depicted statistics. Figures 2.2-2.6 show that the power of the FAR statistic is in general below the
power of the other (combinations of) statistics but the FAR statistic has similar power than the other
statistics when the β’s are very small. The smaller power of the FAR statistic in case of reasonably
large β’s results from the larger degree of freedom parameter of its large sample distribution compared
to the other statistics.

Figures 2.2-2.6 show that the combinations of the JGLS and GLS-LM statistics and JFM and
FM-LM statistics overcome the spurious power decline of the GLS-LM and FM-LM statistics. These
combined statistics therefore perform appropriately and also provide power against misspecification, i.e.
no factor pricing. The combination of the JGLS and GLS-LM statistics and the CLR statistics have
comparable power curves and outperform the combination of the JFM and FM-LM statistics. We note
that the CLR statistic has no power against misspecification.

The power curves in Panel 2 clearly show the appeal of the statistics proposed in the previous
section. Compared to the FM-Wald statistic, the optimal configuration of the statistics, which are the
combined JGLS and GLS-LM statistics and the CLR statistic, do not indicate any sacrifice of power to
improve the size. For example, in Figure 2.1, these statistics already dominate the FM-Wald statistic
in terms of power. This continues to hold in the other Figures where the FM-Wald statistics eventually
become enormously size distorted for very small values of the β’s.

5 Tests on some of the risk premia

The statistics that we proposed sofar test hypotheses that are specified on all risk premia, H0 : λF = λF,0.
Instead of testing hypotheses specified on all parameters, we often want to test hypotheses that are

specified on sub-sets of the parameters, for example, H∗0 : θF = θF,0, where λF = (ν 0F
... θ0F )0, with

νF : kν × 1; θF,0, θF : kθ × 1 and k = kν + kθ. Kleibergen (2006) shows that the limiting distributions
of the sub-set statistics in the linear instrumental variables regression model are bounded by limiting
distributions identical to those in Theorems 3-8 when the partialled out parameters (νF ) are estimated
by maximum likelihood. This result extends to the linear factor model. The maximum likelihood
estimator for νF given H∗0 : θF = θF,0 results in a straightforward manner from the characteristic
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polynomial in Proposition 1 when we replace Rt and
¡ 1
F̄t

¢
by the residuals of time series regression of

Rt and
¡ 1
F̄t,1

¢
on F̄t,2 + θF,0, with F̄t = (F̄

0
t,1

... F̄ 0t,2)0, F̄t,1 : kν × 1, F̄t,2 : kθ × 1.

Theorem 9. Under H ∗0 : θF = θF,0, when Assumption 1 holds and ν̃F (θF,0) is the maximum likelihood
estimator of νF , the large sample distribution(s) of

1. FM-LM( (ν̃F (θF,0)0
... θ0F,0)0) and GLS-LM( (ν̃F (θF,0)0

... θ0F,0)0) are bounded from above by χ2(kθ)
distributions.

2. FAR( (ν̃F (θF,0)0
... θ0F,0)0) is bounded from above by a χ2(n− kν − 1) distribution.

3. JFM( (ν̃F (θF,0)0
... θ0F,0)0) and JGLS( (ν̃F (θF,0)0

... θ0F,0)0) are bounded from above by χ2(n− k − 1)
distributions which are independent from the large sample distributions of FM-LM( (ν̃F (θF,0)0

...

θ0F,0)0) and GLS-LM( (ν̃F (θF,0)0
... θ0F,0)0).

4. CLR( (ν̃F (θF,0)0
... θ0F,0)0) given r( (ν̃F (θF,0)0

... θ0F,0)0) is bounded from above by

1
2

∙
ϕkθ + ϕn−k−1 − r((ν̃F (θF,0)0

... θ0F,0)0)+r
(ϕkθ + ϕn−k−1 + r((ν̃F (θF,0)0

... θ0F,0)0))2 − 4r((ν̃F (θF,0)0
... θ0F,0)0)ϕn−k−1

#
,

where ϕkθ and ϕn−k−1 are independent χ2(kθ) and χ2(n−k−1) distributed random variables and
r( (ν̃F (θF,0)0

... θ0F,0)0) is the smallest eigenvalue of Q̂((ν̃F (θF,0)0
... θ0F,0)

1
2
0

FF B̃
0Σ̃−1B̃Q̂((ν̃F (θF,0)0

... θ0F,0)
1
2
FF

and B̃, Σ̃ are computed using (ν̃F (θF,0)0
... θ0F,0)0.

for all possible values of Bθ.

Proof. see Kleibergen (2006).

Theorem 9 shows that the statistics that we constructed previously can be used to conduct tests
on some of the risk premia and become conservative when we do so. This results holds for all possible
values of the β’s.

6 Confidence sets of the risk premia from Jagannathan and Wang
(1996)

When we specify a range of values of λF,0, or θF,0, we can use the previously discussed statistics to
constructs confidence sets for the risk premia. The (1− α)× 100% asymptotic confidence set contains
all values of λF,0, or θF,0, for which the value of the statistic that is used to test H0 : λF = λF,0, or
H∗0 : θF = θF,0, is below its (1− α)× 100% asymptotic critical value.

We construct the asymptotic confidence sets for the risk premia for the asset returns from Jagan-
nathan and Wang (1996). Jagannathan and Wang (1996) use the factor model,

Rt = ιnλ1 + size× λs + β(F̄t + λF ) + εt, t = 1, . . . , T, (36)
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FM FM-JW GLS MLE
λvw −0.25

(0.25)
−0.40
(0.46)

−0.17
(0.17)

−0.36
(0.30)

λprem 0.18
(0.066)

0.20
(0.073)

0.11
(0.044)

0.47
(0.10)

λlabor 0.09
(0.047)

0.10
(0.053)

0.097
(0.033)

0.41
(0.079)

Table 1: Risk premia estimates for the Jagannathan-Wang (1996) data (Standard errors between brack-
ets).

to describe the return on hundred size and β sorted portfolios that are collected into the vector of asset
returns Rt, so n = 100, for three hundred and thirty monthly observations, so T = 330. The n × 1
vector size reflects the relative size (market capitalization) of the different portfolios and is constant
over time. The k × 1 vector of (demeaned) factors F̄t contains three different factors (so k = 3): the
return on a value weighted portfolio, the yield premium between low and high grade corporate bonds
and the growth of per capita labor income. Since our interest is on the risk premia λF , we remove λ1
and λs from the factor model (36) in an analogous manner as by taking the returns in deviation from
the n-th asset return as we used previously to remove λ1.8 The removal of the size factor implies that
the value of n in the degrees of freedom parameters of the (bounding) limiting distributions in Theorem
9 reduces to n− 1 (and n− 1 therefore to n− 2).

Table 1 contains estimates of the risk premium on the value weighted portfolio (λvw), the yield
premium (λprem) and labor income growth (λlabor). The estimators that we use are the FM estimator
(FM), the GLS estimator (GLS), the FM estimator as used by Jagannathan and Wang (FM-JW)9 and
the MLE. The estimates in Table 1 show a size-able dispersion between the risk premia estimates on the
yield premium and labor income growth that result from the FM and GLS procedures compared to the
MLE. This results from the downward bias of the FM and GLS estimators when the number of assets is
large and the β’s are relatively small. The β’s of the yield premium and labor income growth are rather
small while the β’s of the value-weighted return portfolio are sizeable. This explains the similarity of
the risk premia estimates for the value-weighted return portfolio and the differences for the risk premia
on the yield premium and labor income growth.

Table 1 reports the standard errors of the estimates of the risk premia. We use these standard
errors alongside with the statistics discussed previously to construct 95% asymptotic confidence sets
for the different risk premia. Panel 3 contains the p-value plots of the tests on the risk premia using
the different statistics. Figures 3.1 and 3.2 in Panel 3 show the p-value plots of tests of the hypothesis
H0 : λvw = λvw,0, where λvw is the risk premium on the value weighted portfolio, for a range of values
of λvw,0. Figures 3.3 and 3.4 contain the p-value plots of tests of H0 : λprem = λprem,0, where λprem
is the risk premium on the yield premium, for a range of values of λprem,0 and Figures 3.5 and 3.6
contain the p-value plots of tests of H0 : λlabor = λlabor,0, where λlabor is the risk premium on the labor
income growth, for a range of values of λlabor,0. The tests of the hypotheses on the risk premia are all
conducted in the linear factor model (36) and test only one element of the vector of risk premia. The
MLE is used to estimate the other risk premia in case of the GLS-LM, JGLS, FAR and CLR statistics

8The size and constant term ιn are removed from the factor model (36) by projecting Rt and β on a n− 2 dimensional
space that is orthogonal to (ιn : size). Hence, we use Rt = ARt and B = Aβ, with A : (n− 2)× n, A(ιn : size) = 0. We
note that this specification is not unique (but the resulting statistics are) and A equals, for example, (In−1 : −ιn−1) in
the case when size is not present. After this transformation, the moment conditions are identical to (19).

9Jagannathan and Wang (1996) estimate the risk premia using the FM estimator with a β-vector where the β’s of
the different factors result from three separate time-series regressions of the excess returns on a constant term and the
respective factor.
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and the FM estimator is used for the FM-LM statistic. The p-values for these statistics result from
the bounding limiting distributions in Theorem 9 and are thus conservative. The p-values for the CLR

statistic are obtained using its bounding conditional limiting distribution given r( (ν̃F (θF,0)0
... θ0F,0)0)

which is computed for a large range of values of r( (ν̃F (θF,0)0
... θ0F,0)0). All Figures in Panel 3 contain a

dotted line at 95% whose intersection with the p-value plots reveals the 95% confidence set.
Figures 3.1 and 3.2 show the p-values for tests on the risk premium of the value weighted return.

Figure 3.1 (and Figures 3.3 and 3.5) contain the p-value plots that result from the FM-W, GLS-W,
FM-LM, MLE-W and GLS-LM statistics. Most of the p-value plots in Figure 3.1 are rather similar
which results since the β’s of the value weighted return are sizeable. The main difference between the
p-value plots of the FM, GLS, MLE Wald statistics and the GLS-LM statistic is therefore that the
latter leads to a slightly larger 95% confidence set. The p-value plot of the FM-LM statistic is rather
strange and given its inferior behavior in the power study compared to the size-correct GLS-LM and
CLR statistics, we do not discuss this statistic any further. All statistics do not reject the hypothesis
of a zero risk premium at the 95% significance level which is as expected since the risk premium on
portfolio returns, like, for example, the value weighted index, is typically assumed to be equal to zero.

Figure 3.2 (and Figures 3.4, 3.6) only contains p-value plots of statistics that remain size-correct in
case of small and/or many β’s, i.e. the GLS-LM, CLR, JGLS and FAR statistics. The p-value plots of
the JGLS and FAR statistic are all rather low which is due to the large degree of freedom parameter
of their (bounding) χ2 limiting distributions, i.e. 95 and 96. These p-value plots show that the factor
pricing hypothesis is not rejected. The p-value plots of the GLS-LM and CLR statistic are very similar
which results since the conditioning statistic which is used in the CLR statistic is rather large. None of
the statistics rejects the hypothesis that the risk premium on the value-weighted return is zero.

Figures 3.3 and 3.4 show the p-value plots for tests of the risk premium on the yield premium. In line
with the risk premia estimates in Table 1, the p-value plots in Figure 3.3 differ considerably. Because of
the downward bias of the FM and GLS estimators, which results since the β’s on the yield premium are
rather small and probably only non-zero for a fraction of the number of portfolios, the 95% confidence
set for the yield risk premium lies at rather small values that lie just above zero when we use the FM
and GLS estimators. The GLS-LM, MLE-W, CLR and FAR statistics all lead to 95% confidence sets
that are centered around the MLE. All these statistics therefore lead to 95% confidence sets for the yield
premium that contain much larger values of the yield risk premium than the 95% confidence sets that
result from the FM and GLS Wald (t) statistics. The 95% confidence sets that result from the GLS-LM
and CLR statistics in Figure 3.4 are rather similar and are much larger than the 95% confidence set that
results from the MLE-W statistic. The power and size analysis in Panel 2 shows that the GLS-LM and
CLR statistics are much more trustworthy than the MLE-W statistics and also than the FM and GLS
Wald statistics. Hence, the 95% confidence sets that result from the GLS-LM and CLR statistics are
more reliable than those that result from the FM, GLS and MLE Wald statistics. The JGLS statistic
in Figure 3.4 shows that the factors are the only priced elements and factor pricing is thus not rejected.

Figures 3.5 and 3.6 show the p-values for tests of the risk premium on labor income growth. Because
the β’s on labor income growth are rather small and are probably only non-zero for a fraction of the large
number of portfolios, there is again a considerable downward bias in the FM and GLS risk premium
estimators compared to the MLE as shown in Table 1. The p-value plots that result from the FM and
GLS Wald statistics and the GLS-LM and MLE-W statistics therefore differ considerably. The 95%
confidence set that results from the GLS-LM statistic is much larger than the one that results from the
FM Wald statistic and contains much larger values of the risk premium. It is striking to see that the
intersection of both confidence sets is even empty. The p-value plot of the CLR statistic in Figure 3.6
is similar to that of the GLS-LM statistic. The JGLS and FAR statistics in Figure 3.6 show that no
mispricing is occuring and that factor pricing is not rejected.
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Panel 3: One minus p-value plots for λvw, λprem and λlabor.
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Figure 3.1-3.5: One minus p-value plot for FM-W Figure 3.2-3.6: One minus p-value plot for CLR
(solid), GLS-W (dashed), FM-LM (dashed-dotted) (solid), JGLS (solid with plusses), FAR (dashed
MLE-W (points) and GLS-LM (solid with plusses) -dotted) and GLS-LM (dashed) statistics.
statistics.
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Panel 3 shows the importance of using the size-correct statistics that we introduced previously.
Because of the large number of portfolios in the Jagannathan-Wang data, the bias in the FM and GLS
risk premia estimator is considerable when the β’s of the associated factors are small and/or only non-
zero for a fraction of the portfolios. The Wald statistic that is based on the FM risk premia estimator
is therefore size distorted and unreliable. The statistics that we introduced remain size-correct and lead
to inference that is centered around the MLE. These statistics therefore do a better job in reflecting
the risk premium on the factors whose β’s are relatively small and/or only matter for a fraction of the
assets. This is nicely shown for the Jagannathan-Wang data where the confidence sets that result from
the FM Wald statistic show that the risk premia are almost negligible while the confidence sets that
result from the CLR and GLS-LM statistics indicate sizeable and thus important risk premia. This
shows that the usage of these improved inferential procedures can lead to more interesting conclusions.

7 Conclusions

We reveal the inadequacy of standard inferential procedures that are based on the FM and GLS risk
premia estimators when the β’s are small and/or the number of assets is large. We propose a number
of alternative statistics whose large sample distributions remain trustworthy in such cases and lead to
inference that is centered around the maximum likelihood estimator of Gibbons (1982). We provide a
simple manner to compute the maximum likelihood estimator. We apply these statistics to the size and
β sorted portfolio return series from Jagannathan and Wang (1996). The confidence sets that result
from the FM and GLS Wald statistics show that the risk premia on the yield premium and labor income
growth are rather small and perhaps negligible. The confidence sets that result from the new statistics
indicate a more interesting conclusion as they indicate much larger values of the risk premia which thus
show that these risk premia are economically relevant.

In many cases the return vector that is used in the linear factor model consists of the return on
β and size sorted portfolios, see e.g. Fama and French (1992,1993,1996) and Jagannathan and Wang
(1996,1998). This sorting introduces a further element of correlation between the average return vector
that is used to test the risk premia and the estimator of β. We showed that the size distortions of the
FM and GLS Wald/t statistics orginate from this kind of correlation. Our proposed statistics use β
estimators that are uncorrelated with the average return vector that is used to test the risk premia
and are therefore not size distorted in case of small and/or many β’s. When the returns result from
some kind of selection procedure, the β estimators and average returns that are used in the proposed
statistics remain uncorrelated. Hence, these statistics are size correct when the returns result from a
selection procedure.

The linear factor models analysed in this paper assumes a constant covariance matrix of the asset
returns over time. We plan to relax this assumption in future work.
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Appendix

A. Assumption 1. The central limit theorem for the specification of the linear factor model (2)
implied by Assumption 1 reads
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B. Proof of Lemma 1. Assumption 1 states that
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where ψR, ψβ and ψF are independent n× 1, nk× 1 and k× 1 normal distributed random vectors with
mean 0 and covariance matrices, Ω, Q−1FF.1 ⊗Ω and VFF .
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where Ψβ =vecinvk(ψβ) and b =MΨβ
ιn, so, since Ψβ and ψR are independent,µ √
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Since ψR is a normal distributed random vector that is independent of Ψβ, the moments of limiting
distribution of λ̂F are determined by the moments of (Ψ0βMinΨβ)

−1Ψ0βMin . When Ω is an identity
matrix, Ψ0βMinΨβ is a Wishart distributed random matrix with n − 1 degrees of freedom and scale
matrix QFF , see e.g. Muirhead (1982). Hence, (Ψ0βMinΨβ)

−1Ψ0βMin is the square root of the inverse of
the Wishart distributed random matrix. To proof the order of finite moments of this matrix, we use an
alternative definition of a multi-variate t distributed random variable.

A multi-variate t distributed random k × 1 vector x with ν degrees, k × k dimensional scale matrix
Σ−1 and k × 1 scale vector α can be defined by

x = α+W− 1
2 z,

where z ∼ N(0, I) and independent of the k × k Wishart distributed random matrix W with ν + k − 1
degrees of freedom and scale matrix Σ. Since the moments of the multi-variate t exist up to order ν, the
moments of the square root of the inverted-Wishart thus exist up to order ν + k − 1. This definition of
a multi-variate t distributed random matrix results from the definition of a matric-variate t distributed
random matrix, see e.g. Zellner (1971) and Drèze and Richard (1983).

In our case W = Ψ0βMinΨβ which is a k × k Wishart distributed matrix with n − 1 degrees of
freedom. The moments of (Ψ0βMinΨβ)

−1Ψ0βMin exist therefore up to order n− 1− k+1 = n− k which

holds as well for the moments of λ̂F . The difference of the covariance matrix of Ω from the identity
matrix does not change the order of finite moments.
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so λ̂F diverges when T gets large.
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2a. β = 1√
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B, with B a n× k matrix of full rank and E(R̄) = ιnλ1 +
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In this case (B + Ψβ)
0(B + Ψβ) has a non-central Wishart distribution when Ω = In which has no

implications for the order of the finite moments compared to the case when B = 0. Hence, the moments
of λ̂F exist up to order n− k.
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3. β =
¡β1
0

¢
, with β1 : n1 × 1 and E(R̄) = ιnλ1 + BλF . The specification of the FM risk premia

estimator isµ
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We construct the limit of the two different elements of
¡ λ̂1
λ̂F

¢
. We assume that n1 remains fixed and that

the following limits hold when n and T become large:
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The large sample behavior of the second part of the FM estimator reads³ 1√
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where ΨR1 = (In1
... 0)ΨR. The combined behavior for the estimator then results asµ
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of the FM risk premia estimator equals (β01β1 +W )−1W (µF − λF ).
D. Proof of Theorem 2.
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where Ψβ =vecinvk(ψβ) and b =M
Ω−

1
2Ψβ
Ω−

1
2 ιn, so

µ √
T (λ̂1 − λ1)

λ̂F

¶
→
d

Ã
1√
T
1
ab
0

(Ψ0βΩ
− 1
2M

Ω−
1
2 ιn
Ω−

1
2Ψβ)

−1Ψ0βΩ
− 1
2M

Ω−
1
2 ιn

!
Ω−

1
2ψR.

Since ψR is a normal distributed random vector that is independent of Ψβ. The random matrix

(Ψ0βΩ
− 1
2M

Ω−
1
2 ιn
Ω−

1
2Ψβ)

−1Ψ0βΩ
− 1
2M

Ω−
1
2 ιn

is the square root of the inverse of the Wishart distributed

random matrix (Ω−
1
2Ψβ)

0M
Ω−

1
2 ιn
Ω−

1
2Ψβ which has a Wishart distributed matrix with n− 1 degrees of

freedom and scale matrix QFF . Hence, it results from the proof of Theorem 1 that the limiting distri-
bution of λ̂F is a multi-variate t distribution with n− k degrees of freedom, location 0 and scale matrix
Q11.FQ

−1
FF with Q11.F = Q11 −Q1FQ

−1
FFQF1.

1b. When β is equal to zero and E(R̄) = c:µ
λ̂1
λ̂F

¶
=

∙
(ιn

... β̂)0Ω̂−1(ιn
... β̂)

¸−1
(ιn

... β̂)0Ω̂R̄

=
a

∙
(ιn

... 1√
T
Ψβ)

0Ω−1(ιn
... 1√

T
Ψβ)

¸−1
(ιn

... 1√
T
Ψβ)

0Ω−1(ιnλ1 + 1√
T
ψR)

=
a

Ã
a−1 −√Ta−1ι0nΩ−1Ψβ(Ψ

0
βΩ

−1Ψβ)
−1

−√T (Ψ0βΩ−
1
2M

Ω−
1
2 ιn
Ω−

1
2Ψβ)

−1Ψ0βΩ−1ιn
ι0nΩ−1ιn

T (Ψ0βΩ
− 1
2M

Ω−
1
2 ιn
Ω−

1
2Ψβ)

−1

!
Ã

ι0nΩ−1c+ 1√
T
ι0nΩ−1ψR

1√
T
Ψ0βΩ

−1c+ 1
TΨ

0
βΩ

−1ψR)

!

=
a

⎛⎝ a−1ι0nΩ−
1
2M

Ω−
1
2Ψβ
Ω−

1
2 c+ 1√

T
b0Ω−

1
2ψR)

(Ψ0βΩ
− 1
2M

Ω−
1
2 ιn
Ω−

1
2Ψβ)

−1Ψ0βΩ
− 1
2M

Ω−
1
2 ιn
Ω−

1
2 (
√
Tc+ ψR)

⎞⎠
=
a

Ã
a−1b0Ω−

1
2 c√

T (Ψ0βΩ
− 1
2M

Ω−
1
2 ιn
Ω−

1
2Ψβ)

−1Ψ0βΩ
− 1
2M

Ω−
1
2 ιn
Ω−

1
2 c

!
+Ã 1√

T
1
ab
0

(Ψ0βΩ
− 1
2M

Ω−
1
2 ιn
Ω−

1
2Ψβ)

−1Ψ0βΩ
− 1
2M

Ω−
1
2 ιn

!
Ω−

1
2ψR

and Ã √
T (λ̂1 − a−1b0Ω−

1
2 c)

λ̂F −
√
T (Ψ0βΩ

− 1
2M

Ω−
1
2 ιn
Ω−

1
2Ψβ)

−1Ψ0βΩ
− 1
2M

Ω−
1
2 ιn
Ω−

1
2 c

!
→
dÃ

1√
T
1
ab
0

(Ψ0βΩ
− 1
2M

Ω−
1
2 ιn
Ω−

1
2Ψβ)

−1Ψ0βΩ
− 1
2M

Ω−
1
2 ιn
Ω−

1
2

!
ψR

and λ̂F diverges when T gets large.

28



2a. β = 1√
T
B, with B a n× k matrix of full rank and E(R̄) = ιnλ1 +

1√
T
B soµ

λ̂1
λ̂F

¶
=

∙
(ιn

... β̂)0Ω̂−1(ιn
... β̂)

¸−1
(ιn

... β̂)0Ω̂−1R̄

=
a

∙
[ιn
... 1√

T
(B +Ψβ)]

0Ω−1[ιn
... 1√

T
(B +Ψβ)]

¸−1
(ιn

... 1√
T
(B +Ψβ))

0Ω−1(ιnλ1 + 1√
T
(BλF + ψR))

=
a

Ã
a−1

−√T ((B +Ψβ)
0Ω−

1
2M

Ω−
1
2 ιn
Ω−

1
2 (B +Ψβ))

−1 (B+Ψβ)
0Ω−1ιn

ι0nΩ−1ιn
−√Ta−1ι0nΩ−1(B +Ψβ)((B +Ψβ)

0Ω−1(B +Ψβ))
−1

T ((B +Ψβ)
0Ω−

1
2M

Ω−
1
2 ιn
Ω−

1
2 (B +Ψβ))

−1

!
Ã

ι0nΩ−1ιnλ1 + 1√
T
ι0nΩ−1(BλF + ψR)

1√
T
(B +Ψβ)

0Ω−1ιnλ1 + 1
T (B +Ψβ)

0Ω−1(BλF + ψR))

!

=
a

Ã
a−1(aλ1 + 1√

T
a−1b0Ω−

1
2 (BλF + ψR))

((B +Ψβ)
0Ω−

1
2M

Ω−
1
2 ιn
Ω−

1
2 (B +Ψβ))

−1(B +Ψβ)
0Ω−

1
2M

Ω−
1
2 ιn
Ω−

1
2 (BλF + ψR))

!

=
a

µ
λ1
0

¶
+

Ã
1√
T
1
ab
0

((B +Ψβ)
0Ω−

1
2M

Ω−
1
2 ιn
Ω−

1
2 (B +Ψβ))

−1(B +Ψβ)
0Ω−

1
2M

Ω−
1
2 ιn

!
Ω−

1
2 (BλF + ψR).

Hence, µ √
T (λ̂1 − λ1)

λ̂F − λF

¶
→
dÃ 1√

T
1
ab
0

((B +Ψβ)
0Ω−

1
2M

Ω−
1
2 ιn
Ω−

1
2 (B +Ψβ))

−1(B +Ψβ)
0Ω−

1
2Mιn

!
Ω−

1
2 (ψR −ΨβλF ).

In this case (B + Ψβ)
0(B + Ψβ) has a non-central Wishart distribution regardless of the value of Ω.

Hence, the moments of λ̂F exist up to order n− k.
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E. Proof of Lemma 2. Assumption 1 states that
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where ψR, ψB and ψF are independent (n− 1)× 1, (n− 1)k × 1 and k × 1 normal distributed random
vectors with mean zero and covariance matrices, (1− λ0F,0Q(λF )FFλF,0)⊗ Σ, Q(λF )FF ⊗ Σ and VFF .

F. The derivative of the FAR statistic with respect to λF,0. To obtain the derivative of
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G. The specification of FAR(λF,0) and CLR(λF,0). After concentrating with respect to B = (c
...

B), the log-likelihood of the unrestricted model
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where we used that
PT

t=1 F̄t = 0. Since the log-likelihood of the restricted model reads
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PT
t=1Rt(F̄t+λF )

0
1
T

PT
t=1 (F̄t+λF )(F̄t+λF )

0

¶
µ

In

−[ 1T
PT

t=1 (F̄t+λF )(F̄t+λF )
0]
−1 1

T

PT
t=1(F̄t+λF )R0

t

0

[ 1T
PT

t=1 (F̄t+λF )(F̄t+λF )
0]
−1

¶¯̄̄̄
=

¯̄̄̄µ
In

− 1
T

PT
t=1 (F̄t+λF )R0

t[
1
T

PT
t=1RtR0

t]
−1 0

Ikf

¶µ
1
T

PT
t=1RtR0

t
1
T

PT
t=1Rt(F̄t+λF )0

1
T

PT
t=1Rt(F̄t+λF )

0
1
T

PT
t=1 (F̄t+λF )(F̄t+λF )

0

¶
µ

In

−[ 1T
PT

t=1 (F̄t+λF )(F̄t+λF )
0]
−1 1

T

PT
t=1(F̄t+λF )R0

t

0

[ 1T
PT

t=1 (F̄t+λF )(F̄t+λF )
0]
−1

¶¯̄̄̄
=

¯̄̄
1
T

PT
t=1RtR0t

¯̄̄ ¯̄̄̄
1
T

PT
t=1 (F̄t + λF )(F̄t + λF )

0 −PT
t=1

1
T (F̄t + λF )R0t

h
1
T

PT
t=1RtR0t

i−1
1
T

PT
t=1Rt(F̄t + λF )

0
¯̄̄ ¯̄̄
1
T

PT
t=1 (F̄t + λF )(F̄t + λF )

0
¯̄̄−1

,
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where we used that the multiplications by the triangular matrices do not alter the overall value of the
determinants. We can now use the (k + 1)× 1 vectors qi : i = 1, . . . , k + 1 which are such that

1. q0i
³
1
T

PT
t=1

¡ 1
F̄t

¢¡ 1
F̄t

¢0´
qj = 0 i 6= j

2. = 1 i = j

3. q0i
³h

1
T

PT
t=1

¡ 1
F̄t

¢R0tiΣ−1 h 1T PT
t=1Rt

¡ 1
F̄t

¢0i´
qj = 0 i 6= j

4. = µi i = j.

The total number of restrictions10 is 12k(k + 1) + k + 1 + 1
2k(k + 1) = (k + 1)

2 which equals the total
number of elements of the qi vectors. We order the vectors qi in a descending order according to the
value of µi : (1 >) µ1 ≥ µ2 ≥ . . . ≥ µk+1 (> 0) and specify w1 : 1× k, W2 : k × k as

¡
w1
W2

¢
= (q1 . . . qk).

The MLE of λF then reads: λ̃
0
F = w1W

−1
2 .

With this value of the MLE: (F̄t + λ̃F ) =
¡λ̃0F
Ik

¢0¡ 1
F̄t

¢
=
¡w1W−1

2
Ik

¢0¡ 1
F̄t

¢
=W−10

2

¡w1
W2

¢0¡ 1
F̄t

¢
such that¯̄̄̄

1
T

PT
t=1 (F̄t + λ̃F )(F̄t + λ̃F )

0 −PT
t=1

1
T (F̄t + λ̃F )R0t

h
1
T

PT
t=1RtR0t

i−1
1
T

PT
t=1Rt(F̄t + λ̃F )

0
¯̄̄ ¯̄̄
1
T

PT
t=1 (F̄t + λ̃F )(F̄t + λ̃F )

0
¯̄̄−1

=¯̄̄
W−10
2

¡w1
W2

¢0 nh 1
T

PT
t=1

¡ 1
F̄t

¢¡ 1
F̄t

¢0i− h 1T PT
t=1

¡ 1
F̄t

¢R0tiΣ−1 h 1T PT
t=1Rt

¡ 1
F̄t

¢0io ¡w1
W2

¢
W−1
2

¯̄̄
¯̄̄
W−10
2

¡w1
W2

¢0 h 1
T

PT
t=1

¡ 1
F̄t

¢¡ 1
F̄t

¢0i ¡w1
W2

¢
W−1
2

¯̄̄−1
=¯̄̄

(q1 . . . qk)
0
nh

1
T

PT
t=1

¡ 1
F̄t

¢¡ 1
F̄t

¢0i− h 1T PT
t=1

¡ 1
F̄t

¢R0tiΣ−1 h 1T PT
t=1Rt

¡ 1
F̄t

¢0io
(q1 . . . qk)

¯̄̄¯̄̄
(q1 . . . qk)

0
h
1
T

PT
t=1

¡ 1
F̄t

¢¡ 1
F̄t

¢0i
(q1 . . . qk)

¯̄̄
=¯̄̄̄

¯̄̄
⎛⎜⎝ 1− µ1 0 0

0
. . . 0

0 0 1− µK

⎞⎟⎠
¯̄̄̄
¯̄̄ =

Qk
i=1(1− µi),

so the logarithm of the determinant of |Σ̃| when we use the MLE λ̃F equals

log |Σ̃| = log
¯̄̄
1
T

PT
t=1RtR0t

¯̄̄
+
Pk

i=1 ln(1− µi) ≈ log
¯̄̄
1
T

PT
t=1RtR0t

¯̄̄
+ T

2

Pk
i=1 µi,

since µi lies between zero and one, and the logarithm of the likelihood becomes

lnLres(λ̃F ) ≈ cT − T
2 log

¯̄̄
1
T

PT
t=1RtR0t

¯̄̄
+ T

2

Pk
i=1 µi.

This expression shows that the largest k values of µi, µ1, . . . , µk, maximize the likelihood so λ̃F is indeed
the MLE. Thus the MLE results from the characteristic polynomial¯̄̄

θ
h
1
T

PT
t=1

¡ 1
F̄t

¢¡ 1
F̄t

¢0i− h 1T PT
t=1

¡ 1
F̄t

¢R0tiΣ−1 h 1T PT
t=1Rt

¡ 1
F̄t

¢0i¯̄̄
= 0,

where Σ = 1
T

PT
t=1RtR0t, and λF results from the k eigenvectors (q1 . . . qk) : (k+1)×k of the polynomial

that are associated with the k largest eigenvalues. When we express these as (q1 . . . qk) =
¡
w1
W2

¢
, w1 : 1×k,

W2 : k × k, the maximum likelihood estimator of λF equals: λ̃F = w1W
−1
2 .

10The number of restrictions in 1 and 3 are equal to 1
2
k(k + 1) while the number of restrictions from 2 equals k + 1.
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To obtain the likelihood ratio statistic, we express the characteristic polynomial as a function of
R̄− B̃λF,0 and B̃ which does not affect the roots θi, i = 1, . . . , k.¯̄̄

θ
h
1
T

PT
t=1

¡
1
F̄t

¢¡
1
F̄t

¢0i− h 1T PT
t=1

¡
1
F̄t

¢R0tiΣ−1 h 1T PT
t=1Rt

¡
1
F̄t

¢0i¯̄̄
= 0⇔¯̄̄̄³

1
λF

0
Ik

´ ∙
θ 1T
PT

t=1

¡ 1
F̄t

¢¡ 1
F̄t

¢0 − 1
T

PT
t=1

¡ 1
F̄t

¢R0tΣ−1 1
T

PT
t=1Rt

¡ 1
F̄t

¢0i ³ 1
λF

0
Ik

´0¸¯̄̄̄
= 0⇔¯̄̄

θ
³
1
λF

λ0F
Q̂FF (λF )

´
− ¡ R̄0

1
T

PT
t=1(F̄t+λF )R0

t

¢
Σ−1

¡ R̄0
1
T

PT
t=1(F̄t+λF )R0

t

¢0 ¯̄̄
= 0⇔¯̄̄³

1
0
−λ0F Q̂FF (λF )

−1
Ik

´ h
θ
³
1
λF

λ0F
Q̂FF (λF )

´
− ¡ R̄

1
T

PT
t=1(F̄t+λF )R0

t

¢
Σ−1¡ R̄

1
T

PT
t=1(F̄t+λF )R0

t

¢0i ³1
0
−λ0F Q̂FF (λF )

−1
Ik

´0 ¯̄̄̄
= 0⇔¯̄̄̄

θ
³
(1−λ0F Q̂FF (λF )

−1λF )
0

0
Q̂FF (λF )

´
−
³

(R̄−B̃λF )0
1
T

PT
t=1(F̄t+λF )R0

t

´
Σ−1

³
(R̄−B̃λF )0

1
T

PT
t=1(F̄t+λF )R0

t

´0 ¯̄̄̄
= 0⇔¯̄̄̄

θIk+1 −
³
Σ−

1
2 (R̄− B̃λF ) 1√

1−λ0F Q̂FF (λF )λF
Σ−

1
2 B̃Q̂FF (λF )

1
2

´0
³
Σ−

1
2 (R̄− B̃λF ) 1√

1−λ0F Q̂FF (λF )λF
Σ−

1
2 B̃Q̂FF (λF )

1
2

´¯̄̄
= 0⇔¯̄̄

θIk+1 − 1
T

³
FAR(λF )
s(λF )

s(λF )0
r(λF )

´¯̄̄
= 0,

with
r(λF ) = TQ̂FF (λF )

1
2 B̃0

h
1
T

PT
t=1RtR0t

i−1 B̃Q̂FF (λF )
1
2 ,

s(λF ) = TQ̂FF (λF )
1
2 B̃0

h
1
T

PT
t=1RtR0t

i−1
(R̄− B̃λF ) 1√

1−λ0F Q̂FF (λF )λF
.

When k = 1, the characteristic polynomial reads¯̄̄
θIk+1 − 1

T

³
FAR(λF )
s(λF )

s(λF )0
r(λF )

´¯̄̄
= 0⇔

(θ − 1
T FAR(λF ))(θ − 1

T r(λF ))− s(λF )s(λF )0 = 0⇔
θ2 − θ 1T (FAR(λF ) + r(λF )) +

1
T 2
[FAR(λF )r(λF )− s(λF )s(λF )0] = 0,

and the roots of the polynomial are characterized by

θ = 1
2T [FAR(λF ) + r(λF )±q
(FAR(λF ) + r(λF ))

2 − 4r(λF ) (FAR(λF )−GLS-LM(λF ))
¸
.

The largest root, which leads to the minimal value of |Σ̃|, is therefore equal to

θmax =
1
2T [FAR(λF ) + r(λF )+q
(FAR(λF ) + r(λF ))

2 − 4r(λF ) (FAR(λF )−GLS-LM(λF ))
¸
.

and the maximal value of the likelihood of the restricted model is

maxλF lnLres(Σ, λF ) = cT − T
2 ln [minλF |Σ|]

= cT − T
2 ln

¯̄̄
1
T

PT
t=1RtR0t

¯̄̄
− T

2 ln(1− θmax)

≈ cT − T
2 ln

¯̄̄
1
T

PT
t=1RtR0t

¯̄̄
+ T

2 θmax.
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To simplify the value of the likelihood under H0 : λF = λF,0, we decompose the determinant of the
estimator of Σ under H0 :¯̄̄̄

1
T

PT
t=1

³
Rt − B̃(F̄t + λF,0)

´³
Rt − B̃(F̄t + λF,0)

´0 ¯̄̄̄
=

¯̄̄̄
1
T

PT
t=1RtR0t −

h
1
T

PT
t=1Rt(F̄t + λF,0)

i h
1
T

PT
t=1 (F̄t + λF,0)(F̄t + λF,0)

0
i−1

h
1
T

PT
t=1Rt(F̄t + λF,0)

i0 ¯̄̄̄
=
¯̄̄
1
T

PT
t=1RtR0t

¯̄̄ ¯̄̄
Q̂FF (λF,0)

¯̄̄−1¯̄̄̄
Q̂FF (λF,0)−

h
1
T

PT
t=1Rt(F̄t + λF,0)

0
i0 h

1
T

PT
t=1RtR0t

i−1 h
1
T

PT
t=1Rt(F̄t + λF,0)

0
i¯̄̄̄

=
¯̄̄
1
T

PT
t=1RtR0t

¯̄̄ ¯̄̄̄
Ikf − Q̂FF (λF )

1
2 B̃0

h
1
T

PT
t=1RtR0t

i−1 B̃Q̂FF (λF )
1
2

¯̄̄̄
=
¯̄̄
1
T

PT
t=1RtR0t

¯̄̄ ¯̄
Ikf − 1

T r(λF )
¯̄
.

When k = 1, we can therefore characterize the likelihood ratio statistic for testing H0 : λF = λF,0
against H1 : λF 6= λF,0 by

LR(λF,0)
= 2 [maxλF lnLres(λF )− lnLres(λF,0)]
≈ 2

h
cT − T

2 ln
¯̄̄
1
T

PT
t=1RtR0t

¯̄̄
+ T

2 θmax − cT +
T
2 ln

³¯̄̄
1
T

PT
t=1RtR0t

¯̄̄ ¯̄
Ikf − 1

T r(λF )
¯̄´i

≈ 2
h
cT − T

2 ln
¯̄̄
1
T

PT
t=1RtR0t

¯̄̄
+ T

2 θmax − cT +
T
2 ln

¯̄̄
1
T

PT
t=1RtR0t

¯̄̄
+ T

2 ln
¯̄
Ikf − 1

T r(λF )
¯̄i

≈ 2 £T2 θmax − 1
2r(λF )

¤
≈
∙
FAR(λF,0)− r(λF,0) +

q
(FAR(λF,0) + r(λF,0))

2 − 4r(λF,0) (FAR(λF,0)−GLS-LM(λF,0))
¸
.

H. Size distortions of statistics that result from the inversion of a large dimensional co-
variance matrix. The expression of the GLS Wald statistic is

GLS-W(λF,0) = (R̄− ιnλ̂1 − β̂λF,0)
0Ω̂−1β̂Θ̂−1β̂

0
Ω̂−1(R̄− ιnλ̂1 − β̂λF,0),

with Θ̂ = β̂
0
Ω̂−1β̂ − β̂Ω̂−1ιn(ι0nΩ̂−1ιn)−1ι0nΩ̂−1β̂. The expression for Ω̂ is:

Ω̂ = 1
T−k−1

PT
t=1(R̄t − β̂F̄t)(R̄t − β̂F̄t)

0.

To understand the size distortion of GLS-W, we specify it using matrix notation:

GLS-W(λF,0) =
h
1
T ι
0
T (R− ιT (λ̂1ι

0
n + λ0F,0β̂

0
)− F̂ β̂

0
)
i
Ω̂−1β̂Θ̂−1β̂

0
Ω̂−1

h
1
T (R− ιT (λ̂1ι

0
n + λ0F,0β̂

0
)− F̂ β̂

0
)0ιT

i
,

with R = (R01 . . . R0T )
0, F̂ = (F̄ 01 . . . F̄ 0T )

0, so ι0T F̂ = 0, and Ω̂ = 1
T−k−1R

0M(ιT F̂ )R. When T equals n,

Ω̂ is a T × T matrix of rank T − 2 since M(ιT F̂ ) is a T × T matrix of rank T − 2. The eigenvectors
associated with the zero eigenvalues of M(ιT F̂ ) are spanned by ιT and F̂ . The eigenvectors associated

with the zero eigenvalues of Ω̂ are obtained by specifying R as

R = P(ιT F̂ )R+M(ιT F̂ )R.

The first part of this specification of R, P(ιT F̂ )R, is mapped onto zero when R is multiplied by M(ιT F̂ ).

When T = n, the eigenvectors that are associated with a zero value of Ω̂ are therefore spanned by
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R0(ιT F̂ ) and the eigenvectors that belong to the non-zero eigenvalues are spanned by the orthogonal
complement of R0(ιT F̂ ). For large values of n smaller than T, Ω̂ is non-singular but will have two
relatively small eigenvalues whose eigenvectors are spanned by R0(ιT F̂ ). In the GLS-Wald statistic,
Ω̂−1 is post-multiplied by (R− ιT (λ̂1+ β̂

0
λF,0)− F̂ β̂

0
)0ιT . This vector lies in the span of R0(ιT F̂ ) which

is the eigenvector associated with the smallest eigenvalues of Ω̂ or put differently the largest eigenvalues
of Ω̂−1. This shows that the large size distortion of the GLS-Wald statistics results from the association
between (R − ιT (λ̂1 + β̂

0
λF,0) − F̂ β̂

0
)0ιT and the eigenvectors that belong to the largest eigenvalues of

Ω̂−1.
When we use the covariance matrix estimator,

Σ̃ = 1
T−k−1

PT
t=1(Rt − B̃(F̄t + λF,0))(Rt − B̃(F̄t + λF,0))

0,

the matrix expression of this covariance matrix estimator reads

Ω̃ = 1
T−k−1R0MF̂+ιTλ

0
F,0
R.

with R = (R01 . . .R0T )0. Since ι0T (R − (F̂ + ιTλF,0)B̃0) is not spanned by R0(F̂ + ιTλ
0
F,0), ι

0
T (R − (F̂ +

ιTλF,0)B̃0) is not associated with the eigenvector of the largest eigenvalue of Σ̃−1 and therefore all
statistics that use Σ̃−1 perform appropriately despite the inversion of a large dimensional matrix.

I. Covariance matrix maximum likelihood estimator. The asymptotic covariance matrix of
(vec(B̃), λ̃F ), where B̃ results from (20) using λF,0 equal to λ̃F , reads

cov((vec(B̃), λ̃F )) =
Ã
Σ−1 ⊗PT

t=1(F̄t + λ̃F )(F̄t + λ̃F )
0 Σ−1B̃ ⊗PT

t=1(F̄t + λ̃F )

B̃0Σ−1 ⊗PT
t=1(F̄t + λ̃F )

0 B̃0Σ−1B̃ ⊗ T

!−1
,

where we used that the covariance matrix equals the inverse of the information matrix. The covariance
matrix of λ̃F then equals (using properties of the partitioned inverse):

cov(λ̃F ) =
³
B̃0Σ−1B̃

´−1 ⊗ ∙T −PT
t=1(F̄t + λ̃F )

0
³PT

t=1(F̄t + λ̃F )(F̄t + λ̃F )
0
´−1PT

t=1(F̄t + λ̃F )

¸−1
=

³
B̃0Σ−1B̃

´−1 ⊗µT ∙1− λ̃
0
F

³
1
T
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t=1 F̄tF̄

0
t + λ̃F λ̃

0
F

´−1
λ̃F

¸¶−1
=

³
B̃0Σ−1B̃

´−1 ⊗µT ∙1− λ̃
0
F

³
1
T

PT
t=1 F̄tF̄

0
t

´−1
λ̃F + λ̃

0
F

³
1
T

PT
t=1 F̄tF̄

0
t

´−1
λ̃F∙

1 + λ̃
0
F

³
1
T

PT
t=1 F̄tF̄

0
t

´−1
λ̃F

¸−1
λ̃
0
F

³
1
T

PT
t=1 F̄tF̄

0
t

´−1
λ̃F

#!−1
=

³
B̃0Σ−1B̃

´−1 ⊗µ T

1+λ̃
0
F ( 1T

PT
t=1 F̄tF̄

0
t)
−1

λ̃F

¶−1
= 1

T

µ
1 + λ̃

0
F

³
1
T
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t=1 F̄tF̄

0
t

´−1
λ̃F

¶³
B̃0Σ−1B̃

´−1
,

where we used that
PT

t=1 F̄t = 0 so
PT

t=1 F̄t + λ̃F = T λ̃F and that³
λ̃F λ̃

0
F +

1
T

PT
t=1 F̄tF̄

0
t

´−1
=

³
1
T

PT
t=1 F̄tF̄

0
t

´−1 − ³ 1T PT
t=1 F̄tF̄

0
t
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0
F
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1
T
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0
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λ̃F

¸−1
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0
F

³
1
T
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0
t

´−1
.
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