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Abstract

Recent research has emphasized that permanent changes in the innovation variance (caused by

structural shifts or an integrated volatility process) lead to size distortions in conventional unit root

tests. Cavaliere and Taylor (2004) and Beare (2004) propose nonparametrically corrected versions

of unit root tests that have the same asymptotic null distribution as the uncorrected versions in case

of homoskedasticity. In this paper, we first derive the asymptotic power envelope for the unit root

testing problem when the nonstationary volatility process is known. Next, we show that under

suitable conditions, adaptation with respect to the volatility process is possible, in the sense that

nonparametric estimation of the volatility process leads to the same asymptotic power envelope. A

Monte Carlo experiment shows that these asymptotic results are reflected in finite sample properties,

although fairly large sample sizes are needed to fully obtain the asymptotic local power gains.

1 Introduction

Over the past decade, a large amount of research has been devoted to the effect of heteroskedasticity

on unit root tests. When the heteroskedasticity follows a stationary GARCH-type specification, such

that the unconditional variance is well-defined and constant, then the invariance principle guarantees

that the usual Dickey-Fuller tests remain valid asymptotically. This was illustrated using Monte Carlo

simulations by Kim and Schmidt (1993). Subsequent research has indicated, however, that in such cases

more powerful tests for a unit root may be obtained from a likelihood analysis of a model with GARCH

innovations; see Seo (1999) and Ling et al. (2003) (based on Ling and Li (1998)), inter alia.
∗Helpful comments from Rob Taylor, Oliver Linton, Peter Phillips, Anders Rahbek and Ulrich Müller are gratefully ac-

knowledged.
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In empirical applications, the assumption that the variation in volatility effectively averages out over

the relevant sample is often questionable. In applications involving daily financial prices (interest rates,

exchange rates), the degree of mean reversion in the volatility is usually so weak that the volatility

process shows persistent deviations from its mean over the relevant time span (often ten years or less).

On the other hand, in applications involving macro-economic time series observed at a lower frequency

but over a longer time span, one often finds level shifts in the volatility, instead of volatility clustering.

Intermediate cases (slowly mean-reverting volatility with changing means) may also occur.

In the presence of such persistent variation in volatility, the invariance principle cannot be expected

to apply, such that the null distribution of unit root tests will be affected. The resulting size distortions

have been investigated by Boswijk (2001) for the case of a near-integrated GARCH process, and by

Kim et al. (2002) and Cavaliere (2004) for the case of a deterministic volatility function.1 Cavaliere

and Taylor (2004) and Beare (2004) provide two alternative solutions to these size distortions, in the

form of nonparametric corrections that lead to statistics with the usual asymptotic null distributions.

The approach of Cavaliere and Taylor (2004) is based on time-deformation arguments, whereas Beare

(2004) proposes to apply a unit root test to a reweighted cumulative sum of increments of the process.

Although these corrected tests have the same null distribution as the Dickey-Fuller tests under ho-

moskedasticity, they will have a different power function. Furthermore, there is no guarantee that the

same correction that delivers the right null distribution will also yield the highest possible power. In

particular, one may expect high power from a method that gives the highest weight to observations with

the lowest volatility, and this is not the case for the tests discussed above.2

The present paper addresses this issue by deriving the asymptotic power envelope, i.e., the maximum

possible power against a sequence of local alternatives to the unit root, for a given and known realization

of the volatility process. This allows us to evaluate the power loss of various tests, and to construct a

class of admissible tests, that have a point of tangency with the envelope. For the empirically more

relevant case where the volatility function is not observed, we show that under suitable conditions,

adaptation with respect to the volatility process is possible, in the sense that non-parametric estimation

of the volatility process leads to the same asymptotic power envelope. The test statistics that come

out of this analysis have an asymptotic null distribution that depends on the realization of the volatility

process. Therefore, we cannot construct tables with critical values, but the null distribution and hence

p-value may be obtained by simulation, conditional on the volatility process.

The plan of the paper is as follows. In Section 2, we present the model, and obtain some preliminary
1A related analysis of non-stationary volatility in (auto-) regressions with stationary regressors is provided by Hansen

(1995) for near-integrated volatility, and by Phillips and Xu (2005) for deterministic volatility.
2An exception is Kim et al. (2002), who consider GLS-based testing for a unit root in case of a single break in the volatility.
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asymptotic results. Section 3 establishes that the model with known volatility has locally asymptoti-

cally quadratic (LAQ) likelihood ratios, which enables the power envelope (conditional on the volatility

process) to be characterized and simulated. Section 4 discusses nonparametric estimation of the volatil-

ity process, and its use in the construction of a class of adaptive tests. The finite-sample behaviour

of these tests is investigated in a Monte Carlo experiment in Section 5, and Section 6 contains some

concluding remarks. Proofs are given in an appendix.

Throughout the paper, we use the notation Xn
L−→ X to denote convergence in distribution for

sequences of random variables or vectors, and Xn(s) L−→ X(s), s ∈ [0, 1] to denote weak convergence

in D[0, 1]k, the product space of right-continuous functions with finite left limits, under the uniform

metric. The notation bxc is used for the largest integer ≤ x, and “⊥⊥” denotes stochastic independence.

2 The model and preliminary results

Consider the first-order heteroskedastic autoregression

∆Xt = θXt−1 + εt, t = 1, . . . , n, (1)

εt = σtηt, (2)

ηt ∼ i.i.d. (0, 1), (3)

ηt ⊥⊥ Ft−1 = σ(ηt−j , σt+1−j , j ≥ 1), (4)

where the starting value X0 is considered fixed. The hypothesis of interest is the unit root hypothesis

H0 : θ = 0. The analysis to follow can be extended to higher-order autoregressions and the inclusion of

deterministic components (intercept and linear trend), but we focus on (1) for clarity.

The assumption (4) that ηt is independent of Ft−1 and hence σt implies that εt is a martingale

difference sequence relative to Ft, with conditional variance E(ε2t |Ft−1) = σ2
t , such that σt is the

volatility (conditional standard deviation) of εt. This allows for a deterministic volatility process or a

GARCH-type specification, in which case Ft−1 reduces to the σ(ηt−j , j ≥ 1). However, we also allow

for stochastic volatility specifications, where the volatility is driven by its own shocks, provided that σt

is stochastically independent of the contemporaneous ηt (it may depend on lags of ηt).

If the volatility process satisfies some suitable stationarity condition, then the variation in σ2
t will

average out (i.e., plimn→∞ n−1
∑n

t=1 σ
2
t = σ̄2, with σ̄2 nonstochastic), and εt will satisfy an invariance

principle (under appropriate technical conditions). This implies that conventional Dickey-Fuller tests for

a unit root will be asymptotically valid, even though more powerful tests may be obtained by explicitly

modelling the volatility process, see, e.g., Seo (1999) and Ling et al. (2003).
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In this paper, we are concerned with cases where the volatility variation does not average out, ei-

ther because of (deterministic) permanent shifts in the level of the volatility, or because the volatility

dynamics is (near-) integrated, or a combination of both. We do not assume a particular parametric

specification, but instead require the following:

Assumption 1 The process {(ηt, σt)}n
t=1 satisfies, as n→∞, Wn(s)

σn(s)

 :=

 n−1/2
∑bsnc

t=1 ηt

σbsnc+1

 L−→

 W (s)

σ(s)

 , s ∈ [0, 1], (5)

where W (·) is a standard Brownian motion, and σ(·) is a strictly positive process with continuous

sample paths and E
[∫ 1

0 σ(s)2ds
]
<∞. Furthermore, X0 = OP (1).

Remark 1

(a) The invariance principle for ηt follows from the i.i.d. (0, 1) assumption, but is included in

Assumption 1 because joint convergence to (W (·), σ(·)) will be needed.

(b) The assumption that σn(s) converges to σ(s) requires that σt, and hence εt and Xt, are in fact

triangular arrays {(Xnt, εnt, σnt), t = 1, . . . , n;n = 1, 2, . . .}. However, we suppress the double index

notation for simplicity.

(c) One instance where the assumption arises naturally is in the context of continuous-record as-

ymptotics, where {Xt}n
t=1 is a (rescaled) discrete-time sample from the continuous-time Itô process

X(s) =
∫ s
0 σ(u)dW (u), observed at times st = t/n. Letting Xt = n1/2X(st), an Euler approximation

leads to Xt = Xt−1 + σtηt, with σt = σ(st−1) and ηt = n1/2 [W (st)−W (st−1)] ∼ i.i.d. N(0, 1).

However, we do not confine ourselves to this case; the main motivation for Assumption 1 is to preserve

persistent changes in the volatility as n→∞.

(d) Cavaliere (2004), Cavaliere and Taylor (2004) and Beare (2004) consider a similar assumption,

but with σt a deterministic function of t. The former two authors do not require σ(·) to be continuous,

but allow for finitely many discontinuities. In contrast, Beare (2004) requires σ(·) to be continuous and

twice continuously differentiable, as a necessary assumption for uniform consistency of a kernel esti-

mator of σ(·). Assumption 1 represents an intermediate case as far as smoothness of σ(·) is concerned,

allowing for stochastic volatility specifications with non-differentiable sample paths, but excluding dis-

continuities to avoid problems with volatility estimation. Note that in practice, volatility shifts in discrete

time may be approximated arbitrarily well by an underlying smooth transition function.

(e) Assumption 1 is similar in spirit to Hansen (1995)’s analysis, who assumes that σ2
t is a smooth

positive transformation of a near-integrated autoregression, converging to an Ornstein-Uhlenbeck pro-

cess. Hansen considers the effect of such volatility specifications on ordinary least-squares, generalized
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least-squares and adaptive estimation, when the regressor is a linear process with nonstationary volatil-

ity. The analysis in this paper may be interpreted as a generalization of these results to the case of a

(near-) integrated regressor.

(f) Another instance where Assumption 1 applies is when σ2
t follows a GARCH(1,1) specification

σ2
t = ω + αε2t−1 + βσ2

t−1, where the true parameter values are sequences satisfying ωn = O(n−1),

αn = O(n−1/2) and 1 − αn − βn = O(n−1). As shown by Nelson (1990), this implies (5) with

σ(s) following a particular diffusion process, independent of W (·). The implications of this for the

Dickey-Fuller test and a GARCH-based likelihood ratio test have been analysed by Boswijk (2001).

The following lemma characterizes the limiting behaviour of the process {Xt} under a near-integra-

ted parameter sequence Hn : θn = c/n, with c ∈ R a fixed constant.

Lemma 1 In the model (1)–(4), under Assumption 1 and θn = c/n,

n−1/2Xbsnc
L−→ Xc(s) =

∫ s

0
ec(s−u)σ(u)dW (u), s ∈ [0, 1], (6)

jointly with (5), where Xc(·) satisfies dXc(s) = cXc(s)ds+ σ(s)dW (s).

All proofs are given in the appendix. The lemma has direct consequences for the asymptotic proper-

ties of the conventional Dickey-Fuller coefficient and t-tests. Let θ̂n denote the least-squares estimator

of θ in (1), and let τ̂n denote the t-statistic for θ = 0. As shown by Cavaliere (2004) (under slightly

different conditions), Lemma 1 implies, under the null hypothesis c = 0,

nθ̂n
L−→

(∫ 1

0
X0(s)2ds

)−1 ∫ 1

0
X0(s)σ(s)dW (s), (7)

τ̂n
L−→

(∫ 1

0
σ(s)2ds

∫ 1

0
X0(s)2ds

)−1/2 ∫ 1

0
X0(s)σ(s)dW (s). (8)

The distributions of the right-hand side expressions in (7) and (8) do not coincide with the usual

Dickey-Fuller null distributions, unless σ(s) = σ (constant), such that X0(·) = σW (·). Thus the

Dickey-Fuller tests are not robust to persistent variation in σt, leading to a non-constant σ(·).

Recently, two different adjustments to the Dickey-Fuller tests have been proposed to solve this lack

robustness. Cavaliere and Taylor (2004) use the fact that an Itô process such asX0(·), with deterministic

volatility σ(·), can be expressed as a time-deformed Brownian motion. This can be used to define a

sampling scheme, where Xt is observed at a lower frequency when the volatility is low, and at a higher

frequency when σ(s) is high. Applying the Dickey-Fuller (or Phillips-Perron) test to these skip-sampled

observations leads to a statistic with the usual asymptotic null distribution (albeit with a different power

function than under homoskedasticity). An alternative approach has been developed by Beare (2004),
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who applies the Dickey-Fuller / Phillips-Perron test to the cumulative sum of reweighted increments of

Xt, i.e., to X∗
t =

∑t
i=1 ∆Xi/σ̂i, where σ̂t is obtained by kernel estimation. This again leads to a test

with the same asymptotic null distribution as the Dickey-Fuller test under homoskedasticity.

The purpose of this paper is not to obtain a statistic with the Dickey-Fuller null distribution, but to

derive the maximum possible asymptotic power of any test of the unit root null against local alternatives.

In the next section, this is done for the (infeasible) case where σt (as well as the density of ηt) is known.

Next, we show that the asymptotic volatility function σ(·) is consistently estimable, and this can be

used to construct of a family of tests that reach the asymptotic power envelope. The resulting tests are

adaptive, in the sense that there is no loss of asymptotic efficiency or power caused by estimating σt.

3 The power envelope

In this section, we derive the asymptotic power envelope for the unit root hypothesis in the model (1)–

(4), with {σt} known. The envelope is based on the power of the Neyman-Pearson test in an experiment

that provides an asymptotic approximation of the model in a neighbourhood of the null hypothesis.

A central role is played by the fact that the log-likelihood ratio of the model is locally asymptotically

quadratic (LAQ), see, e.g., Jeganathan (1995) and Le Cam and Yang (1990). For this result, we will

need to make some assumptions about the density of ηt.

Assumption 2 The distribution of η1 has absolutely continuous Lebesgue density p(η) > 0, which is

twice continuously differentiable. The score function ψ(η) = −∂ log p(η)/dη satisfies

var [ψ(η1)] =: I <∞, (9)

and its derivative ψ′(η) = ∂ψ(η)/∂η = −∂2 log p(η)/∂η2, satisfies

sup
η∈R

∣∣ψ′(η)∣∣ < M <∞, (10)

E[ψ′(η1)η1] = 0. (11)

Remark 2

(a) The definition of the score function as the derivative of a log-density with respect to its argu-

ment stems from a location modelXt = θ+ηt, with log-likelihood contributions `t(θ) = log p(Xt−θ),

and hence score contributions ∂`t/∂θ = ∂ log p(Xt − θ)/∂θ = ψ(Xt − θ) = ψ(ηt). This clarifies that

I in (9) is in fact the Fisher information in this location model, and similarly (10) imposes a bound

on the Hessian contributions ∂2`t(θ)/∂2θ = −∂ψ(ηt)/∂ηt. It can be shown that (9) implies the usual

regularity conditions

E[ψ(η1)] = 0, E[ψ′(η1)] = E[ψ(η1)
2] = I, (12)
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as well as the following result:

E [ψ(η1)η1] = cov [ψ(η1), η1] = 1. (13)

(b) When the distribution of η1 is standard Gaussian, then ψ(η) = η, and consequently I =

var(η1) = 1. In that case the scores ψ(ηt) and the innovations ηt are perfectly correlated. For any other

distribution, (9) and (13) imply corr[η1, ψ(η1)] = I−1/2, which shows that I ≥ 1, with equality only

holding in the Gaussian case. For example, the standardized Student’s t(ν) distribution with ν > 2 has

I = ν(ν + 1)/[(ν − 2)(ν + 3)], which increases rapidly as ν approaches the infinite-variance bound

ν = 2.

(c) The assumption (11) is implied by symmetry of the density p(η). Its importance will be clari-

fied in the next section.

(d) In the statistics literature on LAQ and local asymptotic normality (LAN), the assumption on

second derivatives of the log-likelihood is usually replaced by the weaker requirement of differentiability

in quadratic mean of the square root of the density, see, e.g., van der Vaart (1998), Section 7.2. However,

we make the somewhat stronger Assumption 2, because it is easier to interpret and corresponds to the

classical Cramér conditions for asymptotic normality of the maximum likelihood estimator.

The following lemma contains some necessary ingredients for the first main result of the paper.

Lemma 2 Consider the model (1)–(4), under Assumptions 1 and 2, and define Zt−1 = σ−1
t Xt−1.

Under θn = c/n, and as n→∞,
n−1/2

∑bsnc
t=1 ηt

(nI)−1/2
∑bsnc

t=1 ψ(ηt)

n−1/2Zbsnc

 L−→


W (s)

B(s)

Zc(s)

 , s ∈ [0, 1], (14)

where (W (·), B(·)) is a bivariate Brownian motion process with unit variances and correlation I−1/2,

and where

Zc(s) = σ(s)−1Xc(s) =
∫ s

0
ec(s−u)σ(u)

σ(s)
dW (u). (15)

Furthermore,

n−1
n∑

t=1

Zt−1ψ(ηt)
L−→ I1/2

∫ 1

0
Zc(s)dB(s), (16)

jointly with (14).

Because {Xt, σt, t = 0, . . . , n} are observed, and σt is possibly stochastic, it would seem natural

to define the likelihood by the joint density of {Xt, σt, t = 1, . . . , n}, conditional on starting values.
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Letting Xt−1 = (X0, . . . , Xt−1) and σt−1 = (σ0, . . . , σt−1), this joint density may be factorized as

f((X1, σ1), . . . , (Xn, σn)|(X0, σ0)) =
n∏

t=1

f(Xt, σt|Xt−1,σt−1)

=
n∏

t=1

f(Xt|σt,Xt−1,σt−1)
n∏

t=1

f(σt|Xt−1,σt−1). (17)

As long as we do not specify an explicit model for σt given the past, the second factor is unknown. We

will define the log-likelihood function as the logarithm of the first factor, which leads to

`(n)(θ) =
n∑

t=1

`t(θ) =
n∑

t=1

{
− log σt + log p

(
∆Xt − θXt−1

σt

)}
. (18)

Ignoring the second factor, related to f(σt|Xt−1,σt−1), is essentially a weak exogeneity condition in

the sense of Engle et al. (1983); i.e., we assume that any parameter vector that might characterize this

density is variation independent of θ, such that it may be ignored for likelihood inference on θ.

Define the log-likelihood ratio of θn = c/n relative to θ = 0:

Λn(c) = log
dPθn,n

dP0,n
= `(n)(θn)− `(n)(0), (19)

where Pθ,n is the distribution of the observables implied by the model. Let

Sn =
∂Λn

∂c
(0) =

1
n

∂`(n)

∂θ
(0) =

1
n

n∑
t=1

Zt−1ψ

(
∆Xt

σt

)
, (20)

Jn = −∂
2Λn

∂c2
(0) = − 1

n2

∂2`(n)

∂θ2 (0) =
1
n2

n∑
t=1

Z2
t−1ψ

′
(

∆Xt

σt

)
. (21)

Theorem 1 establishes that in a local neighbourhood of the unit-root value θ = 0, the log-likelihood

ratio is locally asymptotically quadratic. The formulation of the result, and its proof, is based on Je-

ganathan (1995).

Theorem 1 Consider the model (1)–(4), under Assumptions 1 and 2. Under P0,n, we have as n→∞,

Λn (c) = cSn −
1
2
c2Jn + oP (1), (22)

with  Sn

Jn

 L−→

 S

J

 =

 I1/2

∫ 1

0
Z0(s)dB(s)

I
∫ 1

0
Z0(s)2ds

 . (23)

Thus

Λn(c) L−→ Λ(c) = cS − 1
2c

2J. (24)
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An interpretation of this result is that the experiment En = (Rn,A, {Pθ,n}θ∈R) is locally approxi-

mated, for θn = c/n, by the limit experiment G = (R2,B, {Qc}c∈R}), where A and B are the relevant

Borel σ-fields, and where Qc is the limit distribution of (Sn, Jn) under Pθn,n, characterized by

L

 Sn

Jn

∣∣∣∣∣∣Pθn,n

 −→ L

 I1/2

∫ 1

0
Zc(s)dB(s) + cI

∫ 1

0
Zc(s)2ds

I
∫ 1

0
Zc(s)2ds

 = Qc, (25)

with log-likelihood ratio Λ(c) = log
dQc

dQ0
. The limit experiment G is a curved exponential model

with one parameter c and two sufficient statistics (S, J). Note that the information J is not ancillary,

since its distribution under Qc depends on c. This implies that the log-likelihood ratio is not locally

asymptotically mixed normal (LAMN), but locally asymptotically Brownian functional (LABF); see

Jeganathan (1995).

If the volatility process σ(·) is stochastic, then as long as its distribution under Qc is not specified,

we do not have a complete characterization of the distribution of (S, J), and hence of Λ(c). In what

follows we will focus on the conditional distribution given σ(·), hence we require the following:

Assumption 3 The distribution of σ(·) under Qc does not vary with c, and the bivariate Brownian

motion (W (·), B(·)) is independent of σ(·).

The assumption implies that σ(·) is locally asymptotically ancillary, hence conditioning on it does

not entail a loss of information on the parameter of interest. The independence assumption then guaran-

tees that (W (·), B(·)) is still a bivariate Brownian motion, conditional on σ(·), and therefore allows us

to completely characterize the conditional distribution of (S, J) and hence Λ(c). It should be empha-

sized that the independence of W (·) and σ(·) excludes the empirically relevant possibility that future

volatilities are affected by the sign of the current shock ηt, a phenomenon referred to as leverage in the

GARCH literature.

The power of the point-optimal Neyman-Pearson test for c = 0 against c = c̄, which rejects for

large values of Λ(c̄), defines the asymptotic power envelope (conditional on σ(·)) for testing H0 : θ = 0

against Hn : θn = c̄/n. We evaluate this power envelope by Monte Carlo simulation, for −c ∈

{0, . . . , 20}, with Gaussian innovations {ηt}, and for four different volatility functions, inspired by the

simulations in Cavaliere and Taylor (2004):

1. σ1(s) = 1[0,0.9)(s) + 5 ·1[0.9,1](s); this represents a level shift in the volatility from 1 to 5 at time

t = 9
10n (i.e., late in the sample).

2. σ2(s) = 1[0,0.1)(s) + 5 · 1[0.1,1](s); an early level shift from 1 to 5.
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3. σ3(s) = exp(1
2V (s)), where dV (s) = −10V (s)ds+ 10dW̃ (s), with W̃ (·) a standard Brownian

motion, independent of W (·); this represents a realization of a stochastic volatility process, with

a low degree of mean-reversion and a fairly high volatility-of-volatility.

4. σ4(s) = exp(1
2V (s)), where V (s) = 5W̃ (s); a realization of a stochastic volatility process with

no mean-reversion and a lower volatility-of-volatility.

The volatility paths σ1(·) through σ4(s) that we use in our simulations are depicted in Figure 1. It

may be noted that these two examples are deliberately chosen to generate a larger amount of variation

in the volatility than what may be considered empirically relevant; the purpose of this is that power

differences between various procedures is most evident.

Figure 1: Realization of volatility processes σ1(s) through σ4(s).
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The power envelopes are based on Monte Carlo simulation of Λ(c̄) under Qc, with c ∈ {0, c̄},

where the same realizations of σ3(·) and σ4(·) are used for all replications. The simulations of Λ(c̄)

under Q0 provides 5% critical values for the test, and the rejection frequencies under Qc̄ then indicate

the maximum possible power against c = c̄.

Figures 2–5 depict the power envelopes for the four volatility functions, as well as the asymptotic

power curves of a number of alternative unit root tests:
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• MLE: the test that rejects for small values of the normalized Gaussian maximum likelihood esti-

mator nθ̃n = J−1
n Sn;

• Dickey-Fuller: the Dickey-Fuller “coefficient” test, rejecting for small values of the normalized

least-squares estimator nθ̂n;

• Cavaliere-Taylor: the Dickey-Fuller coefficient test applied to {X̃t} = {Xbg(t/n)nc}, where g(s)

the inverse function of the variance profile
(∫ 1

0 σ
2
udu

)−1 ∫ s
0 σ

2
udu ;

• Beare: the Dickey-Fuller coefficient test applied to {X∗
t =

∑t
i=1 ∆Xi/σi}.

Note that the Gaussian MLE θ̃n is just the weighted least-squares estimator of θ, using σ−2
t as

weights. For the Dickey-Fuller test, we note that asymptotic critical values are obtained by simulation,

such that the size-corrected asymptotic power is depicted. The power function for the Cavaliere-Taylor

test is based on rejection frequency of
1
2

(
Xc(1)2 − 1

)∫ 1
0 Xc(g(s))2ds

,

whereas the power of the Beare test is the rejection frequency of

1
2

(
X∗

c (1)2 − 1
)∫ 1

0 X
∗
c (s)2ds

, X∗
c (s) =

∫ s

0
σ(u)−1dXc(u).

Figure 2: Asymptotic power curves for σ1(s) (late volatility level shift).
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Figure 3: Asymptotic power curves for σ2(s) (early volatility level shift).
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Figure 4: Asymptotic power curves for σ3(s) (mean-reverting stochastic volatility).
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Figure 5: Asymptotic power curves for σ4(s) (non-mean-reverting stochastic volatility).
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The main conclusions arising from these figures are:

• The power difference between the various procedures is substantial.

• The power of the MLE test is close to the envelope, but not equal to it, especially in case of

stochastic volatility.

• In most cases (with the exception of σ2(·)), the power of the Dickey-Fuller test is substantially

less than that of the MLE test. Hence reweighting observations indeed has an important effect on

the power of unit root tests.

• The skip-sample procedure of Cavaliere and Taylor leads to a test that has less power than the

Dickey-Fuller test, although the difference is negligible for an early level shift. An intuitive

explanation for this is that the test skips observations in times of low volatility, which gives less

relative weight to these more informative observations.

• The Beare test has very little power in case of stochastic volatility, but is fairly close to the power

envelope for a late level shift. A possible explanation is that the transformed series X∗
t has a

time-varying autoregressive coefficient under the alternative, and this will bias the least-squares

estimator of this coefficient towards unity. Apparently this bias is much more substantial for the

stochastic volatility process.

It should be emphasized once more that we have chosen fairly extreme volatility functions; for more

realistic volatility paths, the power differences will be much smaller. However, in such cases the size

distortions of the Dickey-Fuller test will also be rather small. Note also that we have considered just

one realization of each of the stochastic volatility process; further experiments have revealed that power

ordering of the different tests tend to remain the same for other realizations of the process for the same

parameter values, but this need not be the case for other parameter values or specifications.

4 Volatility filtering and adaptive testing

In the previous section we have studied the power of procedures that assume that {σt} is known and

observed. In practice this is not the case, and σt will have to be estimated. One option is to specify a

parametric model for σt, such as a GARCH model, and then consider maximum likelihood estimation

of that model. However, it is desirable to have a testing procedure that is not too sensitive to deviations

from such assumption, and that will also work well, e.g., in case of (gradual) changes in the level of the

volatility.
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Therefore, following Hansen (1995), we consider non-parametric estimation of {σt}. Let k :

[0, 1] → [0, 1] be a kernel satisfying
∫ 1
0 k(x)dx > 0, and consider the (one-sided) kernel estimator:

σ̂n(s) = σ̂bsnc+1, (26)

where

σ̂2
t =

∑N−1
j=0 k

(
j
N

)
ε̂2t−1−j∑N−1

j=0 k
(

j
N

) , t > N, (27)

and σ̂2
t = σ̂2

N+1 for 1 ≤ t ≤ N . Here N is a window width, and ε̂t is either ∆Xt or ∆Xt − θ̂nXt−1.

To prove consistency of σ̂n(s), we need the following assumption.

Assumption 4 For some r > 2, E[|ηt|
2r] <∞.

The following theorem is adapted from Hansen (1995), Theorem 2:

Theorem 2 Consider the model (1)–(4), under Assumptions 1 and 4. If N = anb for some a and b

satisfying 0 < a <∞ and b ∈ (2/r, 1), then

sup
s∈[0,1]

|σ̂n(s)− σ(s)| P−→ 0. (28)

Note that the theorem involves a trade-off between existence of moments and window width; for

distributions with relatively fat tails, such that extreme observations occur with some frequency, more

smoothing is needed to obtain consistency. It is important to emphasize that the theorem requires As-

sumption 1, and in particular, continuity of σ(·). Hence we exclude level shifts in σ(·).

A simple example of an implementation of the kernel estimator is given by exponential smooth-

ing. Take k(x) = e−5x, where the coefficient 5 is chosen such that k(1) ≈ 0. Then, letting λN =

k(1/N) = e−5/N , we have k(j/N) = λj
N , and

∑N−1
j=0 k

(
j
N

)
≈ (1 − λN )−1, such that σ̂2

t ≈

(1 − λN )
∑N−1

j=0 λj
N ε̂

2
t−1−j . For N = 100, this corresponds to a smoothing parameter of λN ≈ 0.95.

As the sample size increases, λN would have to converge to 1 to guarantee consistency, at the rate

determined by Theorem 2.

The consistency of the kernel estimator σ̂n(·) may be used for constructing tests for a unit root as

follows. First, we may estimate the asymptotic score S and information J by

Ŝn =
1
n

n∑
t=1

1
σ̂t
Xt−1ψ

(
∆Xt

σ̂t

)
, Ĵn =

1
n2

n∑
t=1

1
σ̂2

t

X2
t−1I. (29)

These may be used to construct approximate point-optimal test statistics Λ̂n(c̄) = c̄Ŝn − 1
2 c̄

2Ĵn, or

coefficient and t-type statistics Ĵ−1
n Ŝn and Ĵ−1/2

n Ŝn. At the same time, the estimator of σ(·) can be
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used to obtain p-values for such tests (as well as for the Dickey-Fuller test), by Monte Carlo simulation

of S and J under Assumption 3, replacing σ(·) by σ̂n(·).

Consistency of p-values based on σ̂n(·) follows directly from Theorem 2. Consistency of (Ŝn, Ĵn)

is considered in the next theorem.

Theorem 3 Consider the model (1)–(4), under Assumptions 1–4. Under Pθn,n, we have as n→∞,

 Ŝn

Ĵn

 L−→

 S

J

 =

 I1/2

∫ 1

0
Zc(s)dB(s) + cI

∫ 1

0
Zc(s)2ds

I
∫ 1

0
Zc(s)2ds

 . (30)

Note that S and J reduce to the expressions in (23) when c = 0, which is also covered by the

theorem. Note also that all assumptions are required; in particular the symmetry condition (11) is

needed, as is clear from the proof of the theorem.

Theorem 3 implies that we may asymptotically recover the likelihood ratio Λ(c) by nonparamet-

ric estimation of the infinite-dimensional nuisance parameter σ(·), meaning that adaptive estimation

and testing is possible. A formal analysis of adaptivity involves finding a so-called least-favourable

parametric sub-model (see van der Vaart (1998), Chapter 25) {Pθ,φ,n}θ∈R,φ∈Φ, where φ ∈ Φ is a pa-

rameter vector characterizing {σt}. Adaptivity requires block-diagonality of the information matrix in

this model, and this in turn requires the symmetry condition (11). To see this, note that the log-likelihood

of the model now becomes

`(n)(θ, φ) =
n∑

t=1

{
− log σt(φ) + log p

(
∆Xt − θXt−1

σt(φ)

)}
, (31)

such that

∂2`(n)

∂θ∂φ
(θ, φ) = −

n∑
t=1

Xt−1

σ2
t (φ)

∂σt(φ)
∂φ

ψ

(
∆Xt − θXt−1

σt(φ)

)

−
n∑

t=1

Xt−1

σt(φ)
ψ′

(
∆Xt − θXt−1

σt(φ)

)
∆Xt − θXt−1

σ2
t (φ)

∂σt(φ)
∂φ

, (32)

and this will have mean zero, when evaluated at the true value, if and only if E[ψ′(η1)η1] = 0.

If obtaining p-values by Monte Carlo simulation is considered too time-consuming, the following

approximation, inspired by asymptotics for stationary volatility, may be used for the t-statistic Ĵ−1/2
n Ŝn.

First, approximate Z0(s) = σ(s)−1
∫ s
0 σ(u)dW (u) by a Brownian motion, correlated with B(s), with

correlation coefficient

ρ =
〈Z0, B〉 (1)

〈Z0〉 (1)1/2 〈B〉 (1)1/2
=

∫ 1
0 σ(s)ds(

I
∫ 1
0 σ(s)2ds

)1/2
, (33)
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where 〈X〉 (s) is the quadratic variation process of X , and 〈X,Y 〉 (s) is the covariation of X and

Y . Next, use the N(−0.48ρ, 1 − 0.2ρ2) approximation, derived by Abadir and Lucas (2000), of

the distribution of
(∫ 1

0 Z(s)2ds
)−1/2 ∫ 1

0 Z(s)dB(s), where Z(s) is standard Brownian motion with

corr[Z(1), B(1)] = ρ. It should be emphasized that the approximation error involved in this procedure

is hard to characterize or bound analytically. Therefore, its adequacy can only be investigated by Monte

Carlo simulation.

5 Monte Carlo results

In this section we compare the finite-sample behaviour of an adaptive t-test for a unit root with that

of the Dickey-Fuller t-test in a small-scale Monte Carlo experiment. We consider four data-generating

processes, corresponding to the volatility functions σ1(·) through σ4(·) considered in Section 3, with

standard Gaussian innovations {ηt}. The sample sizes considered are n ∈ {250, 1000}, and we use

the exponential kernel k(x) = e−5x, with window widths N corresponding to exponential smoothing

parameters λ ∈ {0.8, 0.9, 0.95, 0.99}; we also consider selecting the smoothing parameter by least-

squares. The volatility filter is based on restricted residuals ε̂t = ∆Xt.

We first consider the size of the tests, using conventional critical values for the Dickey-Fuller test,

and using p-values for the adaptive test obtained by simulation (1000 replications). We have also in-

vestigated the approximation considered at the end of the previous section, but to save space we do not

report these results explicitly (the size distortions resulting from this approximation are slightly larger

than those obtained by simulation). Table 1 lists the empirical rejection frequencies under the null

hypothesis of the tests, using a 5% nominal level, and based on 10, 000 replications.

Table 1: Empirical size of adaptive t-test and Dickey-Fuller test, 5% nominal level.

σ1(s) σ2(s) σ3(s) σ4(s)

n 250 1000 250 1000 250 1000 250 1000

Dickey-Fuller 0.13 0.13 0.06 0.06 0.08 0.09 0.05 0.06

Adaptive, λ = 0.8 0.13 0.10 0.11 0.10 0.14 0.11 0.12 0.11

Adaptive, λ = 0.9 0.10 0.07 0.08 0.07 0.11 0.07 0.08 0.07

Adaptive, λ = 0.95 0.09 0.05 0.09 0.05 0.10 0.06 0.07 0.06

Adaptive, λ = 0.99 0.16 0.07 0.19 0.07 0.16 0.06 0.09 0.05

Adaptive, λ = λ̂ 0.11 0.06 0.09 0.05 0.15 0.09 0.10 0.07

Average λ̂ 0.85 0.93 0.95 0.98 0.80 0.86 0.85 0.91
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The size distortions for the Dickey-Fuller test are in line with the results of Cavaliere (2004) and

Cavaliere and Taylor (2004). For the adaptive test, we see that in all cases, under-smoothing leads

to the most sever size distortions. In the present set-up, it appears that the best results are obtained

for a window width corresponding to an exponential smoothing parameter around 0.95. The resulting

volatility estimate is very close to the RiskMetrics volatility filter for daily financial returns, which

is an exponentially weighted moving average of squared returns with λ = 0.94. Even for this optimal

window width, the size distortions of the adaptive test are still substantial for n = 250; as the sample size

increases, the empirical size for λ = 0.95 does appear to converge to the nominal size. Unfortunately,

the data-based estimate of λ is often considerably lower, especially for σ3(·).

Next, we consider the size-corrected power of the two tests, in comparison with the power envelope

obtained in Section 3, for θn = c/n with n ∈ {250, 1000} and −c ∈ {2, 5, 10, 15, 20}. Here we fix

the smoothing parameter at λ = 0.95; further simulations indicate that slightly better power results are

obtained by undersmoothing, but as indicated above, this leads to more serious size distortions.

Figure 6: Size-corrected power of the adaptive and Dickey-Fuller tests, and power envelope, n = 250.
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From Figure 6, we observe that the power of the adaptive test is substantially larger than that of

the Dickey-Fuller test only for the first volatility path (σ1(·), late level shift); when the volatility shifts

early in the sample, the power is actually worse, and in the two cases of stochastic volatility the power

is about the same. This indicates that for the volatility functions σ2(·) through σ4(·), a sample size of
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250 is not sufficient to estimate the volatility function precisely enough.

Figure 7: Size-corrected power of the adaptive and Dickey-Fuller tests, and power envelope, n = 1000.
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When we increase the sample size to n = 1000, the results clearly improve. In Figure 7, the power

of the adaptive test is larger than that of the Dickey-Fuller test in all cases except σ2(·), although it still

does not quite reach the power envelope. This is caused by estimation errors in the volatility function,

which will cause the standardized errors εt/σ̂t to display some mild heteroskedasticity, and probably

also some unconditional excess kurtosis. Therefore, it is quite possible that the power could be further

improved by fitting, e.g., a GARCH-t-based likelihood instead of a Gaussian likelihood.

The conclusion from the Monte Carlo experiments in this section is that the nonparametric nature

of the adaptive test requires rather large sample sizes to become fully effective, such that this procedure

may be recommended in particular for high-frequency (financial) data-sets. It should be stressed how-

ever, that this conclusion is partly due to the rather extreme nature of the volatility functions considered

here. For more modest variations in the volatilty, we may expect the adaptive procedure to be effective

for smaller sample sizes than those considered here, even though in such cases, the possibilities for

power gains are also smaller.
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6 Discussion

This paper has demonstrated that substantial power differences of unit root tests may arise in models

with nonstationary volatility. Next, we have shown that it is possible to construct a class of tests that have

a point of tangency with the power envelope. The tests are based on nonparametric volatility filtering,

and therefore do not require very specific assumptions on the parametric form of the volatility process.

However, we do need some assumptions that may be violated in practice.

First, for consistency of the nonparametric volatility filter, the volatility process needs to have con-

tinuous sample paths. This means that sudden level shifts are excluded. In practice, one might argue

that these may be approximated arbitrarily well by smooth transition functions, but we may expect the

kernel estimator to perform relatively poorly around the point where this (sudden or smooth) change

occurs. The Monte Carlo experiment in this paper suggests that the procedure may perform reasonably

well for level shifts in the volatility, as long as they do not occur too early in the sample (this asymmetry

is related to the fact that we consider only one-sided filtering of the volatility; a two-sided smoother may

yield better results in this respect).

Secondly, the proposed method to calculate p-values by Monte Carlo simulation involves infer-

ence conditional on the realization of the volatility process. This in turn requires independence of

that process and the Brownian motions defined from the standardized innovations, and hence excludes

volatility processes with leverage. This is a serious limitation, which may be violated in many possible

applications in finance. One could adapt the procedure to the more general case by making explicit the

type of dependence between the volatility process and the Brownian motions, but this seems impossible

without a parametric volatility model such as exponential GARCH.

In addition, the existence of finite fourth moments is required, but this assumption is less likely to

be violated in practice.

The analysis of this paper could be extended in various directions. First, in order to apply the test

in practice, it needs to be extended to allow for deterministic components (constant and trend), and

for higher-order dynamics. We have not considered these extensions explicitly in this paper, but we

suspect that they would not lead to additional theoretical complications, although it is well known that

higher-order dynamics in particular may lead to larger size distortions in finite samples.

Another possible extension is to estimate the density p(·) nonparametrically as well, instead of

assuming that it is known. However, it is not obvious that this additional flexibility is worth the effort.

In related work on non-Gaussian unit root and cointegration analysis, it appears that for increasing

power, the main condition is that both the true density of the innovations and the assumed density used

for constructing the likelihood function have fat tails. Hence it may be reasonable to simply assume,
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e.g., a Student’s t(ν) density in applications involving fat tails.

A more promising extension of this analysis is to the multivariate case. The volatility filter con-

sidered here has a very obvious extension to an estimator of a time-varying covariance matrix; as long

as the same kernel and window width is used for all variances and covariances, the resulting estimator

will be positive semi-definite by construction. This may be used to construct more efficient cointegra-

tion tests or adaptive estimators of cointegrating vectors in the presence of nonstationary volatility. We

intend to explore this possibility in future work.

Appendix

Proof of Lemma 1. Let αn = 1 + θn, and note that Xt = αnXt−1 + σtηt, such that Xt = αt
nX0 +∑t−1

i=0 α
i
nσt−iηt−i and hence

n−1/2Xbsnc = fn(s)n−1/2X0 + fn(s)
∫ s

0
Hn(u)dWn(u), (A.1)

where fn(s) = α
bsnc
n and Hn(s) = α

−bsnc−1
n σn(s). It follows that fn(s) = (1 + c/n)bsnc −→

ecs. Furthermore, Assumption 1 implies, by the continuous mapping theorem, (Hn(s),Wn(s)) L−→

(e−csσ(s),W (s)). The first right-hand side term of (A.1) converges to zero, because X0 = OP (1).

The required result n−1/2Xbsnc
L−→

∫ s
0 e

c(s−u)σ(u)dW (u) then follows from Hansen (1992)’s Theo-

rem 2.1, using the fact that {(α−t−1
n σt+1, ηt)}t≥1 is adapted to {Ft}t≥1, and {ηt}t≥1 is a martingale

difference sequence with respect to {Ft}t≥0, with supn n
−1

∑n
t=1E(η2

t ) <∞.

The stochastic differential equation forXc(s) follows from the fact that Yc(s) = e−csXc(s) satisfies

dYc(s) = e−csσ(s)dW (s), and applying Itô’s lemma to Xc(s) = ecsYc(s) = f(s, Yc(s)), leading to

dXc(s) = cecsYc(s)ds+ ecsdYc(s) = cXc(s)ds+ σ(s)dW (s). (A.2)

�

Proof of Lemma 2. If I > 1, joint weak convergence of the partial sum process of (ηt, I−1/2ψ(ηt))

to (W (·), B(·)) follows from the invariance principle for i.i.d. vectors with finite and positive definite

variance matrix  1 I−1/2

I−1/2 1

 .
If I = 1, then the variance matrix becomes singular, but thenψ(ηt) = ηt, such that the joint convergence

to the bivariate Brownian motion still applies. Weak convergence of n−1/2Zbsnc to Zc(s) follows from

Lemma 1, together with Assumption 1 and the continuous mapping theorem.
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Next, (16) follows from Hansen (1992)’s Theorem 2.1, using the fact that {(Zt, ψ(ηt))}t≥1 is

adapted to {Ft}t≥1, and {ψ(ηt)}t≥1 is a martingale difference sequence with respect to {Ft}t≥0 with

supn n
−1

∑n
t=1E[ψ(ηt)2] <∞. �

Proof of Theorem 1. The theorem follows from Jeganathan (1995), Theorem 13, where less stringent

assumptions are made on ψ(·). Under Assumption 2, the result follows more directly from a second-

order Taylor series expansion of Λn(c), leading to

Λn(c) = cSn − 1
2c

2J∗n, (A.3)

where J∗n = n−2
∑n

t=1 Z
2
t−1ψ

′(σ−1
t [∆Xt − (c∗/n)Xt−1]), with c∗ between 0 and c. Note that under

P0,n, ∆Xt = εt. Continuity and boundedness of ψ′(·) implies that

1
n

bsnc∑
t=1

ψ′
(
εt − (c∗/n)Xt−1

σt

)
=

1
n

bsnc∑
t=1

ψ′
(
ηt −

c∗

n
Zt−1

)
L−→ sI, (A.4)

and this can be used to prove

J∗n =
1
n2

n∑
t=1

Z2
t−1ψ

′
(
ηt −

c∗

n
Zt−1

)
L−→ I

∫ 1

0
Z0(s)2ds. (A.5)

Analogously, it follows that J∗n = Jn + oP (1). The limit of Sn follows directly from Lemma 2. �

Proof of Theorem 2. The proof is adapted from Hansen (1995), Theorem 2. Continuity of σ(s) implies

that it is sufficient to prove

max
1≤t≤n

∣∣σ̂2
t − σ2

t

∣∣ P−→ 0. (A.6)

Let wjN =
(∑N−1

j=0 k(j/N)
)−1

k(j/N), such that σ̂2
t =

∑N−1
j=0 wjN ε̂

2
t−1−j for t > N , with∑N−1

j=0 wjN = 1. For t > N , we have

σ̂2
t − σ2

t = Ra
t + σ2

tR
b
t +Rc

t +Rd
t , (A.7)

where

Ra
t =

N−1∑
j=0

wjN (σ2
t−1−j − σ2

t ), Rb
t =

N−1∑
j=0

wjN (η2
t−1−j − 1),

Rc
t =

N−1∑
j=0

wjN (σ2
t−1−j − σ2

t )(η
2
t−1−j − 1), Rd

t =
N−1∑
j=0

wjN (ε̂2t−1−j − ε2t−1−j).

Hansen’s proof that maxN<t≤n |Ra
t |

P−→ 0, maxN<t≤n

∣∣σ2
tR

b
t

∣∣ P−→ 0 and maxN<t≤n |Rc
t |

P−→ 0 is

directly applicable here. For the fourth term, we note that ε̂t = εt + (cn/n)Xt−1, where cn is given by
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c if ε̂t = ∆Xt (restricted residuals), and by c− nθ̂n if ε̂t = ∆Xt − θ̂nXt−1 (unrestricted residuals). In

both cases, cn = OP (1). Therefore,∣∣∣∣∣∣
N−1∑
j=0

wjN (ε̂2t−1−j − ε2t−1−j)

∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣ 1n
N−1∑
j=0

wjNεt−1−jXt−2−j

∣∣∣∣∣∣ cn +

∣∣∣∣∣∣ 1
n2

N−1∑
j=0

wjNX
2
t−2−j

∣∣∣∣∣∣ c2n. (A.8)

Analogous to Hansen (1995), p. 1130, it follows that

max
N<t≤n

∣∣∣∣∣∣ 1n
N−1∑
j=0

wjNεt−1−jXt−2−j

∣∣∣∣∣∣ P−→ 0, (A.9)

max
N<t≤n

∣∣∣∣∣∣ 1
n2

N−1∑
j=0

wjNX
2
t−2−j

∣∣∣∣∣∣ = OP

(
N2

n2

)
P−→ 0, (A.10)

such that maxN<t≤n

∣∣Rd
t

∣∣ P−→ 0. This proves (A.6) for N < t ≤ n. The extension to 1 ≤ t ≤ N

follows from continuity of σ(s)2, using Hansen (1995)’s Lemma A.1. �

Proof of Theorem 3. Consistency of Ĵn follows directly from Lemma 2, Theorem 2, and the continuous

mapping theorem. For Ŝn, we use ∆Xt = εt + (c/n)Xt−1, and a first-order Taylor series expansion of

the function g(ε, σ) = ψ(
ε

σ
) about the point (ε, σ) = (εt, σt), evaluated at (ε, σ) = (∆Xt, σ̂t):

ψ

(
∆Xt

σ̂t

)
− ψ

(
εt
σt

)
≈ ψ′

(
εt
σt

)
1
σt

c

n
Xt−1 − ψ′

(
εt
σt

)
εt
σ2

t

(σ̂t − σt), (A.11)

where the approximation error is of lower order in probability than the right-hand side terms. This leads

to

Ŝn =
1
n

n∑
t=1

1
σ̂t
Xt−1ψ (ηt) +

c

n2

n∑
t=1

1
σ̂tσt

X2
t−1ψ

′ (ηt)−
1
n

n∑
t=1

1
σ̂t
Xt−1ψ

′(ηt)ηt

σ̂t − σt

σt
+ oP (1).

(A.12)

The first two right-hand-side terms together converge to S = I1/2
∫ 1
0 Zc(s)dB(s) + cI

∫ 1
0 Zc(s)2ds,

using Lemma 2, Theorem 2 and the continous mapping theorem. The third term converges to zero,

because ψ′(ηt)ηt is a mean-zero innovation. Note that if condition (11) is not satisfied, then the third

term does not vanish, and hence the effect of estimating σt is no longer negligible. �
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