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Abstract

A general test statistic for detecting change-points in multidimensional stochastic processes
with unknown parameters is proposed. The test statistic is specialised to the case of detect-
ing changes in sequences of covariance matrices. Large-sample distributional results are
presented for the test statistic under the null hypothesis of no-change. Tables of selected
quantiles of the proposed test are also given. The …nite-sample properties of the test sta-
tistic are compared with two other test statistics proposed in the literature. Using a binary
segmentation procedure, the potential of the various test statistics is investigated in a multi-
dimensional setting both via simulations and the analysis of a real life example. In general, all
test statistics become more e¤ective as the dimension increases, avoiding the determination
of too many “incorrect” change-point locations in a one-dimensional setting.

Key Words: Binary segmentation; Cramér-von Mises; Covariance matrices; Cumulative
sum; Likelihood ratio.



1 Introduction

Procedures for detecting changes of variances in an ordered sequence of (possibly independent)

observations taken from a multidimensional stochastic process can help to elucidate the structure

of the process. For instance, it is well known that homogeneity of variance in a time series of

observations taken from a single …nancial risk factor does not necessarily imply a homogeneous

behaviour in variance of all possible risk factors simultaneously. Hence, a univariate change-

point detection procedure may well fail to reject the assumption of constant variance underlying

the model …tted to each individual series. The determination of arrival times for various phases

on regional seismograms is another important change-point problem. Isolating onset times of

seismic phases is usually done by experienced analysts at a single channel. The development

of large digital seismic networks, requires the availability of some sort of automatic way of

sequentially examining phases coming from multiple channels.

The case of abrupt changes in some of the parameters of a statistical model has been an area

of interest for many years. In view of the limited amount of space a number of key references

are given below. However, before doing so, some notation is needed to describe the change-

point problem more precisely. Let X be a random variable whose probability density function

is characterized by a parameter θ, i.e. X » f(xjθ). Then consider n consecutively observed

independent random variables fX1,X2, . . . ,Xng, where the density of Xi is f(xjθi). Let θ0 be

the initial starting value which may or may not be speci…ed. The problem of change-point

detection in a univariate setting is that of testing the null hypothesis θi = θ0 (i = 1, 2, . . . , n)

against the alternative hypothesis θi = θ0 (i=1,2,. . . ,m) and θi = θ0+δ (i = m+1,m+2, . . . , n),

where the change-point m is not speci…ed and δ is the amount of change in the parameters.

Broadly speaking the detection of a change-point has been dealt with in three di¤erent

contexts, two of which are parametric. The parametric approaches are the ‘Bayes-type’ and

the maximum likelihood (ML) approach. Cherno¤ and Zacks (1964) …rst introduced a Bayes-

type statistic for the detection of a change in the mean at unknown times in a sequence of

independent normal random variables against a one-sided alternative. This methodology uses

the Bayesian approach to eliminate nuisance parameters and then derives the unconditional

likelihood ratio statistic. The work was extended by Gardner (1969) to detect the change-point

against two-sided alternatives. Sen and Srivastava (1973) then considered mean changes in

a sequence of multivariate normal random variables. Kander and Zacks (1966) examined the

one-sided change in the one-parameter exponential class of distributions and MacNeill (1978)
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extended the technique to the two-sided change.

Others have used a ML ratio approach to develop statistics for the detection of parameter

changes at unknown points. Among them are Quandt (1958, 1960), Hinkley (1971), Sen and Sri-

vastava (1975), Hawkins (1977), Worsley (1979), Esterby and El-Shaarawi (1981), and Horváth

(1993). Sen and Srivastava (1975) compared the Bayes-type statistics against the ML statistics

for detecting a change in the mean of normal random variables. They found that when the

initial value of the mean is unknown, which is usually the case, the Bayes-type statistic provided

better power against small changes than the maximum likelihood statistics. A non-parametric

approach to the change-point problem has been considered by Csörg½o and Horváth (1988); see

Csörg½o and Horváth (1997) for an extensive review.

Interest in variance changes seems to start from the Wichern, Miller and Hsu (1976) paper,

where they o¤er a “moving-block” procedure for detecting step changes of variance in residuals

obtained from a …tted univariate AR model of order one. Baufays and Rasson (1985) improve

on the Wichern et al. procedure by handling several points of variance change simultaneously.

Hsu (1977, 1979) looked at detecting a single change in variance at an unknown point in time

in a series of independent observations. Davis (1979) studied tests for a single change in the

innovations variance at a speci…ed point in time in a univariate AR process. Abraham and Wei

(1984) used a Bayesian framework to study changes in the innovation variance of a univariate

ARMA process. Srivastava (1993) found a cumulative sum of squares (CUSUM) procedure to

perform better than exponentially weighted moving average procedure for detecting an increase

in variance in univariate white noise series. By contrast, the change-point problem in the …nance

literature has dealt with CUSUM-type tests for changes in univariate conditional variances; see,

e.g., Kokoszka and Leipus (2000).

Vostrikova (1981) and others have pointed out that a method for detecting a single change

may be able to detect changes by binary segmentation (BS). First the entire data set is tested.

If a change is detected, then the data set is split at the most likely location and the change-point

procedure is applied to each new group of data; see Subsection 4.3 for more details. Inclán and

Tiao (1994) adapted the BS procedure, called iterative cumulative sum of squares algorithm, to

detect and locate univariate variance change-points. Their test statistic is a CUSUM of squares

test for variance changes in a given sequence of independent observations taken from a univariate

normal distribution. In a similar vein, Chen and Gupta (1997) used the BS procedure combined

with the Schwarz information criterion (SIC).

The problem of detecting change-points with observations taken from a multivariate normal
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distribution has been considered by Chen and Gupta (2000). Speci…cally, let X1,X2, . . . , Xn be

a sequence of independent m-dimensional normal random vectors with parameters (0,§1), (0,§2),

. . . , (0,§n), respectively. These authors are interested in testing the hypothesis

H0 : §1 = §2 = . . . = §n = §0 (unknown). (1)

Similar to their 1997 paper, Chen and Gupta (2000) adopt the BS procedure, which implies that

in each step (1) is tested versus the alternative hypothesis:

H1 : §1 = . . . = §k¤ 6= §k¤+1 = . . . = §n (2)

where m < k¤ < n ¡ m, k¤ is the unknown position of the change-point. The proposed test

statistic is a likelihood ratio (LR) test combined with either SIC or an unbiased version of it

(SICu); see Section 3.2.

In this paper, we shall consider and apply the Bayes procedure for the detection of change-

points in multidimensional stochastic processes. The resultant general test statistic will be

de…ned in terms of sequences of partial sums of the e¢cient score functions of the densities from

which the multivariate observations are taken. We give selected percentage points of the test

statistic under the null distribution. Next, the test statistic will be specialized to the case of

testing (1) versus (2).

The paper is organized as follows. In Section 2 the proposed test statistic is introduced. In

Section 3 the multivariate test statistic is specialised to the case of testing changes in covariance

matrices. Further, we brie‡y review the main features of the LR-SIC and LR-SICu approaches

of Chen and Gupta (2000). Using simulations, we compare the …nite-sample distribution and

empirical power of the various test statistics in Section 4. Also, the performance of each test

statistic used in conjunction with the BS procedure is investigated. After given an empirical

example in Section 5, we close with a brief summary in Section 6.

2 Testing multivariate parameter constancy

2.1 Hypotheses

Suppose that X = (X1, . . . , Xn) is a …nite sequence of n consecutively observed independent and

identically distributed (i.i.d.) random variables taken from an m-parameter density f(xjµ) where

the parameter vector µ is an m-dimensional vector such that µ = (θ1, θ2, . . . , θm)0 2 £ µ IRm,

with n > m. The problem is to test the hypothesis

H¤
0 : µ1 = µ2 = . . . = µn = µ0 (3)
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versus the alternative

H¤
1 : 9 m < k¤ < n ¡ m with µ1 = . . . = µk¤ 6= µk¤+1 = . . . = µn

where µ0 = (θ(1)0 , . . . , θ(m)
0 )0 denotes the initial value of the parameter vector µ with θ(j)0 (j =

1, . . . ,m) the initial value of the j-th parameter at observation point 0. It is important to

distinguish between the case µ0 is known and µ0 is unknown.

2.2 Test statistic

Let ωi be an indicator random variable, taking a value 1 if there is a change in µj between the i-th

and the (i+1)-th observation points. The associated probabilities are de…ned by P (ωi = 1) = pi

and P (ωi = 0) = 1 ¡ pi, with
Pn¡1

i=1 pi = 1. Also, let δj,i denote the amount of change in the

values of the parameter vector µj in the interval (i, i + 1) (i = 1, . . . , n; j = 1, . . . ,m). Assume

that δ1,i, . . . , δm,i are independent for every i, and δj,1 . . . , δj,n¡1 are i.i.d. Clearly, the variables

δj,i, ωi are considered nuisance parameters since their values are unknown. To derive a statistic

for testing (3) we use a Bayesian method, originally due to Cherno¤ and Zacks (1964), that puts

a priori distributions on the nuisance parameters and on the change point k¤. Then, under H¤
1 ,

eliminate them by integration from the joint density to obtain an unconditional likelihood of x.

Let δj = (δj,1, . . . , δj,n¡1) (j = 1, . . . ,m), and ω = (ω1, . . . , ωn¡1). Then, expanding the

density function f(xijµ) under the alternative hypothesis H¤
1 in a …rst-order Taylor expansion

about µ0 we obtain

f(xijµ0, δ1, . . . , δm, ω) = f(xijµ0) +
mX

j=1

∂
∂θj

f(xijµ0)(
i¡1X

u=1

δj,uωu) + o(1) (i = 1, . . . , n)

' f(xijµ0)
³
1 +

mX

j=1

∂
∂θj

ln f(xijµ0)(
i¡1X

u=1

δj,uωu)
´
.

Under H¤
0 the joint density of x is given by f0(xjµ0) =

Qn
i=1 f(xijµ0), while under H¤

1 the joint

density of x is

f(xjµ, δ1, . . . , δm, ω) =
nY

i=1

f(xijµ0)
nY

i=2

³
1 +

mX

j=1

∂
∂θj

ln f(xijµ0)(
i¡1X

u=1

δj,uωu)
´

' f0(xjµ0)
³

exp
n¡1X

i=1

n mX

j=1

δj,iωi

nX

u=i+1

∂
∂θj

ln f(xujµ0)
o´

.

We assume δj » N(0, ~σ2
j), for some known ~σ2

j > 0, and integrate with respect to the m(n ¡ 1)

δj,i’s (i = 1, . . . , n ¡ 1; j = 1, . . . ,m) . Then, on noting that ω2
i = ωi, we obtain

f1(xjµ0, ω) ' 1
2m

f0(xjµ0) exp
³Pm

j=1 ~σ2
j

2

´h
1 +

n¡1X

i=1

ωi

mX

j=1

³ nX

u=i+1

∂
∂θj

ln f(xujµ0)
´2

+ op(σ2
δ)

i
.
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Hence, the likelihood ratio statistic is:

¤n(xjω) ´ f1(xjµ0, ω)
f0(xjµ0)

=
1

2m
exp

³Pm
j=1 ~σ2

j

2

´h
1 +

n¡1X

i=1

ωi

mX

j=1

³ nX

u=i+1

∂
∂θj

ln f(xujµ0)
´2i

.

Eliminating ω, and letting ~σ2
j ! 0 for each j = 1, . . . ,m, we get the two-sided test statistic

U¤
p (X) =

X

ω
P (ω)¤n(xjω) =

n¡1X

i=1

pi

³ nX

u=i+1

vu(µ0)0
´³ nX

u=i+1

vu(µ0)
´
, (4)

where vu(µ0) = (∂ ln f(xujµ0)/∂µ1, . . . , ∂ ln f(xujµ0)/∂µm)0 is the gradient of the log-likelihood

function. The hypothesis H¤
0 is rejected i¤ U¤

p (X) > cα, where α is the given level of signi…cance.

It may be remarked that application of the above test statistics requires that the distribution

of X be available. One suitable family of distributions is the class of multivariate natural expo-

nential type distributions (see, e.g., Kotz, Balakrishnan and Johnson (2000, Ch. 5)) with joint

density function f(xjµ) = h(x) expfq0(µ) +
Pm

j=1 qj(µ)bj(x)g, where qj(µ) is a monotonically

increasing function of µ. This family includes such distributions as the multivariate normal,

discrete multivariate power series, Wishart, and bivariate Poisson.

2.3 Large-sample distribution, µ0 is known

To obtain an asymptotic test of level α it is necessary to prove distributional convergence of

(4) under H¤
0 . Since under H¤

0 one knows that fXig16i6n and fXn¡i+1g16i6n are equal in

distribution it follows that

U¤
p (X) L=

n¡1X

i=1

pn¡i

³ iX

u=1

vu(µ0)0
´³ iX

u=1

vu(µ0)
´
.

It turns out that the limit becomes more simple if U¤
p (¢) is modi…ed to

V ¤
p (X) =

n¡1X

i=1

pn¡i

³
I¡1/2(µ0)

iX

u=1

vu(µ0)
´0³

I¡1/2(µ0)
iX

u=1

vu(µ0)
´
, (5)

where I(µ0) is the m £ m Fisher information matrix, which is assumed to exist in the neigh-

bourhood of µ0 in the interior of £.

To prove convergence in distribution we introduce a sequence of random vector functions, on

the space of continuous real-valued vector functions C[0,1]m , as fY n(t) = (Y (1)
n (t), . . . , Y (m)

n (t)), t 2
[0, 1]g1n=1 possessing continuous sampling paths by the relation

Y n(t) =
1p
n

n
Sn,[nt](µ0) + (nt ¡ [nt])vn,[nt]+1(µ0)I¡1/2(µ0)

o
, (6)
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where each component Y (j)
n (t) is the continuous polygonal line through the points ( 1n , n¡1/2S(j)

n,i

(¢))06i6n with S(j)
n,i (¢) the j-th component of

Sn,i(µ0) = I¡1/2(µ0)
iX

u=1

vu(µ0), Sn,0(µ0) ´ 0,

and with [nt] the integer part of nt. Since S(j)
n,i(¢) are partial sums of i.i.d. random variables

Donsker’s Theorem states that Y (j)
n (t) L! B(j)(t) in C[0,1] 8 1 6 j 6 m, where B(j)(t) is the

univariate standard Brownian motion. Davidson (1994, Theorem 27.17) extended this result

to vector-valued processes. If mild conditions on the stochastic process I¡1/2(µ0)vk(µ0) are

imposed, the following general result (functional central limit theorem (FCLT)) can be proved:

Y n(t) L! B(t) = (B(1)(t), . . . , B(m)(t)) in C[0,1]m with B(j)(t) (1 6 j 6 m) independent.

In order to obtain the limiting distribution of the test statistic (5), assume fpign¡1
i=1 to be a

non-negative weight sequence on the unit interval [0, 1] for the unknown change-point k¤ such

that such that pn¡i =
R (2i+1)/2n
(2i¡1)/2n ψ(t)dt (i = 1, . . . , n ¡ 1). If φ(¢) denotes the primitive of ψ(¢)

(5) can be written as

n¡1V ¤
p (X) =

n¡1X

i=1

n
φ
³2i + 1

2n

´
¡ φ

³2i ¡ 1
2n

´o
(n¡1/2Sn,i(µ0))0(n¡1/2Sn,i(µ0))

=
n¡1X

i=1

n
φ
³2i + 1

2n

´
¡ φ

³2i ¡ 1
2n

´o
Y n(

i
n

)0Y n(
i
n

) = hn(Y n)

with mapping hn : C[0,1]m ! IR. Thus one has to show that fhng converges to h: C[0,1]m ! IR in

the sense of Billingsley’s (1968, Theorem 5.5) extended Continuous Mapping Theorem. (CMT).

Here h(¢) is given by

h(f) =
Z 1

0

n mX

`=1

f (`)(t)
o2

φ(dt)

=
Z 1

0

n mX

`=1

f (`)(t)
o2

ψ(t)dt = tr
nZ 1

0
ψ(t)f(t)0f(t)dt

o
,

where f(t) = (f (1)(t), . . . , f (m)(t)) 2 C[0,1]m . Then, under the assumptions of the FCLT and the

extended CMT, we see that the test statistic

n¡1V ¤
p (X) =

n¡1X

i=1

pn¡i

³ iX

u=1

vu(µ0)0
´
I¡1(µ0)

³ iX

u=1

vu(µ0)
´ D! tr

nZ 1

0
ψ(t)B(t)B0(t)dt

o
(7)

where D! denotes convergence in probability.
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2.4 Large-sample distribution, µ0 is unknown

In many real situations µ0 is unknown instead of being known. Then, on replacing µ0 in (4) by

a consistent estimator, say µ̂, the resulting test statistic is given by

Vp(X) =
n¡1X

i=1

pn¡i

³ iX

u=1

vu(µ̂)0
´³ iX

u=1

vu(µ̂)
´

(8)

where vu(µ̂) = (∂ ln f(xujµ)/∂µ1jθ1=θ̂ , . . . , ∂ ln f(xujµ)/∂µmjθm=θ̂)
0. Finite-sample distribution theory

for (8) is complicated. Asymptotic theory is tractable. From the multivariate Taylor’s expansion

it follows that
p

n(µ̂ ¡µ0) = n¡1/2I¡1(µ0)
Pn

u=1 vu(µ0)+op(1). Using the multivariate Taylor’s

expansion of the log-likelihood function about µ0, we obtain ln f(xujµ̂) = ln f(xujµ0) +
Pm

i=1

(θ̂i¡θ(i)0 )∂ ln f(xujµ0)/∂θi+op(1). Di¤erentiating this expression with respect to θi and applying

Khinchine’s law of large numbers, as n ! 1, we have

1p
n

[nt]X

u=1

vu(µ̂) =
1p
n

[nt]X

u=1

vu(µ0) ¡ t
p

nIn(µ̂)(µ̂ ¡ µ0)0 + op(1)

=
1p
n

[nt]X

u=1

vu(µ0) ¡ tp
n

nX

u=1

vu(µ0) + op(1)

where In(µ̂) = ¡n¡1(∂vu(µ)0/∂µjµ=µ̂)(∂vu(µ)/∂µjµ=µ̂) is the second-derivative estimate of the

information matrix. This result holds uniformly in t 2 [0, 1].

Similar as in Subsection 2.3, let fSn,u(µ̂)g1u=0 denote a sequence of partial sums with Sn,i(µ̂) =

(
Pi

u=1 vu(µ̂))I¡1/2n (µ̂), Sn,0(µ̂) ´ 0. Then the sequence [fn¡1/2(Sn,u(µ̂)¡(u/n)Sn,n(µ̂))gn
u=1]1n=1

can be used to de…ne the sequence of random vector functions fŶ n(t), t 2 [0, 1]g1n=1 as follows

Ŷ n(t) =
1p
n

n
Sn,[nt](µ̂) ¡ Sn,n(µ̂)) + (nt ¡ [nt])vn,[nt]+1(µ̂)I¡1/2n (µ̂)

o
. (9)

In Subsection 2.3 we already showed that Y n(t) L! B(t) = (B(1)(t), . . . , B(m)(t)) in C[0,1]m .

Therefore, the following FCLT holds: Ŷ n(t) L! B0(t) = (B(1)
0 (t), . . . , B(m)

0 (t)) in C[0,1]m where

the components B(j)
0 (1 6 j 6 m), are independent Brownian bridges. This in turn leads to

hn(Ŷ n) L! h(B0) by another application of the extended CMT. Then, given (8), we see that

the test statistic

n¡1Vp(X) =
n¡1X

i=1

pi

³ iX

u=1

vu(µ̂) ¡ i
n

nX

u=1

vu(µ̂)
´0

I¡1n (µ̂)
³ iX

u=1

vu(µ̂) ¡ i
n

nX

u=1

vu(µ̂)
´

D! trf
Z 1

0
ψ(t)B0(t)B0

0(t)dtg. (10)
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Table 1: Selected percentage points for P (trf
R 1
0 B0(t)B0

0(t)dtg < cα) (m = 1, . . . , 5).

Probabilities

m .01 .025 .05 .1 .5 .9 .95 .975 .99

1 .02480 .03035 .03656 .04601 .11888 .34730 .46136 .58062 .74346

2 .07883 .09362 .10941 .13222 .27757 .60704 .74752 .88799 1.07366

3 .14938 .17407 .19969 .23549 .44138 .84116 1.00018 1.16809 1.35861

4 .23104 .26555 .30066 .34862 .60668 1.06311 1.23730 1.40579 1.62263

5 .32080 .36486 .40899 .46828 .77253 1.27748 1.46466 1.64465 1.87215

The weight function ψ(t) ´ 1 corresponds to a uniform prior on the unknown change-point k¤.

Then from (10) we have

n¡1Qn(m) = (n ¡ 1)¡1
n¡1X

i=1

³ iX

u=1

vu(µ̂) ¡ i
n

nX

u=1

vu(µ̂)
´0

I¡1n (µ̂)
³ iX

u=1

vu(µ̂) ¡ i
n

nX

u=1

vu(µ̂)
´

D! trf
Z 1

0
B0(t)B0

0(t)dtg, (11)

with Q0(m) = Qn(m) = 0. Test statistic Qn(m) will be the main focus of attention in the rest

of the paper.

Computing quantiles for the integral in (11) can pose analytic di¢culties. Anderson and Dar-

ling (1952) developed a methodology for stochastic integrals of the form in (10) with the underly-

ing process following a one-dimensional Brownian bridge. The methodology involves identifying

the sequence of eigenvalues and eigenfunctions satisfying the Fredholm integral equation. Based

on these eigenvalues and the corresponding eigenfunctions, the Karhünen-Loève expansion of the

univariate process fB0(t), t 2 [0, 1]g can be obtained, and the characteristic function (c.f.) of
R 1
0 B2

0(t)dt can be shown to be ©(t) =
Q1

j=1(1 ¡ 2it(πj)¡2)¡1/2. Since B0(t) is a vector Brown-

ian bridge with independent elements, the multivariate c.f. of trf
R 1
0 B0(t)B0

0(t)dtg is, therefore,

the product of m copies of the c.f. of
R 1
0 B2

0(t)dt, i.e. ©m(t) =
Q1

j=1(1 ¡ 2it(πj)¡2)¡m/2 =³
sin(

p
2it)p

2it

´¡m/2
. Given this c.f., Kiefer (1959) obtained the following expression for the limiting

distribution function

¢m(c) =
2(m+1)/2

cm/4(π)1/2

1X

j=0

¡(j + m/2)
j!¡(m/2)

e¡(j+m/4)2/cDm¡2/2((2j + m/2)/(c1/2), c > 0, (12)

where Da(¢) is the parabolic cylinder function. Selected quantiles are presented in Table 1 for

m = 1, . . . , 5.
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3 Testing changes in covariance matrices

3.1 Multivariate Cramér-von Mises type test statistic

The test statistic (8) can be specialised to testing various interesting cases. For instance, assum-

ing x follows a multivariate normal distribution, the test statistic can be used for testing changes

in the mean vector, testing for changes in the covariance matrix, and testing for changes in the

mean and covariance matrix jointly. Here we consider the case of testing for changes in covariance

matrices. To allow for a comparison between our test and the test statistics given in Subsection

3.2 we assume that, under H0, X1, . . . ,Xn are i.i.d. Nm(0,§) where § = diag(σ2
1, . . . , σ2

m).

Let σ̂2
j = n¡1

Pn
i=1 x2j,i be the ML estimator of σ2

j . Then, it is easy to see that

vu(σ̂2
1, . . . , σ̂

2
m) =

³ 1
¡2σ̂2

1
(1 ¡

x21,u
σ̂2
1

), . . . ,
1

¡2σ̂2
m

(1 ¡ x2m,u

σ̂2
m

)
´0

(13)

while

I¡1n (σ̂2
1, . . . , σ̂

2
m) = diag

³2σ̂4
1

n
, . . . ,

2σ̂4
m

n

´
. (14)

Substituting (13) and (14) into (11) the derived test statistic is:

Qn(m) =
n2

2(n ¡ 1)

n¡1X

i=1

mX

j=1

³ Cj,i

Cj,n
¡ i

n

´2
(15)

where Cj,i =
Pi

u=1 x2j,u (i = 1, . . . , n; j = 1, . . . , m).

When, using (15), the existence of a change-point is determined, the next problem to be

considered is the estimation of the location. Let SSk = j Pk
i=1(xi ¡xk)(xi ¡xk)0j and SSn¡k =

j Pn¡k
i=1 (xi ¡ xn¡k)(xi ¡ xn¡k)0j where xk = k¡1

Pk
i=1 xi and xn¡k = (n ¡ k)¡1

Pn¡k
i=1 xi. Then

an estimate of the location of the change-point, is obtained by minimizing SSn,k = SSk +SSn¡k,

i.e. SSk¤ = minm<k<n¡m SSn,k. Generalization of this estimation procedure to the case of more

than one change-point is direct.

3.2 Likelihood ratio based test statistic

Most attention in the literature has focussed on the likelihood ratio (LR) test as a way of checking

H0 against H1. If the change at point k¤ is known, then H0 will be rejected for small values of the

test statistic ¤n(x) = supµ2£
Q

16i6n f(xijµ)/ supµ2£
Q

16i6k f(xijµ)
Q

k<i6n f(xijµ). If the

densities, as smooth functions of the parameters, can be estimated consistently it is well-known

that the log likelihood ratio can be written as ¡2 ln(¤n(m)) = 2fLk(µ̂k)+Ln¡k(µ̂n¡k)¡Ln(µ̂n)g,

9



where Lk(y) =
P

16i6k ln f(xijy), and Ln¡k(y) =
P

k<i6n ln f(xijy). Since k¤ is unknown, H0

will be rejected for large values of the test statistic

λn(m) = max
2<k<n¡m

f¡2 ln(¤n(m)g. (16)

Chen and Gupta (1995, 2000) show that the asymptotic null distribution of (16), without im-

posing the normality assumption, is Gumbel. Indeed, let

afln(n)g = (2 ln ln(n))1/2 and bnfln(n)g = 2 ln ln(n) + (m/2) ln ln ln(n) ¡ ln ¡(m/2).

Suppose all the necessary regularity conditions hold. Then, under H0, for all x 2 IR, m …xed,

m < k < n ¡ m and n ! 1, k ! 1, such that k/n ! 0, the asymptotic distribution is given

by

lim
n!1

P [afln(n)gλn(m) ¡ bmfln(n)g 6 x] = exp(¡2e¡x).

An approximate expression for the critical value cα(n, m) is given by

cα(n, m) =
n

¡ 1
afln(n)g ln ln

h
1 ¡ α + expf¡2 exp(bmfln(n)g)g

i¡1/2
+

bmfln(n)g
afln(n)g

o2

¡ 1
2
m(m + 1) ln(n) (17)

with α the Type I error. Chen and Gupta (1994, 2000) provide tables with values of (17) for

selected values of α, n, and m. Also, as a special case of the LR test procedure, these authors

propose the following test statistic for testing H0 versus H1:

λn(m) = max
m<k<n¡m

(n ln j§̂nj ¡ k ln j§̂kj ¡ (n ¡ k) ln j§̂n¡kj)1/2 (18)

where §̂n = n¡1
Pn

i=1 xix0i, §̂k = k¡1
Pk

i=1 xix0i, and §̂n¡k = (n ¡ k)¡1
Pn

i=k+1 xix0i are the

ML estimators of §n, §k and §n¡k respectively. Note that to be able to obtain these ML

estimators, the testing procedure can detect only changes for m < k < n ¡ m.

It is easy to see that

λ2
n(m) +

1
2
m(m + 1) ln(n) = ¡ max

m<k<n¡m
fSIC(k,m) ¡ SIC(n, m)g

where SIC(n, m), under H0, is given by

SIC(n,m) = mn ln(2π) + n ln j§̂nj + n +
m
2

(m + 1) ln(n)

and where SIC(k,m), under H1, is

SIC(k, m) = mn ln(2π) + k ln j§̂kj + (n ¡ k) ln j§̂n¡kj + n + m(m + 1) ln(n).

10



Then, on adopting the binary segmentation method, H0 is not rejected if, for some k,

SIC¤(n,m) ´ SIC(n,m) ¡ min
m<k<n¡m

SIC(k,m) 6 cα(n, m), (cα(n,m) > 0), (19)

otherwise reject H0.

As an alternative to the SICs, Chen and Gupta (2000) derive two approximate unbiased esti-

mators of the Kullback-Leibler information. Under H0 and H1 these estimators are respectively

given by

SICu(n,m) = SIC(n,m) +
n(mn ¡ n + m + 1)

n ¡ m ¡ 1
¡ 1

2
m(m + 1) ln(n),

SICu(k,m) = SIC(k,m) +
k2m(n ¡ k ¡ m ¡ 1) + (n ¡ k)2m(k ¡ m ¡ 1)

(k ¡ m ¡ 1)(n ¡ k ¡ m ¡ 1)
¡ n ¡ m(m + 1) ln(n).

In this case H0 is not rejected if, for some k,

SIC¤u(n,m) ´ SICu(n, m) ¡ min
m<k<n¡m

SICu(k, m) 6 cα(n,m), (cα(n,m) > 0), (20)

otherwise reject H0.

Table 2: Null distribution of Qn(m) using quantiles of Table 1; SIC¤(n,m); and SIC¤u(n, m);

fXign
i=1 » i.i.d.N(0, Im) with m = 1, 2, 3, and n = 25, 50, and 100; 50,000 replications.

Exact Test m = 1 m = 2 m = 3

Prob. Statistic n = 25 n = 50 n = 100 n = 25 n = 50 n = 100 n = 25 n = 50 n = 100

.900 Qn(m) .906 .902 .899 .916 .907 .903 .923 .910 .904

SIC¤(n, m) .884 .885 .884 .955 .974 .985 .980 .993 .998

SIC¤u(n, m) .904 .838 .754 .983 .954 .918 .999 .991 .977

.950 Qn(m) .953 .952 .951 .960 .955 .951 .965 .956 .953

SIC¤(n, m) .941 .943 .943 .975 .986 .992 .988 .996 .999

SIC¤u(n, m) .952 .920 .873 .991 .976 .955 .999 .996 .987

.975 Qn(m) .977 .977 .976 .982 .979 .976 .984 .979 .978

SIC¤(n, m) .971 .972 .971 .986 .992 .996 .993 .998 .999

SIC¤u(n, m) .976 .960 .937 .995 .987 .977 1.000 .998 .993

.990 Qn(m) .992 .991 .990 .994 .992 .990 .997 .995 .994

SIC¤(n, m) .988 .989 .988 .993 .996 .998 .996 .999 .999

SIC¤u(n, m) .990 .984 .974 .998 .995 .990 1.000 .999 .997

4 Simulation results

The performance of the various multidimensional test statistics for detecting changes in covari-

ance matrices will be evaluated in several ways. First, we compare the null distributions of

11



Qn(m), SIC¤(n,m), and SIC¤u(n,m). Next, we evaluate the empirical power of these test statis-

tics for detecting changes in covariance matrices. Finally, we present results on the performance

of the test statistics jointly with the use of the BS procedure to determine the “correct” number

of changes.

4.1 Null distribution

Table 2 compares the …nite-sample null distributions of the test statistics Qn(m), SIC¤(n, m),

and SIC¤u(n, m) with their asymptotic distributions. Only results for the upper tails are reported,

which are more relevant from a hypothesis testing viewpoint. We can conclude that the …nite-

sample distribution of Qn(m) can be reasonably accurately approximated by the asymptotic

distribution (12) for all values of n, and irrespective of the value of m. On the other hand,

for the test statistics SIC¤(n,m) and SIC¤u(n,m) the upper tails are too large. As a result, we

expect a problem of overrejection. Nevertheless, some improvement in the performance of these

test statistics can be noticed when n increases, for …xed values of m.

4.2 Empirical power

We now examine the power of the three test statistics under the alternative hypothesis

H1 : fXig » i.i.d. N(0, Im), (i = 1, . . . , [n/2]),

fXig » i.i.d. N(0, σIm), (i = [n/2], . . . , n),

where [n/2] is the point where the change in the covariance matrix occurs, and σ > 0 denotes

a …xed scale factor. As a start, using 50,000 replications of fXign
i=1 » i.i.d.N(0, Im), we

empirically calculated the cut point for each test statistic and each sample size having the

common level of signi…cance α = .05. Next, from 50,000 replications of the process under H1 we

determined the size-adjusted power of the tests, the size being common for all four test statistics.

The graphs in Figure 1 show power functions for n = 50 and n = 100, with σ = 1, 1.5, 2, . . . , 4.

It is clear that the test statistic Qn(m) is more powerful than SIC¤(n, m) and SIC¤u(n,m) for low

values of σ. Unsurprisingly, the powers of all test statistics increase as n increases. However, it

is interesting to see that the powers of Qn(m) strongly depends on the value of m. The gain in

power seems to be more due to an increase in the dimension m than to an increase in the sample

size n. Further, as expected, the test statistic SIC¤u(n,m) has higher power than SIC¤(n, m).
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Figure 1: Power functions for the test statistics Qn(m) (solid line), SIC¤(n, m) (dotted line),

and SIC¤u(n, m) (dash-dotted line); i.i.d. case.
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4.3 Binary segmentation procedure

The BS procedure, as proposed by Vostrikova (1981), proceeds as follows in an m-dimensional

setting:

1. Begin by calculating the value of a change-point statistic, say T (t1, n, m), where t1 is the

start point and n is the endpoint of the series. Suppose we observe a statistically signi…cant

value at the point k1.

2. Search using the statistic T (t1, k1, m), looking for a signi…cant value in the …rst half of

the series determined by the partition. If a statistically signi…cant value is found, say k2,

repeat this step using T (t1, k2,m). Continue until no more statistically signi…cant values

are found in the interval formed each time by the range from the beginning of the series

to the current maximum.

3. Repeat the procedure by beginning at the …rst point found and working to the end of the

series. For example, let `1 be the point that gives a signi…cant value of T (k1, n, m) and

search for a signi…cant value of T (`1, n, m). Call the point `2.

To compensate for an apparent overestimation of the number of change-points Inclán and

Tiao (1994) included the following additional step to the above procedure:

4. Arrange the change-points found in order, say k¤1 < k¤2 < . . . < k¤last < `¤1 < `¤2 < . . . < `¤last
and check the location of each point by straddling with the test statistic T (¢). For example,

check k2 using T (k1, k3, m). Repeat this step until the number of change-points does not

change and the points found in each new pass are “close” to those in the previous pass.

Simulations were run with this additional step, assuming that the BS procedure has converged if

each change-point is within three observations of where it was on the previous iteration. Critical

values of the test statistics Qn(m) are taken from Table 1. Expression (17) was used to compute

critical values of the test statistics SIC¤(n, m) and SIC¤u(n,m).

To assess the performance of the BS procedure we consider testing H0 : §1 = §2 = . . . =

§n = Im against H1 : §1 = . . . = §k¤ = Im,§k¤+1 = . . . = §n = σIm with k¤ = [n/4],

[n/2], and [3n/4], σ = 1, 1.5 and 2, n = 50 and 100, and m = 1, 2, and 3. Table 3 gives the

frequency distribution of the number of change-points detected by the three test statistics at

location k¤ = [n/2]. Columns corresponding to the “correct identi…cations” are set in bold type.

We see that for the test statistic Qn(m) the BS procedure does quite well at locating the

single change-point when n = 50 and σ = 1.5. This is still the case with m = 2. However, with
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Table 3: Frequency distribution of the number of detected change-points, obtained with the BS

procedure, at location k¤ = [n/2]; 10,000 replications, 5% critical values of the test statistics.

Test m = 1 m = 2 m = 3

σ n Statistic 0 1 > 2 0 1 > 2 0 1 > 2

1 50 Qn(m) .957 .043 .000 .976 .024 .000 .976 .024 .000

SIC¤(n, m) .995 .005 .000 .988 .011 .001 .983 .016 .001

SIC¤u(n, m) .994 .005 .001 .961 .035 .004 .902 .081 .017

1.5 Qn(m) .087 .907 .006 .019 .978 .003 .395 .601 .004

SIC¤(n, m) .347 .652 .001 .050 .942 .008 .789 .203 .008

SIC¤u(n, m) .295 .704 .001 .013 .792 .195 .283 .584 .133

2 Qn(m) .001 .987 .012 .000 .996 .004 .002 .979 .019

SIC¤(n, m) .002 .996 .002 .000 .977 .023 .004 .943 .053

SIC¤u(n, m) .001 .998 .001 .000 .663 .337 .001 .710 .289

1 100 Qn(m) .953 .047 .000 .977 .023 .000 .972 .028 .000

SIC¤(n, m) .996 .004 .000 .984 .015 .001 .991 .009 .000

SIC¤u(n, m) .985 .015 .000 .871 .120 .009 .763 .201 .036

1.5 Qn(m) .003 .991 .006 .001 .995 .004 .014 .976 .010

SIC¤(n, m) .016 .980 .004 .000 .989 .011 .348 .635 .017

SIC¤u(n, m) .007 .988 .005 .001 .900 .099 .001 .905 .094

2 Qn(m) .000 .988 .012 .001 .994 .005 .001 .983 .016

SIC¤(n, m) .000 .996 .004 .000 .984 .016 .000 .970 .030

SIC¤u(n, m) .000 .994 .006 .000 .872 .128 .000 .887 .113
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Table 4: Summaries from the sampling distribution of k¤ for n = 100; 10,000 replications.

Test m = 1 m = 2 m = 3

σ Statistic Mode (Freq.) Mean SD Mode (Freq.) Mean SD Mode (Freq.) Mean SD

1.5 Qn(m) 50 (2779) 50.94 7.69 50 (4418) 50.43 4.17 50 (2303) 50.34 24.25

SIC¤(n, m) 50 (2937) 51.01 8.18 50 (4576) 48.29 3.74 50 (2153) 65.18 26.15

SIC¤u(n, m) 50 (2873) 50.54 6.69 50 (4138) 45.00 11.71 50 (3396) 44.87 10.26

2 Qn(m) 50 (5178) 50.10 4.96 50 (7424) 50.00 3.22 50 (6227) 49.33 6.55

SIC¤(n, m) 50 (5436) 49.50 2.08 50 (7385) 47.80 3.67 50 (6354) 46.40 4.38

SIC¤u(n, m) 50 (5326) 49.45 2.42 50 (6507) 43.39 13.00 50 (5838) 44.16 9.42

m = 3, σ = 1.5 and test statistic Qn(m), the BS procedure errs towards zero change-points. For

σ = 2 the BS procedure gives too many correct identi…cations, irrespective of value of the sample

size n. The performance of the BS procedure improves notably for n = 100. With m = 3, n = 50

and σ = 1.5, the BS procedure errs on the side of two or more change-points with considerable

frequency. This phenomenon is still present for increasing values of n and σ. Clearly, the test

statistics SIC¤(n,m) and SIC¤u(n,m) produce very few correct identi…cations when both n and σ

are small. Some improvements occur for series of 100 observations, particularly for SIC¤u(n, m).

Our simulation experiment also provides information about the sampling distribution of k¤.

To safe space, we summarize the main results in Table 4. Again we see the poor performance of

SIC¤(n,m) and SIC¤u(n,m), con…rming earlier results presented in Table 3. On the other hand,

the test statistic Qn(m) has a sampling distribution of k¤ with both modal and mean values

exactly at the change-point 50. When the location k¤ lays near the beginning or the end of

the series, say at k¤ = [n/4] and k¤ = [3n/4], it is much harder to detect a single change-point

than when the change-points are in the middle of the series. Nevertheless, when either σ or

the sample size n increases, the number of correctly identi…ed changes via the BS procedure

increases rapidly. This applies to all three test statistics.

5 Example

The Danish …re data is a set of 2493 trivariate observations consisting in losses to buildings (X1),

losses to contents (X2), and losses to pro…ts (X3), expressed in millions of Danish Kroner (1985

prices) covering the period 1980-1993. The data are available from www.math.eth.ch/%7EMneil/
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data.html. Embrechts, Klüppelberg and Mikosch (1997, Example 6.2.9), among others, analysed

the data in a one-dimensional setting. In our analysis we only use observations with strictly

positive components, resulting in n = 517 observations. Using a homogeneous (i.e. no-change)

Gumbel copula, Blum, Dias and Embrechts (2002) obtained a good …t to various functionals of

the two shortened series X2 and X3.

Figure 2 shows a plot of the series. Also exhibited are the estimated locations of variance

(m = 1) change-points using the three test statistics and the BS procedure jointly (5% critical

values). Table 5 presents similar results for all combinations of the variables x1, x2, and x3.

The bursts of increased variance in all three series near location point 8 is observed by Qn(m)

and when the dimensionality of the tests is set at m = 2 and m = 3. Further we see from Table

5 that the test statistics SIC¤(n, m) and SIC¤u(n,m) quite often pick the large burst at location

point 499 in series x2 as a single change-point. Overall, the BS procedure in conjunction with

the three test statistics does a good job of isolating the two main locations of variance changes

in both the two and three-dimensional system.

All above results hint at possible heterogeneity of variance in the set of variables. This seems

to invalidate the approach taken in Blum et al. (2002). Interestingly, when we analysed the

log-transformed variables most test statistics indicated zero variance change-points; see Table 5.

Exceptions were noted for the test statistic Qn(m) and the test statistic SIC¤u(n,m). Thus, the

assumption of homogeneity of variance may be better satis…ed using the log-transformed data.

Note that in theory, taking a log transformation or no log transformation is not an issue since a

copula is invariant under continuous strictly increasing transformations like the log. In practice,

however, the results can lead to di¤erent locations of change-points as has been shown above.

6 Summary

We have presented a multivariate Cramér-von Mises type test statistic for detecting change-

points in general multidimensional stochastic processes. We have demonstrated by simulation

that the test statistic has a satisfactory null distribution as compared to two other tests for

change-point detection. The power characteristics are also satisfactory. On the other hand, our

simulation results indicate that the LR-SIC and LR-SICu test statistics for locating inhomo-

geneities in covariance matrices perform quite poorly under various alternatives. Using a binary

segmentation procedure, we have compared the various test statistics using simulated and real

data. The multivariate Cramér-von Mises type test statistic performs quite well at locating
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Figure 2: Danish …re data with estimated locations of variance (m = 1) change-points for each

test using the BS procedure; Qn(m) (dots); SIC¤(n, m) (squares); and SIC¤
u(n,m) (diamonds).
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Table 5: Locations of change-points in covariance matrices for the Danish …re data; 5% critical

values of test statistics.

Test Variables

Statistic (X1, X2) (X1, X3) (X2, X3) (X1, X2, X3)

(lnX1, lnX2) (lnX1, lnX3) (lnX2, lnX3) (lnX1, lnX2, lnX3)

Qn(m) 8 8 8 8

(10) (10) (352) (10)

SIC¤(n, m) 499 7 8 499

SIC¤u(n, m) 499 499 10, 499

(312)

change-points. Note that the normality assumption introduced in Section 3 for deriving the

test statistic Qn(m) is not necessarily required for obtaining its limiting distribution. Further,

the limiting distributions of (15) as derived by Kiefer (1959) makes use of Donsker’s invariance

principle. Since the invariance principle holds in weakly dependent processes (cf. Billingsley,

1968) it would be interesting to extend the test statistic Qn(m) to autocorrelated observations.
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