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Abstract

In binary discrete regression models like logit or probit the omis-
sion of a relevant regressor (even if it is orthogonal) depresses the re-
maining β coefficients towards zero. For the probit model, Wooldridge
(2002) has shown that this bias does not carry over to the effect of
the regressor on the outcome. We find by simulations that this also
holds for logit models, even when the omitted variable leads to severe
misspecification of the disturbance. More simulations show that es-
timates of these effects by logit analysis are also impervious to pure
misspecification of the disturbance.

∗University of Amsterdam and Tinbergen Institute, Amsterdam; e-mail address:
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1 Introduction and summary

In a classic regression equation the estimated β̂ is little affected by omitted
variables: provided these are orthogonal to the remaining regressors, the es-
timates are still consistent and unbiased, and the only inconvenience is an
increase of the residual variance and hence of the estimated standard devia-
tions of β̂. No such comforting theorem exists for the β̂ of discrete models,
though not for want of trying.

In the original field of probit and logit, the bio-assay of insecticides
and other stimuli under controlled conditions, the issue of omitted variables
hardly arose. But it is quite relevant for the analysis of survey data in epi-
demiology and in the social sciences, in marketing and in finance, for here
the set of explanatory variables is seldom complete and unobserved hetero-
geneity is the rule. Yet the literature consists of a few isolated articles. In
an early paper, Amemiya and Nold (1975) allow for omitted variables by an
extra disturbance for the logit transform of grouped data, and then employ a
variant of Berkson’s minimum chi-squares estimation. Lee (1982), who con-
siders a multinomial model in the framework of categorical or grouped data,
argues that the other coefficients are not affected if the omitted and retained
regressors are independent conditional on the outcome; but he remarks in an
aside that in the binary logit the absence of an orthogonal variable will bias
the remaining coefficients towards zero (p.208). Ruud (1983) also deals with
multinomial models in an analysis of misspecification of the disturbance dis-
tribution, which is closely related to the omitted variable issue. He comes up
with conditions that preserve the consistency of β̂ up to a scaling factor, but
admits that this result ”rests on an assumption ... that is too restrictive to
be generally applicable” (p.228). Yatchew and Griliches (1985) are the first
to give a straightforward derivation of the downward omitted variable bias
of β̂ in the binary model, though they then go on to entirely different mat-
ters. Gourieroux (2000)1 very briefly considers a condition whereby omitted
variables would not affect β̂ but adds that it is ”of no practical use” (p.33).

The only lasting contribution of these studies is the demonstration by
Yatchew and Griliches, which is probably at the bottom of statements by
practitioners like Baltas and Doyle (2001) who write ”An interesting prop-
erty [of discrete models] is the effect of increasing unexplained stochastic
variation on the identified coefficients... As unobserved variation decreases,
the value of the identified price parameters increases and vice versa” (p.116,
second column). But lately the argument has been carried a step further
by Wooldridge (2002), who has shown that while β̂ is affected by omitted
variables, the partial effect of the remaining regressors on the outcome is not.

1Published earlier, in French, in 1991.
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The effect of omitted variables has also been treated from an altogether
different angle in the biomedical literature under the heading of adding fur-
ther covariates in a simple case-control study. Robinson and Jewell (1991)
argue that this will lead to less precise estimates of the main effect; Gail et
al (1984) stress the inconsistency of the method of estimation, due to the
change in the disturbance distribution, which is a particular feature of non-
linear models where this distribution determines the form of the relation.
The argument has been taken up again by Ford et al (1995).

Below, we shall first retrace the arguments of Yatchew and Griliches and
of Wooldridge. We then report some simulations which extend Wooldridge’s
result to the logit model. This naturally raises the issue of misspecification
of the disturbances. We find that this, too, is of little importance for the
usual logit analyses.

2 The latent variable regression equation

We derive the logit (or probit) model from the familiar latent variable re-
gression equation

Y ∗
i = xT

i β∗ + ε∗i (1)

with the standard properties: the regressor vector xi (which always includes
a unit variable X0) represents known constants, ε∗i is a random disturbance
that is uncorrelated with the regressors, and β∗ is a vector of unknown pa-
rameters. If the Y ∗

i are observed, this is an ordinary regression equation, and
β∗ can be estimated by Ordinary Least Squares. In discrete models, Y ∗

i is
not observed but constitutes a latent variable; its sign determines the (0, 1)
indicator variable Yi that is observed, as in

Yi = 1 iff Y ∗
i > 0,

Yi = 0 otherwise.
(2)

For some symmetrical distribution function Fε of ε this gives

P (Yi = 1) = Fε(x
T
i β∗).

Both in ordinary regression and in the discrete model identification of
the parameters requires further assumptions about the disturbances. In both
models, their mean must be specified, or the constant β∗

0 is not identified; it is
invariably set at zero. In the discrete model, the variance of the disturbances
σ∗2 must be specified, too, since the inequality (2) is invariant to scaling
of Y ∗

i , and hence to scaling of ε∗i and of β∗, so that neither σ∗ nor β∗ are
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identified:Ṫhis indeterminacy is resolved by imposing a set value C on σ∗.
Both sides of (1) are multiplied by C/σ∗, and it is replaced by

Y +
i = xT

i β + εi (3)

with

Y +
i = Y ∗

i

C

σ∗ , β = β∗ C

σ∗ , εi = ε∗i
C

σ∗ (4)

and
var(εi) = C2.

The observed Yi are now defined by

Yi = 1 iff Y +
i > 0,

Yi = 0 otherwise.

In the probit model εi has a standard normal distribution and C equals 1;

in the logit model εi has a logistic distribution and C equals λ = π/
√

(3) ≈
1.81382. In either case the normalized parameters β that are estimated may
be regarded as derived or reduced form coefficients with respect to the original
β∗, and they vary inversely with σ∗.

On the whole, these identifying restrictions are a matter of convenience,
not of conviction. Thus, it is seldom argued that the zero mean of ε is a
’natural’ value3, or that there are grounds for the normal distribution of ε
of the probit model. Nor do I know of a rational justification of the logistic
distribution. But insofar as they are arbitrary, identifying restrictions of this
sort should not materially affect the results of statistical analysis.

3 Omitting a variable: the effect on β

The effect of omitting a relevant determinant from the analysis can be traced
by examining the removal of X2 from an equation with two independent
regressors

Y ∗
i = β∗

0 + β∗
1X1i + β∗

2X2i + ε∗i . (5)

We shall call this the full equation. It satisfies all the standard requirements:
in particular ε∗i has zero mean, variance σ∗2, and is uncorrelated with both
regressors. In the curtailed equation X2 is omitted, and its contribution to
Y ∗

i relegated to the disturbance term, as in

Y ∗
i = (β∗

0 + β∗
2X̄2) + β∗

1X1i + ε◦i (6)

2The difference between these values accounts for the difference of logit and probit
coefficients from the same data.

3For a counterexample, see Greene (1990, p.147), not repeated in later editions of the
book.
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with
ε◦i = ε∗i + β∗

2(X2i − X̄2). (7)

This has all the required properties too. Upon comparing (5) and (6), and
ignoring the intercept (by common usage), we find that the coefficient of X1

is the same, but that the disturbance variance has increased from σ∗2 to

σ◦2 = σ∗2 + β∗2
2 var(X2). (8)

This depresses the slope coefficients of a discrete model towards zero, for
instead of (4) we now have

βo = β∗ C

σo
. (9)

In the present case, (4) and (8) give

βo
1

β1

= λ =
σ∗

σo
=

1√
1 + β2

2var(X2)/C2
(10)

or
β◦

1 = λβ1.

with λ < 1.
λ was called the rescaling factor by Yatchew and Griliches (1985), who

first put forward the above argument, and the attenuation bias by Wooldridge
(2002). The argument is easily generalized to more than two regressors. It
can be empirically verified by deleting successive regressors from a large set
(provided they are more or less orthogonal); at each stage the full equation
provides an estimate of β2 and hence of λ. I have done so elsewhere (see
Cramer (2003), section 5.5).

The addition of β2
2var(X2) to ε∗ will also affect the distribution of the

disturbance. For logit models, ε∗ of the full equation is assumed to have a
logistic distribution, and X2 must by (7) have a very special sample distri-
bution indeed for εo of the curtailed equation to have a logistic distribution,
too. In practice, at least one of the two models is misspecified, and this may
lead to further systematic changes in the estimated coefficients. A similar
argument applies for probit models. Here, X2 must be normal for both equa-
tions to have normal disturbances. Most people feel more comfortable with
this, but it is of course equally restrictive.

Even with orthogonal regressors, then, omitted variables depress β̂ to-
wards zero, relatively to its value in the full equation. In other words, the β̂
of discrete models vary inversely with the extent of unobserved heterogeneity.
The practical consequence is that estimates from samples that differ in this
respect are not directly comparable.
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4 The effect on derivatives

In an ordinary regression equation, β represents the derivatives of Y in re-
spect of the regressors, and hence their effect on the outcome. But in a
discrete model, this is not so. The derivative of P (Yi = 1) with respect to
some Xk, evaluated at the regressor vector x◦, is

φ(x◦T β)βk

for the probit model, with φ the normal density, and

P ◦(1− P ◦)βk (11)

with P ◦ = P (x◦T β for the logit. In these derivatives, the downward move-
ment of β may be compensated by inverse changes in the other terms, and
Wooldridge (2002, section 15.7.1) has shown that for the logit model and a
normal distribution of X2 this is indeed the case.

Wooldridge considers the average partial effect or APE of Xk on P at
a given point x◦. In the present case of two regressors the partial effect of
X1 is the derivative δP/δX1 at X◦

1 , X
◦
2 . If the X2 are unknown (as in the

curtailed equation) we take the average or expected value of the derivative
over the distribution of X2, and this is the APE. For a probit model, this
gives (in our notation)

APE = EX2 β1 φ(X◦
1β1 + X2β2)

and if X2 follows a normal distribution it turns out that this is equal to

λ β1 φ(X◦
1λβ1)

i.e to the partial derivative given by the curtailed equation. Estimates of the
partial derivative from this equation are therefore not subject to attenuation
bias.

A similar argument applies to the derivative of the logit model of (11),
for with β moving towards zero, P goes towards .5 and P (1−P ) towards its
maximum value of .25. To find out how this works out in practice we have
performed a number of simulations. These bear on a simple two-variable
regression equation like (3) with β0 = 0, β1 = β2 = 1, or

Y +
i = X1i + X2i + εi. (12)

Both Xi and X2 are independent normal variates with mean zero and variance
equal to 3.29, and ε is a logistic variate, also with mean zero and variance
3.29. The three components thus contribute equally to the variation of Y +

i ;
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in the full equation the systematic component is two-thirds of the total, and
in the curtailed equation it is one third. By (10) the rescaling factor is .70.

We generate a sample of 3000 observations of the three right-hand vari-
ables, and set

Yi = 1 iff Y +
i > 0,

Yi = 0 otherwise,

as before. By the values that have been adopted the sample frequency of
Yi = 1 will be close to .5. The β of (12) - with true β (0, 1, 1) - are estimated in
the usual Maximum Likelihood manner, and this is repeated for the curtailed
equation with X1 alone.

In addition to the estimate of β1 we also calculate the mean of the deriva-
tives (11) over all observations of the original sample. This is the average
sample effect or ASE

ASE =
1

n

∑
P̂i(1− P̂i)β1.

It is a sample mean, not an expectation, and it does not refer to a single
fixed X◦

1 , but otherwise it is quite similar to Wooldridge’s APE. It is the
partial derivative of the sample aggregate frequency with respect to X1.

An example of the result of this exercise reads as follows.

full curtailed ratio
equation equation

β̂1 .96 .67 .69
s.d. (.04) (.03)

ASE .12 .13 1.05

Upon the removal of X2, β̂1 declines a little more than the rescaling factor of
.70, but ASE is not so affected. This can be traced to a general movement
of the sample P̂i towards .5. By the way the simulation has been set up,
.5 is the mean of the P̂i; upon the removal of X2, the P̂i move towards this
value. Their dispersion declines from a standard deviation of .35 for the full
equation to only .17 for the curtailed equation.
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Table 1. Mean and standard deviation in 100 replications, normal distribution of X2.

distribution full curtailed
of X2 equation equation ratio

β̂1:
mean 1.000 .664 .665
s. d. .044 .028 .024

ASE
mean .129 .129 1.001
s. d. .003 .004 .022

In Table 1 we report the results for 100 replications of this simulation
with a normal distribution of X2. The table gives the mean and standard
deviation of the estimates over the 100 replications, not standard deviations
of estimates as reported by the estimation programme. These replications
confirm the findings of the above example. The principal result is that β1 is
biased but the derivative ASE is not. Note further that the estimates from
the curtailed equation do not have a greater dispersion than those from the
full equation, as one would expect. Finally, the reduction in β̂1 is definitely
larger than the rescaling factor of .70. As the standard deviation among
the 100 replications is .0244, the standard deviation of the mean of .664 is
.0024, and the difference of .700 − .664 = .036 is significant. We attribute
this further reduction by a factor .664/.700 = .95 to the misspecification of
the disturbance in the curtailed equation.

In order to find out whether this is indeed so we have experimented with
three distributions for X2 other than the normal, viz. a logistic distribution,
a binary 0, 1 dummy and a t distribution. In all cases X2 is scaled to have
zero mean and variance 3.29, so that the rescaling factor is always .70. The
binary dummy, for example, takes the values −1.81, +1.81, each for half
of the observations. Since all four distributions are moreover symmetrical,
they have the first three moments in common at zero, 3.29, and zero, and
differences arise only in their fourth moment or kurtosis. Table 2 reports the
outcome of these simulations.
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Table 2. Mean and standard deviation in 100 replications
for various distributions of X2.

distribution full curtailed
of X2 equation equation ratio

logistic:
β̂1 1.001 .680 .679

.041 .031 .021

ASE .131 .131 .999
.003 .004 .025

binary dummy:
β̂1 1.002 .606 .605

.044 .026 .023

ASE .121 .121 1.000
.003 .003 .028

t(6):
β̂1 1.006 .687 .683

.038 .036 .022

ASE .132 .131 0.999
.003 .004 .022

The overall result of these exercises is that the β̂1 are reduced, both by
the rescaling factor and by the additional misspecification effect, but that
the ASE are not; moreover the estimates of ASE do not vary very much,
whatever the distribution of X2.

The misspecification effect varies with the distribution of X2 and we have
seen that these differ in their kurtosis. The original disturbances of the full
equation have a logistic distribution, with rather fat tails and a kurtosis of
1.2, as opposed to 0 for the normal distribution of X2 of Table 1. This gave a
misspecification effect of .95. The first alternative (in the top panel of Table
2) is to give X2 a logistic distribution, too, with the same kurtosis as the
disturbance (but note that the sum of two logistic variates does not have a
logistic distribution). This reduces the misspecification effect somewhat to
.679/.700 = .97. A much more extreme case of slim tails arises if we make X2

a binary dummy: this has kurtosis −2, and the downward misspecification
bias increases to .606/.700 = .87. If a lower kurtosis thus means a larger
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reduction, one might expect an effect in the opposite direction for a distribu-
tion with a higher kurtosis than the logistic. To this end we have employed a
t distribution with a small number of degrees of freedom4. With 6 degrees of
freedom, the kurtosis is 3, well in excess of the 1.2 of the logistic distribution.
But this does not produce an upward bias bias: the misspecification effect
remains at .687/, 700 = .98.

5 Pure misspecification of the disturbance

So far we have added various X2 to the correctly specified logistic distur-
bances of the initial full equation, and found that this hardly affects the
substantive results of the analysis. A similar conclusion arose in an alto-
gether different context, when bank loans were screened for the possibility of
default. From a statistical viewpoint it was quite clear that the data did not
support the logit model, yet its performance in classifying new bank loans was
hardly inferior to that of a more appropriate model (Cramer (2004)). Both
results suggest that the substantive results of a logit analysis are insensitive
to misspecification of the distribution of the disturbances.

Table 3. Mean and standard deviation in 100 replications
for various distributions of the disturbance of the full eauwtion.

distribution β̂1 s.e.β̂1 ASE1

of disturbance

logistic 1.005 .042 .128
.046 .002 .004

normal .956 .040 .126
.038 .001 .004

binary dummy .835 .036 .121
.032 .001 .004

t(6) 1.028 .042 .130
.041 .001 .003

This robustness is confirmed by simple simulations of the full equation
(12) for different disturbance distributions. We recall that this is a simple
latent variable equation with two independent normal regressors with β given
as 1, 1. Both regressors and the disturbances have all been scaled to have

4I owe his suggestion to Casper de Vries.
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zero mean and the same variance 3.29, so that the systematic part accounts
for two-thirds of the variation of Y +

i . Table 3 shows the results for β̂1, its
standard error and the corresponding ASE; the results for X2 are of course
almost identical.

The first panel of Table 3 refers to the correct specification and the second
to a normal distribution that is not so very much different; the normal induces
a small (but significant) reduction of β̂1. The binary dummy is an extreme
case and leads to a substantial decline of β̂1. As before, the other extreme
of the t(6) distribution gives no misspecification bias. The effects on the
standard errors of the estimate (derived from a misspecified model) are quite
modest. But the salient fact is that ASE is hardly affected; only in the
extreme case of a binary dummy disturbance it is somewhat reduced. The
overall conclusion is that the substantive results of logit analyses are quite
robust.
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