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Abstract

This paper considers unbiased prediction of growth and levels when data series are modelled

as a random walk with drift and other exogenous factors after taking logs. We derive the unique

unbiased predictors for growth and its variance. Derivation of level forecasts is more involved

because the last observation enters the conditional expectation and is highly correlated with the

parameter estimates, even asymptotically. This leads to conceptual questions regarding condi-

tioning on endogenous variables and we prove that no conditionally unbiased forecast exists. We

derive forecasts that are unconditionally unbiased and take into account estimation uncertainty,

non-linearity of the transformations, and the correlation between the last observation and esti-

mate which is quantitatively more important than estimation uncertainty and future disturbances

together. The exact unbiased forecasts are shown to have lower MSFE than usual forecasts. We

derive exact unbiased estimators of the MSFE and show that they can succesfully be used in the

construction of forecast intervals. The results are applied to a disaggregated eight sector model

of UK industrial production.
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1 Introduction

Many macro- and other economic series appear to be stationary after applying a log-transformation

and taking first differences. In the seminal paper of Nelson and Plosser (1982), for instance, the natural

logs of all the data are taken, except for the bond yield, and they argue that with the exception of

unemployment all the series could well belong to the difference stationary class. A common modelling

strategy found in many empirical studies in economics is therefore to model the variables in log-

differences if the hypothesis of a unit root in the log of the variables cannot be rejected. In this paper

we will assume that taking log-differences is indeed correct and renders the series stationary, but that

interest is in predicting the growth and level of the original, untransformed variables. This leads to a

number of interesting issues not encountered in linear stationary settings, even when abstracting from

the complication of testing for a unit root. We allow for exogenous regressors and the aim of the paper

is to highlight these issues, to provide solutions for the problems encountered, and to investigate the

quantitative importance of the results.

In order to set out the principal issues involved, we consider the following specific example of the

model we have in mind, which is the Cobb-Douglas production function with time varying technology

as employed by Rosanna (1995) in the context of optimizing firms and Binder and Pesaran (1999) in

the growth literature:

Yt = ZtL
βL
t K

βK
t , (1)

ln(Zt) ≡ zt = β0 + δ t+ ut,

ut = ut−1 + εt,

with εt i.i.N. The term zt represents technological progress which is assumed to grow deterministically

over time, and further has a stochastic trend. The normality assumption allows explicit solutions in

the problems we want to analyze. The model was also used in Garderen, Lee, and Pesaran (2000) in

comparing various nonlinear aggregate and disaggregate models based on predictions of the output

level Y .

The central issue is forecasting one or more step ahead output level YT+h, and predicting growth

Gh,T = 100(YT+h−YT )/YT based on observations up to and including time T . We focus on unbiased
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forecasts since, in the absence of knowledge of the real cost of forecast errors, one often starts out with

a square loss function and use the Mean Squared Forecasting Error (MSFE) criterion for assessing

the quality of predictors. It is easily shown that the conditional mean given the available information

at time T minimizes the MSFE. This theoretical result assumes the parameters are known, but if the

parameters in this conditional mean function are estimated, the predictions are no longer unbiased,

as was pointed out by Goldberger (1968) in the context of Cobb-Douglas production functions with

i.i.d. data.

After taking log-differences the model becomes:

∆yt = δ +∆ltβL +∆ktβK + εt,

where small letters indicate that logs have been taken. The transformed model is easily estimated,

forecasting is standard, and inference is straightforward. The inverse transformation (exponentiation)

is nonlinear and the nonstationary nature of the log variable gives rise to further complications, mainly

in forecasting the level Y . We want to highlight the following issues.

First, the current level yT is highly informative about future levels, but it is also very informative

about the unknown parameter values. The nonstationarity causes the estimators associated with any

variable trending in the levels to be highly correlated with the current level of the dependent variable.

In a weakly dependent situation the influence of yT on the estimator would be of order 1/T and

dropping the last observation in a strict i.i.d. setting would actually make estimator independent of

yT . In the presence of a unit root this is no longer the case. Current yT is correlated with all yt’s in the

past and the covariance does not go to zero due to the stochastic trend. The covariance between yT

and the estimator is of order 1 and the correlation does not disappear asymptotically. Hence forcasts

like Y̌T+1 = YT exp{δ̂ +∆lT+1β̂L+∆kT+1β̂K + 1
2 σ̂

2}, which seem reasonable and are in common use

(either with or without the last term 1
2 σ̂

2), are significantly biased and not even consistent predictors

of the conditional expectation.

Second, the nonlinearity of the inverse transformation (taking exponentials) causes the expectation

to differ from the exponential of the mean. In linear settings unbiasedness of predictors can be

proved by symmetry arguments in certain cases, but these arguments do not apply in the presence
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of nonlinear transformations. Furthermore, the variance of the random walk component of the log-

series is increasing linearly over time and increasingly affects the expected value of the levels of the

original series. See also Granger and Newbold (1976) who consider forecasting series that are non-

linearly transformed, including exponential transformations and consider quadratic transformations

for non-stationary variables. They also compare different predictors and the loss involved, but do

not consider estimation uncertainty (the optimal forecast is the theoretical conditional mean) and

no explanatory variables. Ariño and Franses (2000) consider forecasting levels from a VAR in log-

transformed time series. They find that the VAR analogue of Y̌T+1 with the equivalent term 1
2 σ̂

2

to correct for the nonlinear transformation of the white noise performs better than without it, but

abstract from estimation uncertainty and correlation with conditioning variables YT .

The third issue is that of parameter uncertainty and the relation between the forecast horizon, h,

and the number of observations T . Sampson (1991) analyses, in a standard linear setting, the way

in which parameter uncertainty affects the way conditional forecast variances grow as the forecast

horizon increases. He shows that parameter uncertainty causes the conditional forecast variance to

increase with the square of the forecast horizon (when T increases as a multiple of h) in the unit

root setting instead of rate h. He actually shows that the same holds in a trend stationary setting,

where the forecast variance is bounded in the absence of parameter uncertainty. Clements and Hendry

(1999, p111 ff.) also stress the importantance of estimation uncertainty, but show that when T and

h are both allowed to increase proportionally, as in Sampson (1991), that the forecast variance of the

difference stationary model outgrows that of the trend stationary model, the ratio of the two going

to infinity. The exponential transformation only exacerbates the situation and the variance increases

even faster. Phillips (1979) also analyzes the role of parameter estimation in forecasting from stable

AR(1) models and discusses conditioning on the last observation explicitly.

One fundamental issue in this paper concerns conditioning and unbiasedness and in particular how

to define unbiasedness when conditioning on past observations when there is high correlation between

parameter estimates and conditioning variables. For prediction puposes we would like to condition on

all information available at time T . Conditioning on past observations, however, means that estimators

are fixed since they are deterministic functions of the conditioning variables. Probability statements
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such as median- or mean unbiasedness are therefore vacuous since the distribution is degenerate: δ̂ is

fixed and never equal to δ in the example above, irrespective of the estimator (function of the data)

being used. This causes the predicament that expressions are either conditional on past observations

and no statement about unbiasedness can be made, or we make unconditional predictions and average

over all possible sample paths. Unconditional statements are undesirable because, for example, in a

basic random walk model with zero initial value, the next observation will almost by definition be

close to the last observation, whereas the unconditional prediction is always zero regardless of how

far the process at time T has deviated from zero. Secondly, the unconditional variance of the process

is increasing linearly with T, whereas the conditional variance does not depend on T (only on h).

The issue becomes more subtle in the case of a unit root model with drift (and other exogenous

variables) because of the correlation between the last observation and the estimator. If yT is larger

than the unconditional expectation, then the drift parameter will be overestimated. Using this over-

estimate leads to an over-prediction of future yT+h and under-prediction when yT is small. With the

exponential transformation these effects do not average out, since over-prediction of the log variables

will lead to a larger contribution to the MSFE than under-estimation.

One possible solution is to condition only on those variables that enter the conditional mean. In

the leading example those are the exogenous variables and the endogenous variable YT . This was also

discussed and analyzed by Phillips (1979) for the AR(1) case with stable parameter values, but he

notes that the Edgeworth expansions are not accurate for large autoregressive parameters. Appendix

A.2 gives the relevant conditional distributions for the present case with a unit root and exogenous

variables. The problem remains, however, that when a deterministic linear trend is included, the

conditional distribution of the parameter estimates is still degenerate. E.g. if only a trend is included

then δ̂ = yT /T and the difficulty is the same as when conditioning on the whole past, namely that δ̂ is

fixed. We show theoretically that when a linear trend is included no conditionally unbiased estimator

exists at all. This important result holds obviously when conditioning on the whole past but more

interestingly, also when conditioning only on the last observation.

We derive two exact unbiased estimators, one unconditionally unbiased estimator i.e. by directly

solving the unconditional unbiasedness condition, and the second based on a conditional expression
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using the last observation YT , but taking into account the correlation between the estimator and

the last observation and requiring unbiasedness unconditionally. It is interesting that, although both

predictors are derived from very different perspectives, they are actually identical.

We also derive an unbiased estimator of the MSFE. Given the skewness in the distributions of

future levels of the series YT+h and its unbiased forecasts, it is not obvious that this is a useful

measure of uncertainty. We show however, that it can succesfully be used in the construction of

forecast intervals. These forecast intervals are constructed in a standard fashion, using basic normal

quantiles, yet have coverage probabilities close to their nominal values, and this seems an interesting

and practical contribution.

Finally, a minor comment about assuming it is known that the model is a unit root with drift.

This means that there is no (pre-) testing for unit roots which proper inference procedures should

take into account, but it would obscure the issues we wish to highlight here, but see for instance

Ng and Vogelsang (2002). Secondly, the drift parameter is more accurately estimated in the first

(log)-difference model where the Cramer-Rao lowerbound is attained, than the trend coefficient in

(log-)levels. Parameter uncertainty is an important factor in adjusting the predictions and using a

less accurate estimator would lead to larger effects.

The remainder of the paper is organized as follows. The next section discusses the basic model.

Section 3 deals with predicting growth in this model and Section 4 deals with forecasting future levels,

its MSFE, and constructing forecast intervals. Section 5 applies these results to eight sectors in the

UK economy and compares our suggestions with common solutions. Section 6 concludes. Proofs are

relegated to the appendix.

2 The Model

Consider the following loglinear unit root model, which includes the Cobb-Douglass production func-

tion with stochastic technology in the introduction as a special case:

lnYt = x0tβ + ut, t = 1, 2, ..., (2)

ut = ut−1 + εt, εt ∼ I.I.N(0, σ2), (3)

6



where xt is a (k × 1) vector of regressors including a linear trend, β is a (k × 1) vector of unknown

parameters, and εt are i.i.d. normal with mean zero and variance σ2. The model implies that for the

log-differences

∆yt = ∆x
0
tβ + εt, (4)

where yt = lnYt,and we assume that the following conditions hold throughout:

Assumption 1. yt =
Pt

i=1∆yi and xt =
Pt

i=1∆xi.

Assumption 2. The matrix ∆X = (∆x1,∆x2, ...,∆xT )
0 has full column rank.

Assumption 1 is West’s (1988) condition (2.1) and avoids having to track the effects of the initial

values on the mean, for instance. One could think of this as having subtracted the initial values from

every observation, or simply as the initial values being zero in which case it is just an identity. Implicit

in any case is that we condition on the initial value.

Assumption 2 ensures that the OLS estimator in (4) is uniquely defined. The assumption does

imply that no constant term is included in xt, but that is related to the fact that the constant cannot

be identified from the equation in first differences.

With these assumptions the parameters β and σ2 are simply estimated using OLS in (4). Fore-

casting ∆yT is straightforward, as is forecasting the log-variable yt . Using Goldberger (1962) it is

easily shown, see Lemma 6 in the appendix, that the optimal (minimum variance linear unbiased)

predictor is given by:

ŷ∗T+1 = yT +∆x
0
T+1β̂. (5)

Exponentiation of ŷt, however, does not lead to optimal forecasts for levels and growth of Yt. The first

reason is that the transformation is non-linear and results in a well known bias. Second, and often

ignored, yT and β̂ are highly correlated, as stated in the following lemma and corollary, and this gives

rise to an additional bias term.

Lemma 1 If bβ is the OLS estimator of the model in log-differences, then:
Cov

³
yT , bβ´ = σ2x0T (∆X

0∆X)−1 . (6)
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Corollary 1 If xt includes a linear trend or is I(1), such that (∆X 0∆X) = Op(T ) and xT = Op(T ),

then

Cov
³
yT , bβ´ = O(1), (7)

If xt consists of a linear trend only then for all T :

Corr
³
yT ,bδ´ = 1. (8)

The problem is that yT is very informative about the future levels yT+h, while at the same time

also contains much information about the parameter that needs to be estimated. If yT is high, then

the estimate is also high, and if yT is low than the estimate is low. In a linear setting these effects

may cancel out but exponentiation destroys the possible symmetry and bias results.

3 Predicting Growth

Growth in the model does not depend on the level Y . It is a function only of the disturbance term,

parameters, and exogenous variables. At time T , growth over the next h periods equals: Gh,T =

100(exp
n
∆hx

0
T+hβ +

Ph
i=1 εT+i

o
− 1), where ∆hxt = xt+h − xt, and has expectation :

E [Gh,T ] = 100(exp
©
∆hx

0
T+hβ +

h
2σ

2
ª− 1), (9)

which is easily shown using the Moment Generating Function (MGF) of a normal distribution.1 The

term h
2σ

2 is therefore due to the expectation of a nonlinear function of
Ph

i=1 εT+i. The expected growth

can be estimated unbiasedly using a result in Van Garderen (2001) who also provides a method for

deriving an unbiased estimate of the variance. This leads to:

Theorem 1 The Exact Minimum Variance Unbiased Growth Predictor is given by:

Ĝh,T = 100(exp{∆hx
0
T+hβ̂} 0F1(m,m1

2(h− aT+h)σ̂
2)− 1), (10)

where β̂ and σ̂2 are the OLS estimators of the model in first differences, m = (T − k)/2 and aT+h =

∆hx
0
T+h(∆X

0∆X)−1∆hxT+h.

1 If z ∼ N(µ,Σ), then MGFz(r) = E er
0z = er

0µ+r0Σ r/2.
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The Exact Minimum Variance Unbiased Estimator of the Variance is given by

dvar(Ĝh,T ) = 1002 exp{2∆hx
0
T+hβ̂}

×[0F1(m;m1
2(h− aT+h)σ̂

2)2 − 0F1(m;m(h− 2aT+h)σ̂2)]. (11)

The 0F1-confluent hypergeometric function is defined in the Appendix as an infinite sum and can

be thought of as a generalization of the exponential function. See also Abadir (2001) who reviews the

use of hypergeometric functions in economics. The proof in Appendix A essentially uses the result

that E[0F1(m,mσ̂2z)] = exp{σ2z}, see Van Garderen (2001). The fact that the density is complete

in a statistical sense (e.g. Lehmann and Cassella, 1998) leads to uniqueness.

Using these results we can attribute the term 1
2 σ̂

2(h−aT+h) in Ĝh,T to: (a) the uncertainty in the

disturbances εT+i, i = 1, ..., h, which leads to the term h
2σ

2 in the expected growth equation (9), and

(b) the uncertainty in the estimate ∆hx
0
T+hβ̂, since E[exp{∆hx

0
T+hβ̂}] = exp{∆hx

0
T+hβ+

1
2σ

2aT+h}.

Definition 1 Alternative Growth Predictors

(A) Approximate Unbiased Predictor of Growth and its Variance:

G̃app
h,T = 100 (exp{∆hx

0
T+hβ̂ +

1
2 σ̂

2(h− aT+h)} − 1), (12)

gvar(G̃h,T ) = 1002 exp{2∆hx
0
T+hβ̂}

× £exp{σ̂2(h− aT+h)}− exp{σ̂2(h− 2aT+h)}
¤
. (13)

(B) Naive Predictor

Ǧnaiv
h,T = 100 (exp{∆hx

0
T+hβ̂} − 1). (14)

(C) Consistent Predictor:

Ǧcons
h,T = 100 (exp{∆hx

0
T+hβ̂ +

h
2 σ̂

2} − 1). (15)

The approximate unbiased predictor is based on an approximation of the hypergeometric function

by an exponential function. It therefore only involves exponential functions and appears much easier

to calculate than the exact one, but it should be noted that many packages, such as Mathematica,

include the hypergeometric function as standard, and a Gauss version is available from the author.
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A second alternative, referred to as the naive predictor, ignores the uncertainty in both future

εT+i’s and the estimation of β, and as a result is a biased and inconsistent estimator of expected

growth. The bias effects work in opposite directions, however: ignoring the uncertainty in leads to

under-estimation and ignoring uncertainty in β̂ leads to over-estimation. The naive predictor can in

certain circumstances be better in terms of MSE than the other predictors.

The consistent predictor takes into account the uncertainty in future εT+i’s, but ignores the un-

certainty in the estimation of β and σ2. This parameter uncertainty goes to zero as the sample size

increases, and the predictor is a consistent estimator of expected growth.

Exact expressions and estimators are available for the variance of the consistent and naive pre-

dictors, but when growth itself is not estimated unbiasedly, then there is little reason for using an

unbiased estimator of the variance or MSFE.

4 Forecasting Levels

Predicting growth is essentially straightforward, and is only complicated by the nonlinear function

involved as we have just seen. Forecasting future levels is more involved because future levels are not

simply a function of parameters but also depend on the current level of the series. This current level

is highly correlated with the parameter estimates, and ignoring this dependence leads to significant

bias. For this reason the obvious estimator based on the unbiased growth predictor:

ŶT+h = YT (1 + Ĝh,T /100), (16)

is not an unbiased forecast of the level. When the consistent growth estimator is used this would lead

to:

Y̌T+h = YT exp{∆hx
0
T+hβ̂ +

h
2 σ̂

2}, (17)

which makes it clear that the correlation between current level YT and β̂ will cause problems for

inference in general, and for unbiasedness in particular. Level forecasts based on growth estimates

are generally not unbiased for three reasons: (a) the nonlinear exponential transformation,(b) the

parameter uncertainty, (c) the fact that YT and the estimator β̂ are highly correlated. We will
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therefore have to bias-correct predictors for these factors, or consider estimators based directly on the

expectation of YT+h.

The unconditional expectation of period (T+h)’s level YT+h and the conditional expectation YT+h

given the current level YT are:

E[YT+h] = exp{x0T+hβ + T+h
2 σ2}, (18)

E[YT+h|YT ] = YT exp{∆hx
0
T+hβ +

h
2σ

2}. (19)

It seems therefore that there are two different ways of constructing an unbiased predictor for the

level YT . The first is to note that the unconditional expectation of YT+h depends only on parameters

and to estimate this unbiasedly using Van Garderen (2001).

The second is to estimate the conditional expectation of YT+h given YT and adjust for the bias

caused by the fact that β̂ and YT are correlated, to obtain a predictor that is unbiased. This leads to

two forecasts that are both unbiased:

Proposition 1 The Unconditional Level Forecast

FT+h = exp{x0T+hβ̂} 0F1(m;mσ̂2 zT+h), with, (20)

zT+h = 1
2(T + h− x0T+h (∆X

0∆X)−1 xT+h),

is unbiased.

Proposition 2 The Conditional Level Forecast

FT+h|T = YT exp{∆hx
0
T+hβ̂} 0F1(m;mσ̂2zT+h|T ), with, (21)

zT+h|T = 1
2(h− 2x0T (∆X 0∆X)−1∆hx

0
T+h −∆hx

0
T+h(∆X

0∆X)−1∆hxT+h),

is unbiased.

The terms in zT+h and zT+h|T are easily attributed to sources of uncertainty. In zT+h, the term

(T + h) originates from the total number of disturbances up to and including period T + h, and the

second term is correcting for the parameter uncertainty when estimating x0T+hβ. In zT+h|T : the term

h originates from the h disturbance terms εt in the future between time T and T +h, the second term
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−2x0T (∆X 0∆X)−1∆hx
0
T+h derives from the covariance between yT and ∆hx

0
T+hβ̂, and the third term

x0T+h (∆X
0∆X)−1 xT+h is correcting for parameter uncertainty in the estimate ∆hx

0
T+hβ̂.

Although the predictors can be very different in practice and are derived from very different

perspectives, they are in fact identical if a drift term is included as proved in Appendix A:

Theorem 2 If the model includes a deterministic trend, such that ∆X includes a constant term,

then:

FT+h = FT+h|T . (22)

This remarkable equality between the conditional and unconditional predictors can be explained

by noting that the unconditional predictor FT+h equals YT for the limiting case h = 0 (but only if

a constant is included).2 So, although we are averaging over all possible sample paths for {Yt}, each

prediction based on any realized sample path still goes through (when varying h) the last observation

YT . The difference is that the conditional predictor FT+h|T is an explicit function of YT , whereas the

unconditional predictor only depends implicitly on YT , but behaves exactly the same.

It seems undesirable to average over all possible sample paths that Y can take. Given that the

process goes through YT we should want to condition on the fact that, at time T , the process goes

through YT . An alternative approach is to condition only on the terms that enter the conditional

expectation, in this case YT . In this approach we consider the conditional distribution given only YT

and do not condition on previous values {Y1, ..., YT−1}. The problem is, however, that the conditional

distribution of β̂ is still degenerate given YT only. For example, in the log-difference model with only a

constant term, the estimated drift parameter is simply YT /T and hence a deterministic function of YT

and it is impossible to find a predictor that is conditionally unbiased given YT . This holds generally

as stated in the following theorem.

Theorem 3 If the model includes a deterministic trend, such that ∆X includes a constant term, then

no conditionally unbiased predictor of YT+h exists given either (a) {Y1, ..., YT } or (b) only {YT }.
2With h = 0 we have x0T+0β̂ = ı0∆X(∆X0∆X)−1∆X0∆y = ı0∆y = yT and hence exp{x0T β̂} = YT . zT =

1
2
(T − ı0∆X(∆X0∆X)−1∆X0ı)) = 0, and 0F1(m, 0) = 1 and hence FT+0 = YT . For the conditional expressions note

that by definition ∆0xt = xt+0 − xt = 0.
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The proof is given in Appendix A, but (a) is obvious since any forecast is constant given {Y1, ..., YT }

and with probability 1 does not equal the conditional expectation of YT+h. The more interesting part

(b) is less obvious, but also follows from a degeneracy in the conditional distribution of β̂. The proof

determines a condition that can only be satisfied when h = 0.

Theorem 4 If the model includes a deterministic trend, such that ∆X includes a constant term, then

the unbiased level forecast has mean squared forecasting error, E[(FT+h − YT+h)
2]:

MSFE(FT+h) = exp{2x0T+hβ + 2(T + h)σ2}

× £exp{σ2(h+ aT+h)}0F1(m;σ4 z2T+h)− 1
¤
, (23)

with aT+h = ∆hx
0
T+h(∆X

0∆X)−1∆hxT+h. It can be estimated unbiasedly as:

\MSFE(FT+h) = F 2
T+h − exp{2x0T+hβ̂}0F1(m;−2mσ̂2(h+ aT+h)). (24)

The MSFE here is unconditional. In principal one would like a conditional expression given

{Y1, ..., YT } or {YT }, and we did derive such a theoretical expression, but it is not useful in practice

since it cannot be used to indicate the accuracy of the forecast. The reason is that no conditionally

unbiased estimates for the terms F 2T+h and −2FT+hYT+h exist. This can be proved in the same

fashion as Theorem 3.

Generally a constant would be included in the log linear regression. If no constant is included

then FT+h and FT+h|T are different and so are their MSFE’s (and estimators thereof) which are

not equal to Theorem 4. The proof in Appendix A.2 is readily adapted, however, but the results

would include three terms for MSFE and its estimate in both cases. If no constant is included, the

conditional FT+h|T should be used. It naturally satisfies FT |T = YT always, whereas FT 6= YT if no

constant is included. The MSFE of unconditional FT+h is much larger than that of the conditional

predictor FT+h|T (comparable to the second consistent estimator discussed below). The situation can

be compared to the simple random walk model yt = yt−1 + εt where the forecasts fT+1 = 0 and

f̃T+1 = aT (yT /T ), with aT = T for conditional expression or T +1 for forecasting from a model with

a constant, are both unconditionally unbiased but f̃T+1 has a much lower MSFE.
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4.1 Alternative Level Forecasts

Other forecasts for YT+h are available and, although they will be biased, need not necessarily be worse

in terms of MSFE.

Definition 2 Alternative forecasts:

(A) Approximate unbiased forecast:

F apu
T+h = YT exp{∆hx

0
T+hβ̂ + σ̂2zT+h|T }, with, (25)

zT+h|T = 1
2(h− 2x0T (∆X 0∆X)−1∆hx

0
T+h −∆hx

0
T+h(∆X

0∆X)−1∆hxT+h),

and approximate unbiased estimator of the mean squared forecasting error:

M̂SFE(F apu
T+h) =

¡
F apu
T+h

¢
2 − exp{2x0T+hβ̂ − 2σ̂2(h+ aT+h) }. (26)

(B) Growth based forecast:

F grow
T+h = YT (1 +

Ĝh,T

100
). (27)

(C) Naive forecast:

Fnaiv
T+h = exp{x0T+hβ̂}. (28)

(D) Consistent forecasts:

F cons1
T+h = YT exp{∆hx

0
T+hβ̂ +

h

2
σ̂2}, (29)

F cons2
T+h = exp{x0T+hβ̂ +

T + h

2
σ̂2}. (30)

The approximate unbiased forecast Fapu
T+h is constructed by approximating the hypergeometric

functions in the exact unbiased forecast and its MSFE, by using the exponentiated σ̂2zT+h|T , which

corrects for uncertainty in YT+h caused by disturbances εt, β̂ and the correlation between YT and

β̂, and by using (h + aT+h) from Theorem 4 for the MSFE estimator. We will show below that in

practice these are very close to the exact level and MSFE estimators.

The growth based forecast multiplies the current level with predicted growth, ignoring the corre-

lation between YT and Ĝ. Any of the growth predictors could be used, but in the applications below
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we have used the exact unbiased growth predictor to isolate the correlation effect between YT and Ĝ.

The naive growth predictor can also be used, especially since it can have the lowest MSFE as will be

shown in Section 5, but is identical to the naive forecast.

The naive forecast simply substitutes the estimated parameters in the model function for YT+h.

It ignores the uncertainty in future εT+i’s, β̂, and the correlation between YT and β̂. We could also

think of a conditional version YT exp{∆hx
0
T+hβ̂}, but this equals Fnaiv

T+h identically if a time trend is

included in xt, similar to Theorem 2.

The consistent forecasts are based on the idea of substituting consistent estimators in the ex-

pressions for the conditional and unconditional mean of YT+h respectively. They are not actually

consistent since not even the bias goes to zero. They take into account the increased expectation due

to the disturbances, but ignore the increased bias due to estimation uncertainty. Moreover, F cons1
T+h

ignores the correlation between β̂ and YT and F cons2
T+h does not equal YT for h = 0. The conditional

and unconditional versions are very different here, even if a constant is included in the regression. The

forecast F cons2
T+h , was used in Garderen, Lee, and Pesaran (2000) in their prediction based criterion

for deciding between aggregate and disaggregate nonlinear models. This choice turns out not to be

optimal for forecasting as we will see below. Another alternative would be exp{x0T+hβ̂ +
h

2
σ̂2}, but,

similar again to Theorem 2, equals F cons1
T+h identically if a time trend is included in xt.

4.2 MSFE Estimation

Theorem 4 gives an unbiased estimate of the MSFE, but does not provide standard errors or an

indication how useful the estimates are in constructing forecast intervals. We simulated a log-linear

unit root model which includes a trend, a random walk with drift, and a stationary variable as

explanatory variables with parameter values similar to estimates based on the data in Nelson and

Plosser (1982) or Sampson (1991) to investigate the MSFE estimator. Table 6 in Appendix B illustrates

the unbiasedness of the exact unbiased estimator and its purpose is to show that the approximate

unbiased MSFE estimator of Definition 2(A) is very close to the exact unbiased MSFE estimator.

There are cases where the difference between exact and unbiased are larger, but the results are

typical for a range of parameter values and data generating mechanisms for X, including the sectoral
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application in Section 5.

Table 6 only reports the first moment of these estimates and the standard deviations on these

estimates are in fact very large. They are of a similar order of magnitude as the estimates themselves.

There is, however, a large correlation between the MSFE estimate and the squared deviation (FT+h−

YT+h)
2, ranging in the present model with T = 50 from 0.4 for h = 5 to 0.6 for h = 20. It may

therefore still be possible to use the estimated MSFE to studentize the forecast for use in inference.

This studentization results in a distribution that, apart form some skewness to the left, is not far from

a standard normal distribution. Figure 1 shows the density of this studentized forecast estimated

nonparametrically based on 100.000 replications and for three different sample sizes. The densities

for the three different cases are remarkably close, and close to the standard normal distribution.

0

0.1

0.2

0.3

0.4

-3 -2 -1 0 1 2 3

Stud.F:T= 25,h= 5
Stud.F:T= 50,h= 5
Stud.F:T=100,h=10
Standard Normal

Figure 1: Density of Studentized Forecast. σ = 0.05267, β0 = (0.05, 0.2, 0.4, 0.5). Based on 100.000

replications.
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4.3 Forecast Intervals

Given the closeness to the normal distribution of the standardized statistic, it is natural to check if

confidence intervals based on the studentized statistic and the normal approximation provide a simple

way of constructing confidence intervals with a reasonable coverage probability. Table 1 shows the

percentage of YT+h’s that are included in the forecast intervals constructed in the standard fashion

using the estimated MSFE and the (1− α/2)-quantile of the standard normal distribution z1−α/2 =

Φ(1− α/2), with confidence limits:

FT+h ± z1−α/2 \MSFE
1/2

. (31)

Table 1: Coverage Probabilities of Forecast Interval in %

T = 25 T = 50 T = 100 T = 500

Nominal h = 1 h = 5 h = 1 h = 5 h = 1 h = 10 h = 1 h = 25

90% 88 88 89 89 90 89 90 88

95% 94 93 94 94 95 94 95 92

99% 98 98 99 98 98 99 99 96

σ = 0.05267, β0 = (0.05, 0.2, 0.4, 0.5). Based on 100.000 replications.

These coverage probabilities are surprisingly good, given the skewness of the distribution of YT+h.

It was not obvious a priori that the MSFE is a good measure for use in inference. These results

suggest, however, that in the context of this model it is reasonable to report the estimated MSFE as

a measure of forecasting uncertainty for FT+h since standard confidence intervals constructed with

the estimated MSFE have coverage probabilities that are close to their nominal values. It should be

noted though, that the rejection probability for larger h is predominantly due to rejection on the right

hand side, i.e. the actual YT+h being larger than the upper bound. One might therefore be able to

shorten, and hence improve the confidence intervals, by increasing both the upper and lower limits,

but this is not pursued here.
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4.4 Forecast Horizon and Sample Size

We can use Theorem 4 to show the effects of increasing forecasting horizon h in relation to the available

number of observations T on the forcasting accuracy. First note that in general the level of the series

YT+h tends to increase over time.3 So the first effect of increasing T or h is an increase in the squared

expected level for both Y and F in period T +h : E[YT+h]2 = E[FT+h]
2 = exp{2x0T+hβ+(T +h)σ2}.

We would like to distinguish this level effect from the second effect which relates to the squared

difference in Y and F when divided by the expected level: MSFE(FT+h)/E[YT+h]2

In order to illustrate this we can use the basic loglinear unit root model with drift to obtain:

MSFE(FT+h)

E[YT+h]2
= exp{(T + h)σ2}

·
exp{σ2h(1 + h/T )}0F1(m; 1

4
σ4 (h(1 + h/T ))

2
)− 1

¸
. (32)

The term in square brackets is governed by the forecasting horizon h when T is large, but T still

plays an important role in the first term. Both h and T will increase the MSFE, even if divided by

the expected level squared. This is shown in Figure 2.

100
200 300

400
500

T

5

10

15

20

h

0

0.05

0.1

0.15

0.2

MSFE êE@yD2

100
200 300

Figure 2: MSFE/E[YT+h]2 in loglinear unit root model with drift, T : 25-500, h : 1-20

3Unless x0tβ < − t
2
σ2, which can happen with e.g. a negative drift term, and does happen for the mining sector in

the application below.
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When T is increasing, the ratio MSFE(FT+h)/E[YT+h]2 is initially decreasing, but subsequently

increases quickly when h is larger.4 In order to explain the approximate linearity in h that can be

seen in the graph, note that for small σ2 and T fixed, the ratio in this loglinear unit root with drift

model is approximately:

MSFE(FT+h)

E[YT+h]2
appr
= σ2(h+

h2

T
) + σ4(hT +

2

5
h2 +

h2

2(T − 1)). (33)

The figure further shows that, by letting h and T grow proportionally, as in Sampson (1991) or

Clements and Hendry (1999), the increased uncertainty about the future dominates the increased

accuracy in the estimation of unknown parameters, even when correcting for the fact that the level

is exponentially increasing by dividing by E[YT+h]2. Related is also West (1996), whose Assumption

4 allows limT+h→∞h/T = 0, and parameters are estimated by regression functions, but interestingly,

his Theorem 4.1 does not hold.5

The MSFE tends to infinity as T and/or h go to infinity (unless growth is sufficiently negative).

In order to investigate the effects of the forecast horizon, we can compare the unbiased forecast to

the alternative forecasting methods. We simulated a variety of slightly more involved log-linear unit

root models and we report here the results for the model used in Section 4.2, which included a trend,

a random walk with drift, and a stationary variable as explanatory variables with parameter values

similar to estimates based on the data in Nelson and Plosser (1982) or Sampson (1991). Changing the

way in which the X matrix is generated had some effect but did not qualitatively change the results,

as long as a constant was included. We have calculated the MSFE for the alternative forecasts as a
4Not for h = 0, since FT = YT and the measure is identically 0.
5Taking as moment functional f(.) the one step ahead MSFE, which in our notation is (West 1996 uses R for T and

his π becomes limT+h→∞h/T = 0) we have for the theoretical expectation

E[fT+1] = E(YT+1 −E [YT+1])
2 = E(YT+1 −E [FT+1])

2 = exp{2x0T+1β + σ2(T + 1)} exp{σ2(T + 1)}− 1 .

The sample MSFE f̄ ≡ 1
P

T+1
t=T+1(Yt − Ft)2 = (YT+1 − FT+1)

2 has expectation

E f̄ = exp{2x0T+1β + 2(T + 1)σ2} exp{σ2(1 + aT+1)}0F1(m;σ4 z2T+1)− 1 .

Hence the expectation of the difference equals:

E[f̄ −EfT+1] = exp{2x0T+1β+2σ2(T +1)} 1− exp{−σ2(T + 1)}− exp{σ2(1 + aT+1)}0F1(m;σ4 z2T+1) + 1 . The

second term in square brackets goes to 0 and the third goes to 1 and the third term does not tend to 2. So unless

(x0T+1β+ σ2(T +1)) goes to −∞, f̄ −EfT+1 cannot be centered around 0. When the number of terms P is increasing,

as in West’s Assumption 4, this problem becomes worse as we increase h and set P = h.
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function of the forecastig horizon and for different sample sizes.

The exact unbiased forecast was uniformly best over all the experiments and all forecast horizons.

It should be stressed that this general superiority should not have been anticipated in view of, for

instance the superiority of the naive growth predictor.

Figure 3 graphs how much worse the alternative growth based, naive, and consistent estimators

are relative to the exact unbiased forecast.
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Figure 3: MSFE deficiency. T = 25, σ = 0.05267, β0 = (0.05, 0.2, 0.4, 0.5). Based on 100.000 replica-

tions.

The figure shows that as we forecast further into the future the alternative forecasts become

progressively worse. The extremely poor performance of the second consistent forecast is due to the

fact that for the limiting case with h = 0, the predictor does not equal YT , whereas the other forecasts

do, but instead is multiplied by the factor eσ̂
2T/2. The problem therefore becomes worse as T increases.

For example, in the same model with T = 100 and h = 2, it is 462% worse.

In Appendix C, we report the corresponding figure with T = 50 and 100, and a similar picture

emerges. The relative MSFE deficiency for the growth based, naive, and first consistent forecasts
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appears nearly linear as h varies from 1 to 20, and ranges from less than 1% for h = 1 to over 16.2%,

8.4%, and 18.5% for h = 20.

5 Sectoral Production

In this section we make a comparison of the various predictors of growth and levels for eight indus-

trial sectors. This serves two purposes. First, unbiasedness was motivated by the choice of MSFE

as optimality criterion. Although the conditional mean minimizes the MSFE when the parameters

are known, this is not necessarily true if the conditional mean is estimated, either unbiasedly or by

substituting estimated parameters. Second, although there might be important theoretical differ-

ences between the various predictors, it could be that the differences in practice are not important.

This seems to be the case for growth prediction, but for level forecasts we do find relevant practical

differences.

We have applied the different forecasts using the same model and set of data as Garderen, Lee,

and Pesaran (2000). The sectoral models are Cobb-Douglas production functions with stochastic

technology of the type given in Equation (1), but moreover, include general- and sector specific

productivity dummies for oil price shocks, major strikes, etc. For a full explanation see the original

article where also various specification tests are reported. Tests for normality and functional form do

not reject the model. The only difference with the original application is that we report estimates

of the model without imposing constant returns to scale restrictions. We simulated the model using

the estimated parameters and keeping the exogenous regressors fixed. For observations after 1995

the regressors where dynamically generated using a VAR(1) estimated with data from 1955-1995.

The dependent variables Y were then simulated according to the model. Tables 1 and 2 report the

unweighted average over all sectors to indicate the general tendencies. The full results for all sectors

and two sample periods are given in Appendix B. The unweighted parameter estimates average over

the eight sectors are for the period : 1956-1980:,δ̄=0.014, β̄lnL=0.241, β̄lnK=0.430, σ̄=0.027, and for

the period :1956-2005: δ̄=0.024, β̄lnL=0.373, β̄lnK=0.258, σ̄=0.036.

Results on Growth.
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Table 2 reports the average of the actual values in the simulations and for the various forecasts

the average of the predicted values, their bias (including the exact unbiased where we know the bias

is 0 from theory), and their MSE deficiency, defined as the percentage worse their MSE is relative to

the best. The individual sectoral results are reported in the appendix.

There is very little to choose between the predictors in terms of bias or in terms of MSE. The naive

predictor has a slight bias but is marginally better in terms of MSE. These results are not unexpected

because the approximate relation between growth and logs. It can be seen that the average value of

the drift term, and the average value of the standard deviation over the eight sectors are both very

small. This means that the effect of the non-linear transformation on the expectation is also small.

Table 2: Sectoral Growth Predictions

Growth Actual
Exact

Unbiased

Approx.

Unbiased

Naive Consistent

1956-1980 h = 5

Mean 11.38 11.38 11.38 11.38 11.61

Bias 0.00 0.00 0.00 0.22

MSFE

deficiency

0.1% 0.1% 0.2% 0.6%

1956-2005 h = 10

Mean 31.86 31.89 31.89 31.22 32.13

Bias 0.02 0.03 -0.64 0.27

MSFE

deficiency

0.3% 0.3% * 0.8%

* indicates best in all sectors. Based on 100.000 replications

Results on Levels

Table 3 gives the results for the level forecasts of sectoral production based on the same model.
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The conditional unbiased forecast and unconditional unbiased forecast are identical because a time

trend is included in the model, and results are given in column 3. For the growth based estimator

YT Ĝunb the exact unbiased growth predictor is used. This estimator ignores the correlation between

YT and the estimator. The last row gives the percentage difference in MSFE from the minimum

MSFE.

Table 3: Sectoral Level Forecasts

Levels
Actual

Level

Exact

Unbiased

Approx.

Unbiased

YT Ĝ Naive Cons1 Cons2

1956-1980 h = 5

Mean 2.629 2.628 2.628 2.640 2.640 2.646 2.676

Bias 0.000 0.000 0.011 0.012 0.017 0.048

MSFE

deficiency
* 0.0% 1.0% 1.0% 1.6% 6.9%

1956-2005 h = 10

Mean 7.583 7.585 7.585 7.649 7.688 7.701 7.968

Bias 0.002 0.002 0.067 0.105 0.119 0.385

MSFE

deficiency
* 0.0% 2.3% 4.2% 4.9% 28.8%

* indicates best in all sectors. Based on 100.000 replications

Table 4 shows the relative deficiencies in growth predictors and level forecasts for the period 1956-

2005 for each sector. The naive growth predictor is best in every sector, but the differences with the

other predictors are small and less than 0.7% for the exact unbiased predictor. When forecasting

levels the naive estimator is no longer best and appriciably worse than the exact unbiased forecast

and even worse than the growth based predictor. The exact unbiased forecast is best in all sectors.

The worst performance for the alternative forecasts is in the mining sector where the growth based
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forecast is 6.4% worse, the naive 12%, the first consistent 14%, and the second consistent 86% worse

than the exact unbiased forecast.

Table 4: Relative Deficiency versus best (*) in %

Growth(MSE) Level (MSFE)

1956-2005
Exact

Unb.

Naive Cons

Agricult 0.2 * 0.7

Mining 0.7 * 2.0

Manufact 0.0 * 0.1

Energy 0.6 * 1.4

Construc 0.4 * 1.0

Transprt 0.4 * 1.0

Communic 0.1 * 0.3

Oth Serv 0.1 * 0.3

Average 0.3 * 0.8

Exact

Unb.

YT Ĝh,T Naive Cons1 Cons2

* 2.7 5.1 5.8 34.2

* 6.4 12.0 13.9 86.5

* 0.6 1.2 1.3 7.6

* 3.6 6.4 7.5 43.4

* 1.8 2.7 3.5 18.3

* 1.8 2.8 3.5 18.1

* 1.0 1.9 2.5 12.1

* 0.9 1.6 1.8 10.3

* 2.3 4.2 4.9 28.8

* indicates best. h = 10. Approximate unbiased growth predictor and level forecast not reported since

practically indistinguishable from exact unbiased

The reason that the naive growth predictor performs well is that the nonlinear effects of future ε’s

and estimation uncertainty in ∆hx
0
T+hβ partly cancel each other out. Following the comments below

Theorem 1, we have σ̂2 times 1
2h = 5 related to future ε’s, and for parameter uncertainty σ̂2 times

1
2aT+h, which on average over the eight sectors is about −1.5. The naive estimator, does not use σ̂2

and its variance does therefore not contribute to the MSE.

When forecasting the level, we can use the three terms in zT+h|T associated with future ε’s ( 12h = 5

here), estimation uncertainty in ∆hx
0
T+hβ, (here −∆hx

0
T+h(∆X

0∆X)−1∆hxT+h/2 : about -1.5 on

average over the sectors, and the correction for the correlation between YT and ∆hx
0
T+hβ̂ which is
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−x0T (∆X 0∆X)−1∆hx
0
T+h = −h = −10.6 This correlation term is therefore twice as large as the

correction for future ε’s and much larger than the estimation uncertainty term. The correlation

between the level and the estimator is therefore quantitatively the most important factor.

The correlation term is −h for all T and remains important even asymptotically. Only the esti-

mation uncertainty term goes to zero as T increases.

Results on Forecast Intervals

Table 5 reports the coverage probabilities of the forecast intervals for the eight industrial sectors

using two time periods with 25 and 50 observations. We see that the coverage probabilities are again

very close to their nominal values.

Table 5: Coverage Probabilities of Forecast Interval in %

1956-1980 1956-2005

nominal: 90% 95% 99% 90% 95% 99%

Agricult 88 93 98 89 94 98

Mining 88 93 98 88 93 97

Manufact 89 94 98 89 94 99

Energy 88 93 98 89 94 98

Construc 88 93 98 89 94 98

Transprt 88 93 98 89 94 99

Communic 89 94 98 89 94 99

Oth Serv 88 94 98 89 94 98

Average 88 93 98 89 94 98

6The first column in ∆X is ι since x includes a deterministic trend. ∆X0
i∆X (∆X0∆X)−1 = (1, 0, ..., ) and the first

element of ∆hx
0
T+h is h. Hence,−ι0∆X (∆X0∆X)−1∆hx

0
T+h = −x0T (∆X0∆X)−1∆hx

0
T+h = −h
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6 Conclusion

This paper has highlighted some of the issues involved when forecasting from log-linear unit root

models with exogenous variables. Nonlinearity of the transformations of disturbances and estimators

cause bias, which is well known. More important, however, is the high correlation between the last

observation and parameter estimates. This correlation is often ignored but is in fact larger than

the effects of future disturbances and parameter uncertainty together. This was shown using the

expression for zT+h|T . The effect of parameter uncertainty disappears with increasing sample size,

but the correlation effect persists even asymptotically. This is a feature that is not limited to the

stylized model employed in this paper but holds more generally. It also leads to deeper questions

concerning conditioning on past information. We have shown that no conditionally unbiased estimator

exists based on the regression estimates, which are statistically complete in this model, even when

conditioning on only those terms that enter the conditional mean.

There are of course a various issues the paper has not dealt with, including structural breaks,

serial correlation and heteroskedasticity in the transformed model, which is either trivial to deal with

if the exact form is known, or analytically very complicated when it involves unknown parameters, or

impossible to deal with exactly if its form is unspecified. Nor dynamic forecasts of exogenous variables,

as e.g. Schmidt (1974), where the additional uncertainty would increase the bias correction term and

would require the exact distribution of the vector autoregressive moving average estimators. We have

concentrated on specific models that were helpful in highlighting the issues raised and allowed explicit

finite sample solutions.

The paper is constructive in deriving the exact minimum variance unbiased growth predictor.

More importantly, we derived two exact unbiased level forecasts. One is based on the unconditional

expectation of the process at time T + h, and the other derived from the conditional expectation and

is much better if no constant is included in the log-linear regression. A constant should be included

in the regression however, in which case they are equal. We showed that the unbiased level forecast

was better than five alternative forecasts and provided a very accurate and convenient approximate

unbiased forecast that only involved exponential functions. We derived its MSFE and an estimator
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thereof. The MSFE estimator proved useful in standardizing the estimates and for constructing

reliable confidence intervals.

We investigated the effects of increasing sample size and forecast horizon and showed that the

MSFE increases with the number of observations even if the forecast horizon is fixed. For increasing

forecast horizon, the exact unbiased forecast gets better relative to the alternative forecasts.
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A Appendix: Theory

The following notation will be used. Given initial values y0 = 0 and x0 = 0, the model can be written

as:

yt = x0tβ + ut, t = 1, 2, ..., T

ut = ut−1 + εt, εt ∼ IIN(0, σ2) (34)

ı(T ) = (1, ..., 1)
0, is a T × 1 vector of ones, L is the first differencing matrix,

L =



1 0

−1 . . .

. . .
. . .

0 −1 1


, with (L0L)−1 =



1 1 · · · 1

1 2 · · · 2

...
...

. . .
...

1 2 · · · T


.

y(t) = (y1, y2, ..., yt)
0 is the t× 1 column vector of observations from 1 up to t, and X(t) the associated

t×k matrix of regressors. The full sample quantities are written as y andX.We have Ly = LXβ+Lu,

and hence:

y ∼ N(Xβ, σ2 (L0L)−1).

Because of assumptions 1 and 2 we may write:

yt =
Pt

s=1∆x
0
sβ +

Pt
s=1 εs = x0tβ + St, with : (35)

St =
Pt

s=1 εs = ı0(t)ε(t).

A.1 Proofs

Proof of Lemma 1.

bβ = (∆X 0∆X)−1∆X 0∆y,

= β + (∆X 0∆X)−1∆X 0ε ∼ N
³
β, σ2 (∆X 0∆X)−1

´
,

yT =
XT

s=1
∆x0sβ +

XT

s=1
εs = x0Tβ|{z}

E[yT ]

+ ST|{z}
ı0
(T )

ε

.
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Hence:

Cov
³
yT , bβ´ = E

·
ST

³
(∆X 0∆X)−1∆X 0ε

´0¸
= E

h
ı0(T )εε

0∆X 0 (∆X 0∆X)−1
i
,

= σ2ı0(T )∆X
0 (∆X 0∆X)−1 = σ2x0T (∆X

0∆X)−1 .

Proof of Propositions 1. Using Lemma 7 below, we have:

E[FT+h] = Eσ̂2Eβ̂|σ̂2
h
exp{x0T+hβ̂} 0F1(m; 12mσ̂2 zT+h)|σ̂2

i
,

= Eσ̂2

·
exp{x0T+hβ +

σ2

2
x0T+h (∆X

0∆X)−1 xT+h} 0F1(m; 12mσ̂2 zT+h)

¸
,

= exp{x0T+hβ +
σ2

2
x0T+h (∆X

0∆X)−1 xT+h} exp
½
σ2

2
(T + h− x0T+h (∆X

0∆X)−1 xT+h)
¾
,

= exp

½
x0T+hβ +

T + h

2
σ2
¾
,

= E [YT+h] ,

Hence FT+h is unconditionally unbiased.

Proof of Propositions 2. The conditional expectation, given YT , of the conditional forecast can

be derived using the results on conditional distributions given in the next subsection of this appendix,

which gives:

E[FT+h|T |YT ] = Eσ̂2|YT [Eβ̂|σ̂2,YT

h
YT exp{∆hx

0
T+hβ̂} 0F1(m;mσ̂2zT+h|T )|σ̂2, YT

i
|YT ],

= YT Eσ̂2|YT [exp{∆hx
0
T+h(β + (∆X

0∆X)−1 xT
(yT − x0Tβ)

T
)

+1
2σ

2∆hx
0
T+h

³
(∆X 0∆X)−1∆X 0Mı∆X (∆X

0∆X)−1
´
∆hxT+h}

× 0F1(m;mσ̂2zT+h|T ) | YT ],

= YT exp{∆hx
0
T+hβ +∆hx

0
T+h (∆X

0∆X)−1 xT
(yT − x0Tβ)

T
+

+1
2σ

2∆hx
0
T+h (∆X

0∆X)−1∆hxT+h +

− 1

2T
σ2∆hx

0
T+h (∆X

0∆X)−1 xTxT 0 (∆X 0∆X)−1∆hxT+h +

+σ2 12(h− 2x0T (∆X 0∆X)−1∆hx
0
T+h −∆hx

0
T+h(∆X

0∆X)−1∆hxT+h)},

= YT exp { ∆hx
0
T+hβ + σ2 h2 +∆hx

0
T+h (∆X

0∆X)−1 xT
(yT − x0Tβ)

T
+

− 1

2T
σ2∆hx

0
T+h (∆X

0∆X)−1 xTx0T (∆X
0∆X)−1∆hxT+h − σ2x0T (∆X

0∆X)−1∆hx
0
T+h } .
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Note that this expectation is not equal (a.s.) to the conditional expectation E[YT+h|YY ].

Now, using the fact that (yT − x0Tβ) ∼ N(0, Tσ2), it follows that:

E[exp{∆hx
0
T+h (∆X

0∆X)−1
xT
T
(yT − x0Tβ)} =

= exp{1
2

Tσ2

T 2
∆hx

0
T+h (∆X

0∆X)−1 xTx0T (∆X
0∆X)−1∆hxT+h},

and E[YT ] = E[exp{yT }] = exp{x0Tβ + T
2 σ

2}. Hence:

E[exp{yT +∆hx
0
T+hβ + σ2 h2 +∆hx

0
T+h (∆X

0∆X)−1 xT
(yT − x0Tβ)

T
] =

= E[exp
n
(yT − x0Tβ) (1 +∆hx

0
T+h (∆X

0∆X)−1
xT
T
) + x0Tβ +∆hx

0
T+hβ + σ2 h2

o
],

= exp

½
Tσ2

2
(1 +∆hx

0
T+h (∆X

0∆X)−1
xT
T
)(1 +∆hx

0
T+h (∆X

0∆X)−1
xT
T
) + x0T+hβ + σ2 h2

¾
,

= exp

½
Tσ2

2
(1 + 2∆hx

0
T+h (∆X

0∆X)−1
xT
T
+∆hx

0
T+h (∆X

0∆X)−1
xT
T

x0T
T
(∆X 0∆X)−1∆hxT+h)

+x0T+hβ + σ2 h2
ª
,

= exp

½
x0T+hβ + σ2(T+h2 +

1

T
∆hx

0
T+h (∆X

0∆X)−1 xTx0T (∆X
0∆X)−1∆hxT+h)

+
σ2

2
(2∆hx

0
T+h (∆X

0∆X)−1 xT

¾
,

and as a consequence:

E[FT+h|T ] = E[ YT exp { ∆hx
0
T+hβ + σ2 h2 +∆hx

0
T+h (∆X

0∆X)−1 xT
(yT − x0Tβ)

T
+

− 1

2T
σ2∆hx

0
T+h (∆X

0∆X)−1 xTx0T (∆X
0∆X)−1∆hxT+h − σ2x0T (∆X

0∆X)−1∆hx
0
T+h } ],

= exp{x0T+hβ +
T + h

2
σ2},

showing that FT+h|T is unconditionally unbiased.

Proof of Theorem 2. Using Assumption 1 we have xT = ı0(T )∆X. Now let P∆X =∆X (∆X
0∆X)−1∆X 0

be the projection matrix onto the column space of∆X, then, ı0(T )∆X (∆X
0∆X)−1∆X 0ı(T ) = ı0(T )P∆X ı(T ) =

ı0(T )ı(T ) = T, since ∆X includes a column of ones (i.e. ı(T )) associated with the constant (the drift
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term).

zT+h =
1

2

µ
T + h−

³
xT+h − xT + ı0(T )∆X

´0
(∆X 0∆X)−1

³
xT+h − xT + ı0(T )∆X

´¶
,

=
1

2

³
T + h− (xT+h − xT ) (∆X

0∆X)−1 (xT+h − xT )
´

−ı0(T )∆X (∆X 0∆X)−1 (xT+h − xT )− ı0(T )∆X (∆X
0∆X)−1∆X 0ı(T ),

=
1

2

³
h− (xT+h − xT ) (∆X

0∆X)−1 (xT+h − xT )− 2ı0(T )∆X (∆X 0∆X)−1 (xT+h − xT )
´
,

= zT+h|T .

Remains to be shown that x0t+hβ̂ = lnYT+∆hx
0
T+hβ̂. By Assumption 1 x

0
T = ı0(T )∆X and by definition

of ∆h we have x0T+h = x0T +∆hx
0
T+h and hence:

x0T+hβ̂ = x0T β̂ +∆hx
0
T+hβ̂,

= ı0(T )∆X (∆X 0∆X)−1∆X 0∆y +∆hx
0
T+hβ̂,

= yT +∆hx
0
T+hβ̂,

since ı0(T )∆X (∆X
0∆X)−1∆X 0 = ı0(T ). Hence FT+h = FT+h|h.

Proof of Theorem 3. The conditional expectation E[YT+h|YT ] = YT exp{∆hx
0
T+hβ +

h
2σ

2}.

The statistic
³
β̂, σ̂2

´
given YT is a complete sufficient statistic for the distribution of the distrib-

ution of Y(T−1)|YT ,X, which implies that any function f
³
β̂, σ̂2

´
with expectation g

¡
β, σ2

¢
is es-

sentially unique: if f̃
³
β̂, σ̂2

´
is a function with the same expectation function g

¡
β, σ2

¢
, then Eβ,σ2h

f
³
β̂, σ̂2

´
− f̃

³
β̂, σ̂2

´i
= 0 for all β, σ ∈ <k×<+, but the completeness of

³
β̂, σ̂2

´
means by definition

that Eβ,σ2

h
h
³
β̂, σ̂2

´i
= 0 for all parameter values, implies that h

³
β̂, σ̂2

´
= 0 a.e. and hence f = f̃

a.e.. Since bβ | YT ∼ N(µ,Σ) and for a fixed vector a we have E[exp{a0bβ }|YT ] = exp{a0β + 1
2a
0Σa},

we know that the function must be proportional to exp{a0bβ } since the expectation function would
otherwise not be log-linear in β. Hence, to find a conditional unbiased estimator we first need to solve:

Eβ̂|YT

h
exp{a0β̂} |YT

i
∝ exp

©
∆hx

0
T+hβ

ª
.

Terms involving YT and σ2 are immaterial at this stage, since they, by the independence of σ̂2 and β̂,

can be taken account of via the 0F1-function. Using the conditional distribution of β̂ we have:

Eβ̂|YT

h
exp{a0β̂} |YT

i
= exp

½
a0β + a0 (∆X 0∆X)−1 xT

(−x0T )
T

β

¾
× terms not involving β.
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Hence, we need to solve:

a0(Ik − (∆X 0∆X)−1 xTx0T
1

T
)β = ∆hx

0
T+hβ, for all β ∈ <k.

Let B = (Ik−(∆X 0∆X)−1 xTx0T
1

T
) and let B+ denote its Moore-Penrose generalized inverse (explicit

expressions for B and B+ are given in Lemma 2 below), then:

a0(Ik − (∆X 0∆X)−1 xTx0T
1

T
) = ∆hx

0
T+h,

has general solution (as derived by Penrose, see e.g. Magnus and Neudecker 1988, p37)

a = B0+∆hxT+h + (Ik −B0+B0)q,

with q an arbitrary (k × 1) vector, if and only if:

B0B0+∆hxT+h = ∆hxT+h. (36)

Lemma 2 below shows that B0B0+ =

 0 0

0 Ik−1

 . The first element of ∆hxT+h equals h, and not

0, and the consistency condition (36) cannot be satisfied. No a exists such that a0B = ∆hx
0
T+h. This

implies that no conditional unbiased forecast based on the complete sufficient statistics exists.

Comment. Increasing a increases a0β̂ but the expectation associated with the drift term is reduced

by an equal amount from the conditional expectation. This is most clearly seen when xt = t, i.e.

only a drift term is included in the regression. We then have a0β + a0 (∆X 0∆X)−1 xT (−x0T ) /T β =

aβ − aβ = 0 for any a.

Lemma 2 The matrix B equals:

B =

 0 b0

0 Ik−1

 ,

with b = − 1
T xT,2:k where xT = (T, x

0
T,2:k)

0 and has Moore-Penrose inverse:

B+ =
1

1 + b0b

 0 0

b (1 + b0b)Ik−1 − bb0

 .

Proof . Since (∆X 0∆X)−1∆X 0∆X = Ik and ι is the first column of∆X we have (∆X 0∆X)−1∆X 0ι =

(1, 0, ..., 0)0. Hence B = Ik − (1, 0, ..., 0)0x0T
1

T
= Ik − (1, 0, ..., 0)0(1, 1T x0T,2:k).
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The second part of the Lemma is easily proved by verifying the four conditions of the Moore-Penrose

inverse: (a) B+B =

 0 0

0 Ik−1

 and hence symmetric, (b) BB+ is symmetric, (c) BB+B = B,

and (d) B+BB+ = B+.

Proof of Theorem 4. First write:

E[(YT+h − FT+h)
2] = E(Y 2

T+h
(1)

−2YT+hFT+h
(2)

+F 2T+h
(3)

). (37)

The first term (1) in Equation 37 equals:

E[Y 2
T+h] = E[exp{2x0T+hβ + 2

T+hX
i=1

εi}] = exp{2x0T+hβ +
4

2
(T + h)σ2},

= exp{2x0T+hβ + 2(T + h)σ2}.

The second term (2): Since σ̂2 independent of the other terms present which involve ε, such asP
εt and β̂, we have with the unconditional predictor FT+h = exp{x0T+hβ̂} 0F1(m;mσ̂2 zT+h) with

zT+h =
1
2(T + h− x0T+h (∆X

0∆X)−1 xT+h):

E[YT+hFT+h] = E[exp{x0T+hβ +
TX
t=1

εt +
hX
i=1

εT+i + x0T+hβ̂}0F1(m;mσ̂2 zT+h)],

= E[exp{2x0T+hβ +
h

2
σ2 + (ι0ε(T ) + x0T+h (∆X

0∆X)−1∆X 0ε(T )) + σ2zT+h},

= exp{2x0T+hβ +
h

2
σ2 +

+
1

2
(ι0 + x0T+h (∆X

0∆X)−1∆X 0)σ2IT (ι+∆X (∆X 0∆X)−1 xT+h) + σ2zT+h},

= exp{2x0T+hβ +
h

2
σ2 +

1

2
σ2(T + 2x0T (∆X

0∆X)−1 xT+h +

+x0T+h (∆X
0∆X)−1 xT+h) + σ2zT+h}; since ∆X 0ι equals xT ,

= exp{2x0T+hβ +
1

2
σ2(T + h+ 2x0T+h (∆X

0∆X)−1 xT +

+x0T+h (∆X
0∆X)−1 xT+h + T + h− x0T+h (∆X

0∆X)−1 xT+h)},

= exp{2x0T+hβ +
1

2
σ2(2T + 2h+ 2x0T+h (∆X

0∆X)−1 xT )}.

So,

−2E[YT+hFT+h] = −2 exp{2x0T+hβ + 2(T + h)σ2} ∗ exp{−σ2(T + h− x0T+h (∆X
0∆X)−1 xT )}.

Now if a constant is included in the regression so that ι is the first column of ∆X then we

have (∆X 0∆X)−1∆X 0∆Xi = ei and x0T+h (∆X
0∆X)−1 xT = x0T+h (∆X

0∆X)−1∆X 0 ι = (T +
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h, ...)(1, 0, ..., 0)0 = T + h. Hence:

−2E[YT+hFT+h] = −2 exp{2x0T+hβ + 2σ2(T + h)}.

The third term (3) in Equation 37 equals:

E[F 2T+h] = E[exp{2x0T+hβ̂} 0F1(m;mσ̂2 zT+h)
2],

= exp{2x0T+hβ +
4

2
σ2x0T+h (∆X

0∆X)−1 xT+h + 2zT+hσ2}0F1(m;σ4 z2T+h),

= exp{2x0T+hβ + 2σ2(x0T+h (∆X 0∆X)−1 xT+h + 1
2(T + h− x0T+h (∆X

0∆X)−1 xT+h))}

× 0F1(m;σ
4 z2T+h),

= exp{2x0T+hβ + σ2(T + h+ x0T+h (∆X
0∆X)−1 xT+h))}0F1(m;σ4 z2T+h),

= exp{2x0T+hβ + 2(T + h)σ2} exp{−σ2(T + h− x0T+h (∆X
0∆X)−1 xT+h)}0F1(m;σ4 z2T+h).

Combining the three terms gives

E[(YT+h − FT+h)
2] = exp{2x0T+hβ + 2(T + h)σ2} ∗³

1− 2 exp{−σ2(T + h− x0T+h (∆X
0∆X)−1 xT )}+

+exp{−σ2(T + h− x0T+h (∆X
0∆X)−1 xT+h)}0F1(m;σ4 z2T+h)

´
Using x0T+h (∆X

0∆X)−1 xT = T+h and x0T+h (∆X
0∆X)−1 xT+h = T+2h+∆hx

0
T+h (∆X

0∆X)−1∆hxT+h,

when a constant is included, we obtain:

E[(YT+h − FT+h)
2] = exp{2x0T+hβ + 2(T + h)σ2} ∗n

exp{σ2(h+∆hx
0
T+h (∆X

0∆X)−1∆hxT+h)}0F1(m;σ4 z2T+h)− 1
o
.

The unbiased estimator of MSFE. First note that using the above we can write:

E[(YT+h − FT+h)
2] = E[F 2T+h]− exp{2x0T+hβ + 2(T + h)σ2}.

The first term can be estimated unbiasedly by F 2T+h, and the second term using Van Garderen (2001)

in the familiar form exp{2x0T+hβ̂}0F1(m;mσ̂2 z̃) with z̃ = −2(h + ∆hx
0
T+h (∆X

0∆X)−1∆hxT+h)

since:
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E exp{2x0T+hβ̂}0F1(m;−2mσ̂2(h+ aT+h)) =

= exp{2x0T+hβ + σ2
4

2
x0T+h (∆X

0∆X)−1 xT+h − σ22
³
h+∆hx

0
T+h (∆X

0∆X)−1∆hxT+h

´
}

= exp{2x0T+hβ + σ22(T + 2h+∆hx
0
T+h (∆X

0∆X)−1∆hxT+h −
³
h+∆hx

0
T+h (∆X

0∆X)−1∆hxT+h

´
}

= exp{2x0T+hβ + 2(T + h)σ2}

which is equal to the second term in the expression for the MSFE.

A.2 Conditional Distributions given YT

Lemma 3 (a) Conditional distribution of yT+h given yT :

yT+h| yT ∼ N
¡
yT +∆hx

0
T+hβ;hσ

2
¢
,

(b) Conditional expectation of YT+h given YT :

E[YT+h|YT ] = YT exp{∆hx
0
T+hβ +

h

2
σ2},

(c) Unconditional expectation of YT+h :

E[YT+h] = exp{x0T+hβ +
T + h

2
σ2}.

Proof . Using Equation (35) part (a) follows from:

yT+h =
PT+h

s=1 ∆x
0
sβ +

PT+h
s=1 εs

= yT +
Ph

s=1∆x
0
T+sβ +

Ph
s=1 εT+s,

= yT +∆hx
0
T+hβ +

Ph
s=1 εT+s,

and calculating the mean and variance. Parts (b) and (c) follow from the moment generating function

of a normal distribution: E[er
0z] = exp{ r0µ+ 1

2r
0Σ r} if z ∼ N(µ,Σ).

Lemma 4 Conditional distribution of y(T−1) given yT :

y(T−1) | yT ∼ N

X(T−1)β +


1

...

T − 1


1
T (yT − x0Tβ) ; σ2Σ

 ,

with
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Σ = σ2



1 1 · · · 1

1 2 · · · 2

...
...
. . .

...

1 2 · · · T − 1


− σ2

1

T



1

2

...

T − 1


Ã
1 2 · · · T − 1

!
.

Proof . The proof uses the following standard result on conditional multivariate normal distribu-

tions (e.g. Muirhead (1982) Theorem 1.2.11): If: Y1

Y2

 ∼ N


 µ1

µ2

 ,

 Σ11 Σ12

Σ21 Σ22


 ,

where Y1 is (n1 × 1), Y2 is (n2 × 1), µ and Σ partitioned accordingly, then:

Y1|Y2 ∼ N
¡
µ1 +Σ12Σ

−1
22 (Y2 − µ2), Σ11 − Σ12Σ−122 Σ21

¢
.

Since y(T ) ∼ N(X 0
(T ) β;σ

2Ω(T )) with:

Ω(T ) ≡



1 1 1 · · · 1

1 2 2 · · · 2

1 2
. . .

...

...
... T − 1 T − 1

1 2 · · · T − 1 T


,

we have Σ21 = Σ012 = σ2 (1, 2, · · · , T − 1), Σ22 = σ2T, and hence:

Σ12Σ
−1
22 (Y2 − µ2) =


1

...

T − 1


yT − x0Tβ

T
;

Σ12Σ
−1
22 Σ21 =

1

T
σ2


1

...

T − 1


Ã
1 · · · T − 1

!
.

Finally, since Σ11 = σ2Ω(T−1), the result follows.

Lemma 5 The conditional distribution of ∆y given yT is a degenerate normal distribution:

∆y| yT ∼ Ndeg

µ
∆X β + ı(T )

1

T
(yT − x0Tβ) , σ

2Mı(T )

¶
,
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with Mı(T ) = (IT − 1
T ı(T )ı

0
(T ))

Proof Using Lemma 4 the conditional distribution of y(T ) given yT is a degenerate normal distri-

bution

y(T ) | yT ∼ Ndeg




X(T−1)β +


1

...

T − 1


1
T (yT − x0Tβ)

yT


;

 Σ(T−1) 0

0 0




.

Since ∆y(T ) = L(T ) y(T ), we have that ∆y(T ) is normally distributed with mean

L(T )E[y | yT ] = ∆X β + ı(T )
1

T
(yT − x0Tβ) ,

L(T )

 Σ(T−1) 0

0 0

L0(T ) = (IT − 1

T
ı(T )ı

0
(T )) =Mı(T) .

Note that the distribution of ∆y(T )| yT is degenerate since by assumption ı0(T )∆y(T ) = yT .

Theorem 5 Let bβ = (∆X 0∆X)−1∆X 0∆y and bσ2 = ∆y0M∆X∆y
n− k

then:

(A) bβ | YT ∼ N(µ,Σ) with:

µ = E
hbβ|YT i = β +

yT − x0Tβ
T

(∆X 0∆X)−1 xT ,

Σ = V ar(bβ|YT ) = σ2
µ
(∆X 0∆X)−1 − 1

T
(∆X 0∆X)−1 xTxT 0 (∆X 0∆X)−1

¶
,

(B) (T − k)
bσ2
σ2
|YT ∼ χ2T−k ,

(C) bσ2 and β̂ are conditionally and unconditionally independent.
Proof . (A) bβ = (∆X 0∆X)−1∆X 0∆y. The distribution of ∆y given yT (or YT ) is given in the

previous lemma. The result follows by noting that ∆X 0ı(T ) = xT and the mean and variance follow

by basic matrix multiplication as follows:

E
hbβ|YT i = (∆X 0∆X)−1∆X 0E [∆y|YT ] ,

= β + (∆X 0∆X)−1∆X 0ı(T )
(yT − x0Tβ)

T
,

= β + (∆X 0∆X)−1 xT
(yT − x0Tβ)

T
.
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V ar(bβ|YT ) = σ2 (∆X 0∆X)−1∆X 0(IT − 1

T
ı(T )ı

0
(T ))∆X (∆X

0∆X)−1 ,

= σ2
µ
(∆X 0∆X)−1 − 1

T
(∆X 0∆X)−1 xTxT 0 (∆X 0∆X)−1

¶
,

since xT = ı0(T )∆X by Assumption 1.

(B) and (C). We will use a conditional version of a theorem by Ogasawara and Takahashi (1951),

see Muirhead (1982) which states that if z ∼ N(0,Σ), with Σ possibly singular, then z0Az ∼

χ2rank(AΣ) if and only if AΣAΣ = AΣ. Using the conditional distribution of ∆y(T )| yT , we see

that M∆XE[∆y(T )| yT ] = 0, and for the (degenerate) covariance matrix for M∆X∆y(T ) = σ2M∆X

Mı(T )M∆X = σ2M∆X , since M∆XMı(T) =M∆X . We have therefore:

M∆X∆y(T )| yT ∼ Ndeg

¡
0, σ2 M∆X

¢
,

and hence with A =M∆X = Σ, we have rank(AΣ) = T − k :

∆y0M∆X∆y
σ2

| yT ∼ χ2T−k.

(C) Follows since β̂ = (∆X 0∆X)−1∆X 0∆y andM∆X∆y are both linear functions of the conditionally

and unconditionally normally distributed ∆y and are uncorrelated since M∆X∆X(∆X 0∆X)−1 = 0,

and therefore independent. Hence, β̂ is also independent of ∆y0M∆X∆y/(T − k), conditionally and

unconditionally.

Comment: Mı(T ) = (IT − 1
T ı(T )ı

0
(T )) = (IT − ı(T )(ı

0
(T )ı(T ))

−1ı0(T )), is a projection matrix with

Mı(T )ı(T ) = 0 . This implies that if the model only includes a time trend, and therefore ∆X = ı(T ),

that the conditional variance of bβ|YT is 0, which is as it should be since in that case bβ = 1
T yT , and

fixed for given YT .

Corollary 2 YT exp{Cbβ} is conditionally independent of bσ2, given YT , for arbitrary, fixed matrix

C.

This is useful because it allows us to take expectations with respect to β̂ first, before evaluating

the expectation of a function of bσ2.
Lemma 6 Goldberger (1962). Let: y(T )

yT+1

 =

 X(T )

x0T+1

β +

 ε(T )

εT+1

 ,

 ε(T )

εT+1

 ∼ N

0;
 Ω11 ω12

ω21 ω22



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then the Best Linear Unbiased Predictor of yT+1 is given by:

ŷ∗T+1 = x0T+1β̂GLS + ω21Ω
−1
11 eGLS,T .

Best in Goldberger (1962) means that the forecast minimizes E
h¡
ŷ∗T+1 − yT+1

¢ ¡
ŷ∗T+1 − yT+1

¢0i
,

subject to (i) linearity ŷ∗T+1 = C 0y(T ) and (ii) unbiasedness E
£
ŷ∗T+1 − yT+1

¤
= 0. Since in the unit

root case ω21Ω
−1
11 = 1 we have for Model (1): ŷ

∗
T+1 = x0T+1β̂ + 1.(yT − x0T β̂) and hence we have the

following:

Corollary 3 In Model (1), the Best Linear Unbiased Predictor of yT+1 is given by:

ŷ∗T+1 = yT +∆x
0
T+1β̂.

A.3 Expectations involving exponentials and hypergeometric functions

Definition 3 The hypergeometric function can be defined as the infinite sum:

0F1 (m,x) ≡
∞X
i=0

xi

i!(m)i
,

(m)0 = 1 and (m)i = m (m+ 1) ... (m+ i− 1) .

See e.g. Abadir (2001) who reviews the use of hypergeometric functions in economics or Van

Garderen (2001) who further proves:

Lemma 7 Let m
σ̂2

σ2
∼ χ2m, then for any real constant z we have,

E
h
0F1(

m

2
; z
m

2
σ̂2
i
= exp

©
z σ2

ª
,

E

·n
0F1(

m

2
; z
m

2
σ̂2)
o2¸

= exp
©
2 z σ2

ª
0F1(

m

2
; z2σ4).

Proof See Van Garderen (2001).
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B Additional Graphs and Tables

Table 6: MSFE and Estimates

h

Theory Simulation

Exact

Unbiased

Estimate

Appr.

Unbiased

Estimate

1 5.5 5.5 5.5 5.5

2 11.2 11.2 11.2 11.2

3 12.1 12.2 12.1 12.1

4 11.9 12.0 12.0 12.0

5 49.3 49.9 49.5 49.5

6 45.2 45.8 45.4 45.4

7 72.5 73.6 72.9 72.7

8 69.4 70.2 69.7 69.5

9 97.9 99.5 98.3 98.1

10 555.7 563.6 558.3 556.9

T = 25, σ = 0.05267, β0 = (0.05, 0.2, 0.4, 0.5). 100.000 replications
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Figure 4: MSFE deficiency. T = 25, σ = 0.05267, β0 = (0.05, 0.2, 0.4, 0.5). 100.000 replications.

C Sectoral Results

1956-1980 : T = 25, Forecasting horizon h = 5 nr simulations = 100,000.

Sectoral Parameter Estimates

1956-1980 incpt dd72 d74 dd74 dd75 dd76 d80 dlli dlki σ̂

Agricult 0.029 -0.063 -0.135 -0.025 -0.147 0.035

Mining 0.002 -0.127 -0.116 0.329 0.262 0.030

Manufact -0.014 0.100 1.157 0.019

Energy 0.036 -0.319 0.715 0.040

Construc 0.006 -0.132 -0.061 0.518 0.387 0.027

Transprt 0.020 -0.066 0.009 0.429 0.028

Communic 0.039 0.707 0.055 0.021

Oth Serv -0.004 -0.053 0.610 0.582 0.017

Average 0.014 -0.016 -0.016 -0.014 -0.008 -0.017 -0.023 0.241 0.430 0.027
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Growth: Average Actual and predicted

1956-1980 Actual Unb ApprUnb Naive Consist

Agricult 15.949 16.000 16.000 15.835 16.188

Mining -5.413 -5.397 -5.397 -5.533 -5.323

Manufact 2.550 2.539 2.539 2.472 2.567

Energy 30.448 30.403 30.403 30.255 30.775

Construc -0.276 -0.299 -0.299 -0.174 0.013

Transprt 5.031 5.038 5.038 5.530 5.734

Communic 22.033 22.051 22.051 21.989 22.127

Oth Serv 20.721 20.731 20.731 20.666 20.756

Average 11.380 11.383 11.383 11.380 11.605

Growth : Bias

1956-1980 Unb ApprUnb Naive Consist

Agricult 0.050 0.050 -0.114 0.238

Mining 0.016 0.016 -0.120 0.090

Manufact -0.011 -0.011 -0.078 0.018

Energy -0.045 -0.045 -0.194 0.327

Construc -0.024 -0.024 0.102 0.288

Transprt 0.007 0.007 0.499 0.703

Communic 0.018 0.018 -0.044 0.094

Oth Serv 0.010 0.010 -0.055 0.036

Average 0.003 0.003 0.000 0.224
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Growth: MSE

1956-1980 Unb ApprUnb Naive Consist

Agricult 43.739 43.739 43.633 43.935

Mining 13.857 13.857 13.834 13.887

Manufact 5.835 5.835 5.832 5.840

Energy 97.865 97.865 97.674 98.559

Construc 61.938 61.938 62.102 62.409

Transprt 145.387 145.387 146.964 147.774

Communic 18.551 18.551 18.533 18.586

Oth Serv 6.160 6.160 6.157 6.164

Average 49.167 49.167 49.341 49.644

Growth: MSE Deficiency vs best (*) in %

1956-1980 Unb ApprUnb Naive Consist

Agricult 0.245 0.245 * 0.692

Mining 0.172 0.172 * 0.388

Manufact 0.049 0.049 * 0.121

Energy 0.196 0.196 * 0.906

Construc * 0.000 0.265 0.760

Transprt * 0.000 1.085 1.642

Communic 0.102 0.102 * 0.288

Oth Serv 0.046 0.046 * 0.105

Average 0.101 0.101 0.169 0.613
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Levels: Average Actual and predicted

1956-1980 Actual Unb ApprUnb YT Ĝh,T Naive Consist1 Consist2

Agricult 2.284 2.285 2.285 2.295 2.299 2.302 2.338

Mining 0.821 0.821 0.821 0.824 0.825 0.826 0.835

Manufact 1.876 1.876 1.876 1.878 1.880 1.880 1.889

Energy 6.160 6.157 6.157 6.200 6.207 6.224 6.350

Construc 1.672 1.672 1.672 1.680 1.678 1.683 1.699

Transprt 1.719 1.719 1.719 1.734 1.726 1.737 1.754

Communic 3.984 3.984 3.984 3.991 3.993 3.996 4.018

Oth Serv 2.512 2.512 2.512 2.515 2.516 2.517 2.526

Average 2.629 2.628 2.628 2.640 2.640 2.646 2.676

Level : Bias

1956-1980 Unb ApprUnb YT Ĝh,T Naive Consist1 Consist2

Agricult 0.001 0.001 0.011 0.015 0.018 0.054

Mining 0.000 0.000 0.003 0.004 0.004 0.014

Manufact 0.000 0.000 0.002 0.003 0.004 0.013

Energy -0.003 -0.003 0.039 0.046 0.064 0.189

Construc 0.000 0.000 0.008 0.006 0.011 0.027

Transprt 0.000 0.000 0.015 0.007 0.018 0.035

Communic 0.001 0.001 0.008 0.010 0.012 0.035

Oth Serv 0.000 0.000 0.003 0.004 0.005 0.014

Average 0.000 0.000 0.011 0.012 0.017 0.048
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Level : MSFE

1956-1980 Unb ApprUnb YT Ĝh,T Naive Consist1 Consist2

Agricult 0.051 0.051 0.051 0.051 0.052 0.056

Mining 0.004 0.004 0.004 0.004 0.004 0.004

Manufact 0.009 0.009 0.009 0.009 0.009 0.009

Energy 0.548 0.548 0.557 0.559 0.564 0.622

Construc 0.029 0.029 0.029 0.029 0.029 0.030

Transprt 0.052 0.052 0.053 0.052 0.053 0.055

Communic 0.057 0.057 0.057 0.057 0.057 0.059

Oth Serv 0.012 0.012 0.012 0.012 0.012 0.013

Average 0.095 0.095 0.097 0.097 0.098 0.106

Level : relative deficiency MSFE vs best in perc

Unb ApprUnb YT Ĝh,T Naive Consist1 Consist2

Agricult * 0.000 1.170 1.631 2.217 10.902

Mining * 0.000 0.744 1.221 1.513 8.187

Manufact * 0.000 0.289 0.500 0.601 3.343

Energy * 0.000 1.607 1.949 2.901 13.452

Construc * 0.000 1.207 0.849 1.803 5.989

Transprt * 0.001 2.122 0.838 2.738 6.590

Communic * 0.000 0.454 0.623 0.850 4.041

Oth Serv * 0.000 0.244 0.428 0.509 2.804

Average * 0.000 0.980 1.005 1.641 6.913

1956 - 2005 : T = 50, Forecasting horizon h = 10, nr simulations = 100,000.
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Sectoral Parameter Estimates

1956-2005 incpt dd72 d74 dd74 dd75 dd76 d80 dd84 dlli dlki σ̂

Agricult 0.021 -0.068 -0.138 0.120 -0.031 0.177 0.042

Mining 0.014 -0.117 -0.111 -0.467 0.491 -0.019 0.064

Manufact 0.017 -0.030 0.490 0.515 0.020

Energy 0.036 -0.205 0.096 0.801 0.047

Construc 0.015 -0.125 -0.068 0.679 0.266 0.032

Transprt 0.023 -0.060 0.337 0.103 0.032

Communic 0.042 0.375 0.099 0.025

Oth Serv 0.023 -0.051 0.545 0.123 0.023

Average 0.024 -0.015 -0.016 -0.014 -0.008 -0.017 -0.022 -0.073 0.373 0.258 0.036

Growth: Average Actual and predicted

1956-2005 Actual Unb ApprUnb Naive Consist

Agricult 24.573 24.606 24.607 23.759 24.835

Mining -11.067 -11.101 -11.101 -12.497 -10.661

Manufact 27.918 27.937 27.937 27.735 27.994

Energy 76.283 76.318 76.318 74.890 76.843

Construc 8.933 8.940 8.940 8.613 9.164

Transprt 32.676 32.713 32.714 32.317 32.979

Communic 54.868 54.927 54.928 54.542 55.034

Oth Serv 40.697 40.736 40.736 40.434 40.821

Average 31.860 31.885 31.885 31.224 32.126
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Growth : Bias

1956-2005 Unb ApprUnb Naive Consist

Agricult 0.033 0.033 -0.814 0.262

Mining -0.034 -0.033 -1.429 0.406

Manufact 0.019 0.019 -0.184 0.076

Energy 0.035 0.035 -1.392 0.560

Construc 0.006 0.006 -0.321 0.231

Transprt 0.037 0.037 -0.359 0.303

Communic 0.060 0.060 -0.325 0.166

Oth Serv 0.039 0.039 -0.263 0.124

Average 0.024 0.025 -0.636 0.266

Growth: MSE

Unb ApprUnb Naive Consist

Agricult 57.225 57.225 57.129 57.509

Mining 78.427 78.428 77.885 79.452

Manufact 14.521 14.521 14.519 14.537

Energy 185.455 185.456 184.374 186.929

Construc 48.750 48.750 48.545 49.021

Transprt 70.251 70.251 69.955 70.634

Communic 32.854 32.854 32.818 32.919

Oth Serv 24.006 24.006 23.984 24.047

Average 63.936 63.936 63.651 64.381

49



Growth: relative deficiency MSE vs best in perc

1956-2005 Unb ApprUnb Naive Consist

Agricult 0.167 0.168 * 0.665

Mining 0.695 0.696 * 2.012

Manufact 0.017 0.017 * 0.128

Energy 0.586 0.586 * 1.386

Construc 0.423 0.423 * 0.980

Transprt 0.423 0.423 * 0.970

Communic 0.112 0.112 * 0.308

Oth Serv 0.091 0.091 * 0.260

Average 0.314 0.314 * 0.839

Level : Average Actual and predicted

1956-2005 Actual Unb ApprUnb YT Ĝh,T Naive Consist1 Consist2

Agricult 3.950 3.952 3.953 3.994 4.022 4.029 4.207

Mining 0.278 0.278 0.278 0.285 0.290 0.291 0.323

Manufact 4.295 4.296 4.296 4.307 4.313 4.315 4.359

Energy 23.549 23.553 23.553 23.886 24.081 24.153 25.533

Construc 1.979 1.979 1.979 1.993 1.999 2.003 2.054

Transprt 3.582 3.584 3.584 3.609 3.620 3.627 3.718

Communic 15.659 15.666 15.666 15.727 15.766 15.777 16.029

Oth Serv 7.368 7.370 7.370 7.395 7.411 7.415 7.518

Average 7.583 7.585 7.585 7.649 7.688 7.701 7.968
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Level : Bias

1956-2005 Unb ApprUnb YT Ĝh,T Naive Consist1 Consist2

Agricult 0.002 0.002 0.044 0.071 0.079 0.257

Mining 0.000 0.000 0.007 0.012 0.013 0.045

Manufact 0.001 0.001 0.011 0.018 0.020 0.064

Energy 0.003 0.003 0.337 0.532 0.603 1.984

Construc 0.000 0.000 0.014 0.020 0.024 0.075

Transprt 0.001 0.001 0.027 0.037 0.045 0.136

Communic 0.007 0.007 0.068 0.107 0.118 0.370

Oth Serv 0.002 0.002 0.027 0.043 0.047 0.150

Average 0.002 0.002 0.067 0.105 0.119 0.385

Level : MSFE

1956-2005 Unb ApprUnb YT Ĝh,T Naive Consist1 Consist2

Agricult 0.368 0.368 0.378 0.386 0.389 0.493

Mining 0.005 0.005 0.006 0.006 0.006 0.010

Manufact 0.094 0.094 0.094 0.095 0.095 0.101

Energy 17.998 17.998 18.640 19.141 19.349 25.815

Construc 0.059 0.059 0.060 0.061 0.061 0.070

Transprt 0.193 0.193 0.197 0.199 0.200 0.228

Communic 1.983 1.983 2.003 2.020 2.026 2.223

Oth Serv 0.379 0.379 0.382 0.385 0.386 0.418

Average 2.635 2.635 2.720 2.787 2.814 3.670
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Level : relative deficiency MSFE vs best in perc

1956-2005 Unb ApprUnb YT Ĝh,T Naive Consist1 Consist2

Agricult * 0.001 2.711 5.100 5.827 34.170

Mining * 0.003 6.414 11.895 13.856 86.535

Manufact * 0.000 0.631 1.174 1.345 7.593

Energy * 0.001 3.568 6.353 7.508 43.437

Construc * 0.000 1.761 2.737 3.486 18.255

Transprt * 0.000 1.779 2.770 3.510 18.162

Communic * 0.000 1.012 1.881 2.151 12.102

Oth Serv * 0.000 0.855 1.590 1.822 10.345

Average * 0.001 2.341 4.187 4.938 28.825

52




